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Laboratoire Kastler Brossel, École Normale Supérieure and CNRS, UPMC, 24 rue Lhomond, 75231 Paris, France

PACS 03.75.Ss – Degenerate Fermi gases

Abstract –We study the problem of a mobile impurity of mass M interacting via a s-wave broad
or narrow Feshbach resonance with a Fermi sea of particles of mass m. Truncating the Hilbert
space to at most one pair of particle-hole excitations of the Fermi sea, we determine ground state
properties of the polaronic branch other than its energy, namely the polaron quasiparticle residue
Z, and the impurity-to-fermion pair correlation function G(x). We show that G(x) deviates from
unity at large distances as −(A4 +B4 cos 2kFx)/(kFx)

4, where kF is the Fermi momentum; since
A4 > 0 and B4 > 0, the polaron has a diverging rms radius and exhibits Friedel-like oscillations. In
the weakly attractive limit, we obtain analytical results, that in particular detect the failure of the
Hilbert space truncation for a diverging mass impurity, as expected from Anderson orthogonality
catastrophe; at distances between ∼ 1/kF and the asymptotic distance where the 1/x4 law applies,
they reveal that G(x) exhibits an intriguing multiscale structure.

Introduction. – The physics of atomic Fermi gases
has recently experienced a fast development, thanks to the
Feshbach resonance technique that allows to tune the s-
wave scattering length a of the interaction, and to obtain
highly degenerate strongly interacting Fermi gases [1, 2].
The first realizations of spin polarized configurations [3,
4] asked for theoretical interpretation of the experimental
results, and shortly afterwards it was proposed that, in
the strongly polarized case, the minority atoms dressed
by the Fermi sea of the majority atoms form a normal gas
of quasiparticles called polarons [5, 6], which agrees with
the experimental phase diagram [3, 7].

The basic single-polaron properties, such as its binding
energy to the Fermi sea and its effective mass, are now well
understood, both for broad [5, 6, 8, 9] and narrow [10–12]
Feshbach resonances. Here we study the polaron ground
state properties going beyond the energy search, for both
types of resonance. We study the quasiparticle residue Z,
already investigated experimentally in [13, 14] and theo-
retically in [11,15], and the intriguing issue of the density
distribution that surrounds the impurity, as characterized
by the pair correlation function: This gives access to the
spatial extension of the polaron, of potential important
consequences on the properties of the polaronic gas.

Model. – We consider in three dimensions an ideal
gas of N same-spin-state fermions of massm, enclosed in a
cubic quantization volume V with periodic boundary con-
ditions. The gas is perturbed by an impurity, that is a dis-

tinguishable particle, of mass M . The impurity interacts
with each fermion resonantly on a s-wave broad or narrow
Feshbach resonance, as described by a two-channel model
[16–18], with a Hamiltonian Ĥ written in [10]: The parti-
cles exist either in the form of fermions or impurity in the
open channel, or in the form of a tightly bound fermion-
to-impurity molecule in the closed channel. These two
forms are coherently interconverted by the interchannel
coupling of amplitude Λ 1. We restrict to the zero-range
(or infinite momentum cut-off) limit, so that the inter-
action is characterized by the s-wave scattering length a
and the non-negative Feshbach length R∗ [19]. In terms of
the effective coupling constant g and of the interchannel
coupling Λ, one has

g =
2π~2a

µ
and R∗ =

π~4

Λ2µ2
, (1)

where µ = mM/(m +M) is the reduced mass. A broad
Feshbach resonance corresponds to R∗ = 0.

Polaronic ansatz. – Whereas the ground state of
the system presents two branches, a polaronic branch and
a dimeronic branch [8, 10–12,15, 20, 21], we restrict to the
polaronic branch. The ground-state of the N fermions
is the usual Fermi sea (“FS”), of energy EFS(N). We
determine the ground state of a single impurity interacting
with the N fermions under the approximation proposed in

1We can neglect the open-channel fermionic interaction if its
(background) scattering length abg is ≈ the van der Waals length.
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[6] (and generalized to encompass the narrow resonance
case in [10, 12]), that truncates the Hilbert space to at
most one pair of particle-hole excitations of the Fermi sea.
For a zero total momentum, this corresponds to the ansatz

|ψpol〉 =

(

φ d̂†0 +

′
∑

q

φq b̂
†
qûq +

′
∑

k,q

φkqd̂
†
q−kû

†
kûq

)

|FS〉,

(2)

where d̂†k, û
†
k and b̂†k are the creation operators of an im-

purity, a fermion and a closed-channel molecule of wave
vector k. The prime above the summation symbol means
that the sum is restricted to q belonging to the Fermi sea
of N fermions, and to k not belonging to that Fermi sea.
The successive terms in (2) correspond in that order to
the ones generated by repeated action of the Hamiltonian
Ĥ on the Λ = 0 polaronic ground state. One then has to
minimize the expectation value of Ĥ within the ansatz (2),
with respect to the variational parameters φ, φq and φkq,
with the constraint 〈ψpol|ψpol〉 = 1. Expressing φkq in
terms of φq and φq in terms of φ, as in [10], one is left with
a scalar implicit equation for the polaron energy counted
with respect to EFS(N); in the thermodynamic limit:

∆Epol ≡ Epol − EFS(N) =

∫ ′ d3q

(2π)3
1

Dq

, (3)

where the prime on the integral over q means that it is
restricted to the Fermi sea q < kF, with the Fermi mo-
mentum kF related as usual to the mean density of the
Fermi sea ρ = N/V by kF = (6π2ρ)1/3. The function of
the energy in the denominator of the integrand is

Dq =
1

g
−
µkF
π2~2

+
µ2R∗

π~4

(

∆Epol +
µ

m
εq

)

+

∫ ′ d3k′

(2π)3

(

1

Eq−k′ + εk′ − εq −∆Epol
−

2µ

~2k′2

)

, (4)

where εk = ~
2
k
2

2m for the fermions, Ek = ~
2
k
2

2M for the
impurity, and the prime on the integral over k′ means
that it is restricted to k′ > kF.

Quasiparticle residue. – The polaron is a well-
defined quasiparticle if it has a non-zero quasiparticle
residue Z, which is defined in the Green’s function for-
malism from the long imaginary-time decay of the Green’s
function [8]. Within the polaronic ansatz (2), it was shown
in [15] that simply Z = |φ|2. We first write the amplitude
φq in terms of the denominator (4) as [10]:

φq =
A

Dq

(5)

where A is a normalization factor. Then using Eq. (5) and
the coupled equations for φ, φq and φkq [10], we get the
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Fig. 1: (Color online) Quasiparticle residue (6) for various
mass ratios: M/m = 0.1505 (column a), M/m = 1 (column
b), M/m = 6.6439 (column c), and various Feshbach lengths:
kFR∗ = 0 (row 1), kFR∗ = 1 (row 2), kFR∗ = 10 (row 3).
Black line (solid for Z > 1/2, dashed for Z < 1/2): numerical
solution. Red line: Second order weakly attractive expansion
(22), that diverges for R∗ > 0 when s of Eq. (19) tends to unity,
and for R∗ = 0 when 1/(kFa) → 0. Points in (c2): Experimen-
tal data of [14] for kFR∗ ≃ 0.9474. Vertical dotted lines [10]:
Polaron-to-dimeron crossing point [on the left (resp. right) of
this line, the ground state is polaronic (resp. dimeronic)].

following expression for the residue:

Z ≡ |φ|2 =

[

1 +
1

Λ2

∫ ′ d3q

(2π)3
1

D2
q

+

∫ ′ d3kd3q

(2π)6

(

1/Dq

Eq−k + εk − εq −∆Epol

)2 ]−1

. (6)

In Fig. 1 we plot Z as a function of 1/kFa for various mass
ratiosM/m and reduced Feshbach lengths kFR∗. We find
that Z tends to 1 when a → 0−, as expected, and to
0 when a → 0+. The polaronic ansatz a priori makes
sense when Z is close to unity, and its accuracy becomes
questionable when Z → 0. In Fig. 1, we thus have plotted
Z in dashed line for a predicted value below 1/2. In the
weakly attractive limit, we shall give below a systematic
expansion of Z up to second order in kFa.

Pair correlation function. – The pair correlation
function G(xu−xd) is proportional to the probability den-
sity of finding a fermion at position xu knowing that the
impurity is localized at xd. In terms of the fermionic and
impurity field operators ψ̂u(xu) and ψ̂d(xd):

G(xu − xd) =
〈ψ̂†

u(xu)ψ̂
†
d(xd)ψ̂d(xd)ψ̂u(xu)〉

ρρd
. (7)

Here ρ = N/V is the unperturbed mean fermionic den-

sity, and ρd = 〈ψ̂†
d(xd)ψ̂d(xd)〉 is the mean density of
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impurity for the interacting system. Due to the inter-
channel coupling, the impurity has a non-zero probability
πclosed (studied in [10]) to be tightly bound within a closed-
channel molecule, where it cannot contribute to G(x) and
to ρd. In terms of the probability πopen = 1 − πclosed for
the impurity to be in the open channel, one finds that
ρd = πopen/V . In the thermodynamic limit, the open-
channel probability is related to the quasiparticle residue
as

πopen
Z

= 1+

∫ ′ d3kd3q

(2π)6

(

1/Dq

Eq−k + εk − εq −∆Epol

)2

(8)

while the pair correlation function is

G(x) = 1 +
Z

ρπopen

[

− 2f(x) +

∫ ′ d3q

(2π)3
|fq(x)|

2

−

∫ ′ d3k

(2π)3
|f̃k(x)|

2
]

, (9)

where we have introduced the functions

fq(x) =

∫ ′ d3k

(2π)3
eik·x/Dq

Eq−k + εk − εq −∆Epol
(10)

f̃k(x) =

∫ ′ d3q

(2π)3
eiq·x/Dq

Eq−k + εk − εq −∆Epol
(11)

f(x) =

∫ ′ d3kd3q

(2π)6
ei(k−q)·x/Dq

Eq−k + εk − εq −∆Epol
. (12)

Interestingly, the contribution involving f(x) is an inter-
ference effect between the subspaces with zero and one
pair of particle-hole excitations in the Fermi sea. In Fig. 2
we plot the numerically obtained deviation G(x)−1 of the
pair correlation function from unity (which is both its large
distance limit and its non-interacting limit): The presence
of the impurity induces oscillations in the fermionic den-
sity that are still significant at distances of several 1/kF.

Properties of the pair correlation function. – A
first property of the G(x) function is the sum rule:

∫

d3x[G(x) − 1] = 0, (13)

where the thermodynamic limit was taken and the integral
is over the whole space. This sum rule follows directly from
the integral representation of the Dirac delta distribution
∫

d3x exp(ik · x) = (2π)3δ(k).
A second property is that, in the limit where x→ +∞,

G(x)− 1 ∼
x→+∞

−
A4 +B4 cos(2kFx)

(kFx)4
. (14)

The prefactor of 1/(kFx)
4 is thus a periodic function of

x of period π/kF, with a mean value A4 and a cosine
contribution (of amplitude B4) reminiscent of the Friedel
oscillations. The fact that the mean value A4 differs from
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Fig. 2: (Color online) Deviation of the pair correlation func-
tion from unity (its uncorrelated value), for M/m = 6.6439,
kFR∗ = 1 and 1/kFa = −2. (a,b) Black thick line: Nu-
merical solution (9). (b) Red solid line: multiscale predic-
tion (31). Dashed line: non-oscillating bit of the asymptotic
prediction (14) with A4 given by (26). Dotted line: non-
oscillating bit of the prediction (30). (i), (ii) and (iii): zones of
the multiscale structure of G(x) defined below Eq. (31).

zero has an important physical consequence: It shows that
the polaron is a spatial extended object, since even the first
moment 〈x〉 of G(x) − 1 diverges (logarithmically) in the
thermodynamic limit.
Eq. (14) results from an asymptotic expansion of

(10,11,12) in powers of 1/x, obtained by repeated integra-
tion by parts as in [22], always integrating the exponential
function eik·x or e±iq·x to pull out a 1/x factor 2:

fq(x)∼
µ/(2π2

~
2)

x2kFDq

∑

u=±1

F (kF, u; q, u
′)eikFxu (15)

f̃k(x)∼
−µkF/(2π

2
~
2)

x2k2DkFez

∑

u′=±1

F (k, u; kF, u
′)eikFxu

′

, (16)

f(x)∼
−µ/(8π4

~
2)

x4DkFez

∑

u,u′=±1

F (kF, u; kF, u
′)eikFx(u−u′).(17)

Here ez is the unit vector along z, u is the cosine of the an-
gle between x and k, u′ is the cosine of the angle between
x and q, and the function F is defined as follows:

F (k, u; q, u′) =

[

−
4m2

(m+M)2
(1− u2)(1− u′2)

q2

k2

+

(

1 +
m−M

m+M

q2

k2
−

2µ

M

q

k
uu′ −∆Epol

2µ

~2k2

)2 ]−1/2

.

(18)

Therefore, in Eq. (9) the integrals containing |fq(x)|
2 and

|f̃k(x)|
2 provide a 1/x4 contribution with an oscillating

2One also uses the fact that, uniformly in the integration do-
main: ∀n1, n2, n3, n4 ∈ N, there exists Cn1,n2,n3,n4

∈ R+ such that
|∂n1

k ∂n2
u ∂n3

q ∂n4

u′
F (k, u; q, u′)| ≤ Cn1,n2,n3,n4

qn2+n4 .
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Fig. 3: (Color online) Coefficients A4 and B4 in the asymptotic
expansion (14) of the pair correlation functions, for various
mass ratios: M/m = 0.1505 (column a), M/m = 1 (column
b), M/m = 6.6439 (column c), and various Feshbach lengths:
kFR∗ = 0 (row 1), kFR∗ = 1 (row 2), kFR∗ = 10 (row 3).
Upper and lower black lines (solid for Z > 1/2, dashed for
Z < 1/2): Numerical evaluation of A4 and B4, respectively.
Red lines: leading order analytical results (26) and (27), that
diverge for R∗ > 0 when s of Eq. (19) tends to unity, and for
R∗ = 0 when 1/(kFa) → 0. Vertical dotted lines: polaron-to-
dimeron crossing point.

prefactor, as f(x) does. In Fig. 3 we plot A4 and B4

as functions of 1/kFa for various values of the mass ratio
M/m and reduced Feshbach length kFR∗.

In the weakly attractive limit. – Following
Ref. [10], we define for a < 0

s ≡
µ

m
(−aR∗)

1/2kF, (19)

and we take the limit a → 0− for fixed s < 1 (which
implies R∗ → +∞). Then ∆Epol tends to 0−, so that the
integral appearing in (4) is bounded [10], we have

gDq →
a→0−

1− (sq/kF)
2, (20)

and, after integration over q in Eq. (3), we get as in [10]:

∆Epol ∼
a→0−

~
2k2F
µ

kFa

π

1

s2

[

arctanh s

s
− 1

]

. (21)

Also, the interchannel coupling amplitude Λ scales as
(−kFa)

1/2, see Eq. (1), and a systematic expansion of ob-
servables may be performed in powers of kFa, treating
the interchannel coupling Λb̂†ûd̂ + h.c. within perturba-
tion theory. The terms neglected in the ansatz (2) have
an amplitude O(Λ3), that is a probability O(Λ6). One can
thus extract from Eq. (6) the exact value of Z up to Λ4:

1

Z
=

a→0−
1+

m2

µ2

[

c1
kFa

π
+ c2

(

kFa

π

)2

+O(kFa)
3

]

. (22)

The first coefficient of the expansion (22) is given by

c1 = −

(

1

1− s2
−

arctanh s

s

)

, (23)

it originates from the second term in Eq. (6), a closed-
channel contribution. This is why c1 = 0 on a broad
Feshbach resonance where s = 0. The second coefficient is

c2 =
1

2

(1 + α)2

1− s2
(s arctanh s− α arctanhα)

s2 − α2

−
1

2

[

1 +
2m2

µ2

(

arctanh s

s
− 1

)][

1 + s2

(1− s2)2
−

arctanh s

s

]

+
1

2(1− s2)
+
s2(1− α)(1 + α)2 arctanhα

(1− s2)2(s2 − α2)

−
[s4 + (1 + α)2s2 − α2] arctanh s

2s(1− s2)(s2 − α2)
, (24)

where the mass contrast α = (M−m)/(M+m) also obeys
2 arctanhα = ln(M/m) 3. The first term in Eq. (24) orig-
inates from the last term in (6), an open channel contri-
bution. For a broad Feshbach resonance (s = 0), it is non-
zero, whereas the sum of the other terms of (24), originat-

ing from the closed channel, vanishes, and c2 = ln(M/m)
1−m2/M2 .

It is instructive to analyze the perturbative expansion
in the exactly solvable limit of M/m → +∞: The im-
purity can then be considered as a pointlike scatterer of
fixed position, for convenience at the center of a spherical
cavity of arbitrarily large radius R, imposing contact con-
ditions of scattering length a and effective range −2R∗ on
the fermionic wavefunction [19]. In the thermodynamic
limit, one can then construct the Fermi sea of exactly
calculable single-particle eigenstates in this scatterer-plus-
cavity problem. As shown in [9] on a broad Feshbach res-
onance, the truncated ansatz (2) provides a good estimate
of ∆Epol for M/m→ ∞. On the contrary, we find that it
is qualitatively wrong for the quasiparticle residue: From
Eq. (6), it predicts a non-zero value of Z, whereas the
exact Z vanishes for M/m→ ∞, which proves the disap-
pearance of the polaronic character. For an infinite mass
impurity, indeed, Z is the modulus squared of the overlap
between the ground state of the free Fermi gas and the
ground state of the Fermi gas interacting with the scat-
terer. This overlap was studied in [23], and vanishes in the
thermodynamic limit, a phenomenon called the Anderson
orthogonality catastrophe. Satisfactorily, the perturbative
expansion (22) is able to detect this catastrophe:

c2 ∼
M/m→∞

ln(M/m)

(1− s2)2
. (25)

Such a logarithmic divergence with the mass ratio was al-
ready encountered in the context of the sudden coupling of
a Fermi sea to a finite mass impurity, see the unnumbered
equation below (4.3) in [24]. It originates from the first

3Contrarily to a first impression, c2 has a finite limit when s → α.
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term of (24), that is from the last term of (6), where it is
apparent that

∫ ′
d3kd3q/(k2−q2)2 diverges logarithmically

at the Fermi surface.
Turning back to a finite mass ratioM/m, we now calcu-

late the coefficients A4 and B4 in Eq. (14) to leading order
in kFa. The integrals appearing in Eq. (9) contribute to
these coefficients to second order in kFa, see Eqs. (15,16),
since 1/Dq scales as g 4. Also Z/πopen deviates from unity
only to second order in kFa, see Eq. (8). The leading order
contribution to A4 and B4 is thus given by the interference
term f(x), and from Eq. (17) we obtain

A4 →
a→0−

A
(0)
4 =

3s2

1− s2

(

arctanh s

s
− 1

)−1

, (26)

B4 ∼
a→0−

−
3

2π

(

1 +
M

m

)

kFa

1− s2
. (27)

These analytical predictions are satisfactorily compared to
the numerical evaluation of A4 and B4 in Fig. 3.
Taking again M/m→ +∞, we find a severe divergence

in the small-kFa expansion: The coefficient of the term
linear in kFa in B4 diverges linearly with the mass ratio.
Instead, the coefficient of the term linear in kFa in A4

(not given) diverges only logarithmically with the mass

ratio ∼ −A
(0)
4

ln(M/m)
π(1−s2) . This suggests that, for an impurity

of infinite mass, the asymptotic behaviour of G(x) − 1
is no longer O(1/x4) and that it decreases more slowly.
To confirm this expectation, restricting for simplicity to a
broad Feshbach resonance (R∗ = 0), we have calculated
the exact mean fermionic density in presence of a fixed
pointlike scatterer, obtaining an expression equivalent to
the one of §2.2.2 of [25] and leading at large distances to

G(x)− 1 ∼
x→+∞

3

2(kFx)3
Re

(

e2ikFx
kFa

1 + ikFa

)

. (28)

As this 1/x3 law has a zero-mean oscillating prefactor,
G(x)−1 has a non-diverging integral over the whole space.

Multiscale structure of G(x). – In the weakly at-
tractive limit, it is apparent from Eqs. (10,11,12) that the
functions fq, f̃k and f are of order one in kFa, so that the
leading order contribution to G(x)−1 in Eq. (9) originates
from the interference term ∝ f(x) and is also of order one:

G(x) − 1 =
a→0−

O(kFa). (29)

One then expects that, when kFx ≫ 1, G(x) − 1 drops
according to the asymptotic 1/x4 law with a coefficient of
order one in kFa. This simple view is however infirmed

by Eq. (26), where A4 has a non-zero limit A
(0)
4 for a →

0−. This suggests that the 1/x4 law is only obtained at
distances that diverge in the weakly attractive limit.
To confirm this expectation, one calculates f(x) to first

order in kFa for a fixed x [by using (20) and neglecting

4The integrals over k of the modulus squared of (15), and over
q for the modulus squared of (16), have contributions scaling as
(kFa)

2 ln(kFa) that cancel in their difference.

∆Epol in the denominator of (12)], then one takes the limit
kFx≫ 1. As shown in the appendix, this gives

lim
a→0−

G(x) − 1

ǫ
=

x→∞

A
(0)
4

(kFx)4

{

−
M

4m
cos(2kFx)+

s2

2(1− s2)

+
m

2M

[

γ −
3

2
+ ln(2kFxM/m)

]}

+O
[ 1

(kFx)5

]

(30)

with the positive quantity ǫ ≡ −∆Epol/EF ≪ 1 and
γ ≃ 0.577 215 is Euler’s constant. For that order of tak-
ing limits, the oscillating bit still obeys a 1/x4 law, with
the same coefficient B4 as in (27); on the contrary, the
non-oscillating bit obeys a different lnx/x4 asymptotic
law (dotted line in Fig. 2b), which shows that the validity
range of the 1/x4 law is pushed to infinity when a→ 0−.
Remarkably, by keeping ∆Epol in the denominator of

(12), one can obtain, see the appendix, an analytical ex-
pression for G(x) − 1 that contains both the lnx/x4 and
the 1/x4 laws as limiting cases, and that describes the
crossover region with cosine- and sine-integral functions:

G(x) − 1 =
kFx>1

A
(0)
4 ǫ

(kFx)4

{m

M

[

Ci(kFxǫ
1/2)−

1

2
Ci(kFxǫ)

]

−
1

4
k2Fx

2ǫ
[(π

2
− Si(kFxǫ/2)

)

sin(kFxǫ/2)

− Ci(kFxǫ/2) cos(kFxǫ/2)
]

+O(1)
}

(31)

where the remainder O(1) is a uniformly bounded func-
tion of kFx > 1 and ǫ ≪ 1. This formula satisfacto-
rily reproduces the numerical results, see Fig. 2b, where
ǫ ≃ 0.160. It reveals that the pair correlation func-
tion has a multiscale structure for a weakly attractive
interaction, with three spatial ranges 5: (i) the logarith-
mic range, 1 < kFx < ǫ−1/2, (ii) the crossover range,
ǫ−1/2 < kFx < 16ǫ−1, and (iii) the asymptotic range,
16ǫ−1 < kFx. The logarithmic range is immediately re-
covered from Ci(u) = lnu + O(1). The ǫ−1/2 scaling of
its upper limit is intuitively recovered if one assumes that
the relevant wave vectors in (12) obey |k− q| ≈ 1/x: Ne-
glecting ∆Epol with respect to Ek−q in the denominator
of (12) then indeed requires kFx . (Mǫ/m)−1/2.

Conclusion. – The fermionic polaron, composed of
an impurity particle dressed by the particle-hole excita-
tions of a Fermi sea close to a broad or narrow Feshbach
resonance with zero-range interaction, is a spatially ex-
tended object: The density perturbation induced by the
impurity in the Fermi gas asymptotically decays as the in-
verse quartic distance, with a spatially modulated compo-
nent reminiscent of the Friedel oscillations. In the weakly
attractive limit, kFa → 0− with |a|R∗ fixed, where sys-
tematic analytical results are obtained, this density per-
turbation reaches its asymptotic regime over distances di-
verging as 1/(k2F|a|) and exhibits at intermediate distances

5The first relative deviation of (kFx)
4[G(x)− 1] from its x → ∞

limit is −24/(kFxǫ)
2+ m

2Mx
sin(kFxǫ). For mǫ/M < 6, this is < 10%

for kFxǫ > 16. From a similar first-deviation analysis, being in the
logarithmic range actually requires kFxǫ

1/2 < (µ/M)1/2.
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a rich multiscale structure. This may have important con-
sequences on the interaction between polarons [26].

∗ ∗ ∗

We acknowledge financial support from the ERC
Project FERLODIM N.228177. C. Trefzger acknowledges
support from a Marie Curie Intra European grant IN-
TERPOL N.298449 within the 7th European Community
Framework Programme.

Appendix. – The integral over k and q in f(x) re-
duces to a triple integral over k, q and the angle θ between
k and q. Taking λ = |k − q| rather than θ as the vari-
able, and changing the integration order, we get f(x) =

(−F/x)
∫ +∞

0 dλ sin(λx)ϕ(λ) with F = (1− s2)A
(0)
4 ρǫ/2,

ϕ(λ) =

∫ 1

max(1−λ,0)

dq

∫ λ+q

max(λ−q,1)

dk
kq/(1− s2q2)

m
M λ2 + k2 − q2 + ǫ

and 1/kF is the unit of length. ϕ(λ) is a C2 function over
[0, 2] and [2,+∞[, with ϕ(0) = 0, ϕ′′(0) = 1/[ǫ(1 − s2)],
but with a jump J = ϕ′′(2+)−ϕ′′(2−) =

ǫ→0
M/[4m(1−s2)].

Triple integration by parts over each interval gives

f(x) =
F

x4

[

J cos 2x+ ϕ′′(0) +

∫ +∞

0

dλϕ(3)(λ) cosλx
]

.

The contribution of J reproduces Eq. (27). We find that
ϕ(λ) varies at three scales, ǫ, ǫ1/2 and ǫ0. For 0 < λ < ǫ3/4,
we use the scaling λ = ǫt and expand ϕ(3)(λ) in powers
of ǫ at fixed t. For ǫ3/4 < λ < ǫ1/4, we use the scaling
λ = ǫ1/2u and expand ϕ(3)(λ) at fixed u. For ǫ1/4 < λ < 1,
we directly expand at fixed λ. With η = m/M , this gives

ϕ(3)(λ) = −
4/(1− s2)

ǫ2(1 + 2t)3
−
ηY (t− 1)/t+O(2t+ 1)−3

2ǫ(1− s2)
+ . . .

ϕ(3)(λ) = −
(1− ηu2)(1 + 4ηu2 + η2u4)

2ǫ1/2u3(1 + ηu2)2(1− s2)
+

3 +O(u4)

4u4(1− s2)
+ . . .

ϕ(3)(λ) =
[ η

2λ(1− s2)
+O(λ0)

]

+
ǫ[1 +O(λ)]

2λ3(1− s2)
+ . . .

where Y is the Heaviside function, and the O( ) apply
for t ∈ R

+, u ∈ R
+ and λ ∈ [0, 1], respectively. If one

needs the integral of ϕ(3)(λ) cos(λx) up to an error O(1)
uniformly bounded in x and ǫ, one can apply several sim-
plifications over each interval. E.g., for ǫ1/4 < u < 1,
one can approximate ϕ(3)(λ) by an expansion in pow-
ers of u, and for 1 < u < ǫ−1/4, by an expansion in
powers of 1/u. Adding contributions of all intervals,
we concatenate them by pairs, and further noting that

J = O(1),
∫ ǫ−1/2

ǫ−1/4
dt
ǫ |t

−3 − 3
2 t

−4 − (t + 1/2)−3| = O(1),
∫ +∞

ǫ−1/2
dt
ǫ t

−3 = O(1),
∫ +∞

1
dλ|ϕ(3)(λ)| = O(1), we get

G(x)− 1 =
A

(0)
4 ǫ

x4

{

−
1

ǫ
+

∫ +∞

0

dt

2ǫ

cos(xǫt)

(t+ 1/2)3

+ η
[

∫ ǫ1/2

ǫ

dλ

2λ
cos(λx) −

∫ 1

ǫ1/2

dλ

2λ
cos(λx)

]

+O(1)
}

.

Explicitly evaluating the integrals gives Eq. (31) 6.
Finally, to obtain (30), one omits ǫ in the denominator

of ϕ(λ), so that it is no longer C2 at the origin: ϕ′′(λ) =
{η[ln(ηλ/2)+3/2]−s2/(1−s2)}/[2(1−s2)]+O(λ). We thus
locally split ϕ′′(λ) as the sum of a singular part ∝ lnλ and
a C∞ function. The only trick is then to take, in the last
triple integration by parts over λ and in the bit involving
the singular part, (1− cosλx)/x as a primitive of sinλx.
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