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Abstract

In the context of multivariate signal processing, fac-
torizations involving so-called para-unitary matrices
are relevant as well demonstrated in the book of
Vaidyanathan [11], or [4, 1] and more recently in a
series of papers by McWhirter and co-authors [5, 6].
However, known factorizations of matrix polynomi-
als, such as the Smith form [10], involve unimod-
ular matrices but usual factorizations such as QR,
eigenvalue or singular value decompositions, have
not been proved to exist for polynomial matrices, if
defined with para-unitary matrices, except for very
restrictive matrices [2]. It is clear that Cholesky fac-
torization requires square roots, and that EVD and
SVD require roots of higher degree polynomials. But
one can ask oneself whether the closure of the field
of polynomial coefficients is enough or not. It turns
out that it is not. Nevertheless, density arguments
allow to approximate any polynomial matrix by SVD
factorization involving paraunitary polynomial ma-
trices. With that goal, we define the appropriate
framework for Laurent polynomial matrices, that is,
polynomial matrices with both positive and negative
powers in a single variable, particularly the notion
of ordrer and degree. We introduce a Smith form
for these matrices involving “L-unimodular” matri-
ces which are matrices with a monomial non-zero
determinant. The ‘Elementary Polynomial Givens
Rotations’ of [6] are of that kind.

1 Notations and Definitions

Throughout the paper, vectors and matrices are de-
noted with underline lowercase and bold uppercase
letters respectively. I and 0 denote identity and zero
matrices. The entries of a matrix M are denoted
mij , where subscript ij denotes the i-th row and the
j-th column of M . (∗) stands for complex conju-
gation, (H) for conjugate transposition. Let Z be
the set of integers, N the subset of positive integers,
R the field of real numbers, C the field of complex
numbers, C∗ = C\{0} and C be the unit circle. C(A)
denotes the set of continuous functions from C to A.
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Let C[z] be the ring of polynomials with complex
coefficients: p(z) =

∑n
i=0 piz

i with n ∈ N, pi ∈ C.
If pn 6= 0, then the polynomial degree of p is
deg(p) = n, if pn = 1, p is said to be monic. More-
over, if pn = 1 and p0 6= 0, p is said to be L-monic.
Let C[z, z−1] be the ring of Laurent polynomials:
p(z) =

∑n
i=m piz

i with m,n ∈ Z,m ≤ n, pi ∈ C.
Let us suppose that pmpn 6= 0, then one can always
factorize p(z) = pnz

mπ(z) with π ∈ C[z] and L-
monic. The L-degree of p is defined as the degree of
π and is denoted as d(p) = n−m. According to this
L-degree, C[z, z−1] is an Euclidean ring, so a Prin-
cipal Ideal Domain (PID). The invertible elements
of C[z, z−1] are non-zero L-monomials: p(z) = azα

with a ∈ C∗ and α ∈ Z. As greatest common di-
visors (gcd) are defined up to an invertible element,
one can set for uniqueness purposes, the gcd to be a
L-monic polynomial of C[z].

Let Cn×n[z−1] be the ring of n×n matrices corre-
sponding to Finite Impulse Response (FIR) sytems:

M(z) =
∑l
k=0 Mkz

−k. The order of M is the
greatest index such that Mk 6= 0. Let Cn×n[z] be
the ring of n× n matrices with polynomials entries,
the order is defined in the same way. The units
of Cn×n[z] are matrices whose determinant is con-
stant and are called unimodular matrices [10, 11].
Let Cn×n[z, z−1] be the ring of matrices with L-
polynomials entries, also called L-polynomial matri-
ces. The units of Cn×n[z, z−1] are matrices whose
determinant is a non-zero L-monomial and are called
L-unimodular matrices. Let tilde denote the para-

conjugation: M̃(z) = MH( 1
z∗ ),∀z ∈ C∗. On the

unit circle, one has M̃ = MH . One says H is

parahermitian iff H = H̃, and U is paraunitary
iff UŨ = I.

Let us define a sesquilinear form according to
paraconjugation for two vectors of Cn×1[z, z−1] by
〈u, v〉 = ũ v. As paraconjugation is an involution,
〈, 〉 is a sesquilinear parahermitian form, and one

has 〈̃u, v〉 = 〈v, u〉. Moreover, let H ∈ Cn×n[z, z−1],

then 〈Hu, v〉 = 〈u, H̃v〉. If H is parahermitian, we
then have 〈Hu, v〉 = 〈u,Hv〉.

Let Cn×n(z) be the ring of n × n matrices whose
entries are rational functions. Let H be a proper
rational matrix, the degree or the McMillan degree
of H is defined as the sum of the degrees of the de-
nominator polynomials in its Smith-McMillan form.
It appears to be the minimal number of delays to
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implement a sytem with transfer matrix H [10, 11].

2 Invariant polynomial

When M is a polynomial matrix of Cn×n[z], it is
well known that one can always obtain a diagonal
form called Smith form by pre-multiplying and post-
multiplying M by unimodular matrices correspond-
ing to several elementary row and column operations
[10, 11]. M and P ∈ Cn×n[z] are Smith equivalent
if they have the same Smith form, which is denoted

M
S∼ P . As C[z, z−1] is a PID, one can define a

normal Smith form [8]. The involved L-unimodular
matrices correspond to product of L-elementary row
and column operations, defined as elementary opera-
tions replacing polynomial multiple by L-polynomial
multiple.

Definition 1. Let M ∈ Cn×n[z, z−1] be of rank n,
then there exist L-unimodular matrices U1, U2 ∈
Cn×n[z, z−1] such that U1MU2 = Λ = diag{λi}
where λi divides λi+1 and λi is unique up to a mul-
tiplication by a L-monomial.

To ensure the uniqueness of the previous form, we
will impose λi to be L-monic. Λ is called the L-Smith
form of M and λi the L-invariant polynomials, they

can be computed by λi = ∆i(M )

∆i−1(M )
, where ∆i(M)

is the L-monic gcd of all i× i minors of M .
It is clear that the determinant of a full-rank L-

polynomial matrix equals the product of its L- invari-
ant polynomials up to L-monomial multiplication.

We say that M ,P ∈ Cn×n[z, z−1] are L-Smith
equivalent if they have the same L-Smith form, we

note M
LS∼ P , and there exist U1, U2 L-unimodular

such that M = U1PU2. We then have:

Property 2. i. The L-invariant polynomials of a
L-unimodular matrix are all equal to 1;

ii. The L-invariant polynomials of a L-unitary ma-
trix U are all equal to 1;

iii. The L-invariant polynomials of a parahermitian
matrix H are self-inversive, that is: λi(z) =

eθizmi λ̃i(z) with θi ∈ R and mi = deg(λi).

To prove i remark that detU(z) = czα =
detU1(z) det Λ(z) detU2(z), so det Λ is a L-
monomial, and as λi are L-monic, the unique

solutions are λi = 1,∀i. Hence, U
LS∼ I.

To set ii, let detU(z) = czα
∏n
i=1 λi(z).

Remark that as UŨ = I, one has
czα

∏n
i=1 λi(z)c

∗z−α
∏n
i=1 λ̃i(z) = 1, so

∏n
i=1 λi is

invertible and as the λi are L-monic, the unique

solutions are λi = 1,∀i. Thus, U
LS∼ I and parau-

nitary matrices are L-equivalent to L-unimodular
matrices.

Finally, let ΛH be the Smith form of H:

H = U1ΛHU2. One has H̃ = Ũ2Λ̃HŨ1,

with Ũ i L-unimodular, so ΛH̃

LS∼ Λ̃H with

Λ̃H ∈ Cn×n[z−1] and ΛH̃ ∈ Cn×n[z] by definition.
Let νi ∈ C[z] be the monic reciprocal polynomial

of λ̃i: λ̃i(z) = λ∗i0z
−miνi(z) with mi = deg(λi).

One has Λ̃H
LS∼ diag{νi}. As λi | λi+1, there exists

βi ∈ C[z] such that λi+1 = λiβi. Let αi be the

monic reciprocal polynomial of βi, one has λ̃i+1(z) =
λ∗i0z

−miνi(z)β
∗
i0z
−biαi(z) with bi = deg(βi) and

νi+1(z) = λ−1∗
(i+1)0λ

∗
i0z

mi+1−mi−biαi(z)νi(z), so

νi | νi+1. By unicity of the L-invariant poly-
nom, one can then deduce that νi are the
L-invariant polynomials of ΛH̃ which are the
same as those of H because H is parahermitian.
Then, λi(z) = λ−1∗

i0 zmi λ̃i(z) and, for z = 0,
λi0 = λ−1∗

i0 .

3 Order and degree

As mentioned in introduction, order is defined for
polynomial matrices, whether the indeterminate
variable is z or z−1 and the degree of a matrix is
only defined for proper rational (causal) matrices.

Definition 3. Let H ∈ Cn×n[z, z−1],H(z) =∑p
k=mHkz

k with Hk ∈ Cn×n,m, p ∈ Z,m ≤
p,Hm and Hp non equal to 0. Define

Ξ(z) = z−mH(z) and H(z) = z−pH(z)

with Ξ ∈ Cn×n[z] and H ∈ Cn×n[z−1]. The order
of H is defined as the order of the associated poly-
nomial matrix Ξ, that is p−m, and the L-degree of
H as the McMillan degree of the associated causal

matrix H.

Remark that, as for polynomials, when M ∈
Cn×n[z−1], the above defined order differs from the
classical one if M(z) = z−αQ(z) with α ∈ N∗ and
Q ∈ Cn×n[z−1]. Moreover, by definition, Ξ(z) =

zp−mH(z), so the Smith-McMillan form of H(z) is
1

zp−mS(z) with S(z) is the Smith form of Ξ(z). In
case of a parahermitian matrix, one can prove that

Ξ(z) and H(z) are parconjugate of each other (but
none is parahermitian except if constant).

Property 4. Let U ∈ Rn×n[z, z−1] be a paraunitary
matrix, then the L-degree of U equals the order of U .

We shall prove this property for n = 2 with the
help of the following lemma:

Lemma 5. Let U ∈ R2×2[z−1] be a FIR paraunitary
matrix such that U0 6= 0, then the L-degree of U
equals the order of U .
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First, let H ∈ R2×2[z−1] be a FIR paraunitary
matrix of degree N defined by

H(z) = Z(z) R1 Z(z) R2 . . .Z(z) RN−1Z(z) (1)

with Z(z) =

[
1 0
0 z−1

]
,Ri =

[
cos θi sin θi
− sin θi cos θi

]
.

It can be shown by induction that H(z) =∑N
i=0 Hiz

−i with H0 = diag{
∏N−1
k=1 cos θk, 0} and

HN = diag{0,
∏N−1
k=1 cos θk}.

Now, using factorization [11, p. 729] of a para-
unitary matrix U ∈ R2×2[z−1] of degree N : U(z) =
R0H(z)RN diag{1,±1} with H as in (1), then
U0 = R0H0RN diag{1,±1} and U0 6= 0 whereas
H0 6= 0. As well, UN = R0HNRN diag{1,±1} 6= 0
whereas HN 6= 0, so the ordrer of U equals the de-
gree N .

Proof of Property 5. Finally, let U ∈ R2×2[z, z−1]

be a paraunitary matrix, let U be the associated

FIR paraunitary matrix. By definition of U , one

has U0 6= 0, so we can apply result of Lemma 5 and

the degree of U equals its order, which is also the
L-degree of U .

4 Polynomial Eigenvalue Decomposi-
tion

In polynomial matrices framework, eigenvalues are
defined [9] as generalization of the determinantal
roots of a order-1 polynomial matrix to an order-n
polynomial matrix, that is roots of det(λI−M) = 0
to det(

∑m
k=0 λ

kMk) = 0. Such eigenvalues are
then elements of C. The Polynomial Eigenvalue De-
composition (PEVD) [5] is another problem: one
is looking for functions λ and vectors v such that,
given M ∈ Cn×n[z, z−1], one has M(z)v(z) =
λ(z)v(z), ∀z. As Cn×n[z, z−1] is not a vector field,
we cannot set the existence of L-polynomial solu-
tions.

In case of parahermitian matrices, it is shown in
[5] that they can be almost diagonalized by means of
paraunitary matrices. One can wonder if there exists
an exact L-polynomial solution in this case. We will
show in the following example that it is not always
the case.

First, remark that if H ∈ Cn×n[z, z−1] is para-
hermitian, and if there exist λ ∈ C[z, z−1] and u ∈
Cn×1[z, z−1], u 6= 0, such that H(z)u(z) = λ(z)u(z),
then λ is a parahermitian L-polynomial. Indeed,
〈Hu, u〉 = λ〈u, u〉 and 〈Hu, u〉 = 〈u,Hu〉 = λ̃〈u, u〉,
so, as u 6= 0, λ = λ̃.

Example 6. Let H(z) =

[
1 1
1 −2z−1 + 6− 2z

]
be a parahermitian matrix, its L-Smith form is
S(z) = diag{1, 1 − 5

2z + z2}. Suppose there ex-

ists a paraunitary matrix U such that ŨHU = Λ.

According to Property 2, U is L-unimodular, so

S
LS∼ Λ, and the normalized gcd’s of their minors

are equal, then gcd{λ1, λ2} = 1 and λ1(z)λ2(z) =
c′zα

′
detH(z), c′ ∈ C, α′ ∈ Z. But λi, if exist, are

parahermitian, so one has (up to a permutation)
λ1(z) = c, c ∈ R∗ and λ2(z) = dzβ(1 − 5

2z + z2).
Parametrizing H(z)v(z) = cv(z), c ∈ R∗ leads to a
system without any solution.

A parahermitian L-polynomial that is positive def-
inite on the unit-circle can always be factorized as
[3]: p = l l̃ with l ∈ C[z] minimum-phase. Otherwise,
for a positive definite hermitian (constant) matrix H
one has the Cholesky factorization H = LLH where
L is a lower triangular matrix. The Cholesky factor-
ization cannot be extended to Cn×n[z, z−1] because
C[z, z−1] is not a field and the normalization step is
not possible. Therefore, we prove the following.

Property 7. Let H(z) ∈ Cn×n[z, z−1] be a para-
hermitian matrix which is positive definite on C,
then there exists a rational lower triangular matrix
L ∈ Cn×n(z) with all poles inside the unit disc such

that H = LL̃.

By hypothesis, on C, one has H = H̃ = HH

and H is parahermitian. Hence, it admits an LDL̃
factorization; the proof is constructive and follows
the same lines as for constant hermitian matrices.
Note that L and D have rational entries because
divisions are required in the algorithm. Next, dii
are parahermitian positive definite on C because H
is. Hence they can be factorized into dii = fiif̃ii,
where fii has all its poles inside the unit disk [3].
We pull the diagonal factor in the triangular one by
defining G = LF , and we have H = GG̃. However,
some poles of G could be outside the unit disk, so
that we are not finished. For 1 < k ≤ n, define
pk(z) as the least common multiple of all unstable
denominators present in the kth column of G, and

a new diagonal matrix ∆ with entries δkk =
pk
p̃k

.

Obviously, ∆∆̃ = I. Now, matrix G∆ is triangular
with all poles inside the unit disk, and G∆∆̃G̃ =
H.

Thanks to Property 7, every positive definite para-
hermitian matrix admits an LL̃ factorization, where
L is continuous on C. Next, in [7] we have shown:

Property 8. Let A be a continuous function from
C to Cn×n, then there exist U ,V ∈ C(Cn×n) such
that UUH = I, V V H = I and

A(z) = V (z)Σ(z)UH(z), ∀z ∈ C

with Σ = diag{σi} and σi ∈ C(R), i = 1 to n.

This has been shown by maximizing the real part
of u(z)HA(z)v(z) on the unit circle with u and v
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continuous functions of unit norm for each z ∈ C
(u(z)Hu(z) = 1), taking into account compactness
of the involved sets, and proceeding by deflation [7].
We can then deduce:

Property 9. Let H = AAH with A ∈ C(Cn×n).
Then, there exists V ∈ C(Cn×n) such that V V H =
I and

H(z) = V (z)Λ(z)V (z)H , ∀z ∈ C

with Λ = diag{λi}, λi ∈ C(R), λi ≥ 0, i =1 to n.

Let U and V be the paraunitary matrices on
C of Property 8: A = V ΣUH , so H =
V ΣUHUΣHV H = V ΣΣHV H , and Λ = ΣΣH is
a diagonal matrix which λi = |σi|2 ≥ 0.
It is easy to show using Stone-Weierstrass theorem,
that the set of L-polynomials defined on C is dense
in C(C). Then, one can approximate each λi by a
L-polynomial on C. Each column of V can also be
approximated by a L-polynomial vector and we ob-
tain the final result:

Property 10. Let H ∈ Cn×n[z, z−1] be a paraher-
mitian matrix, then there exist n L-polynomial vec-
tors vi ∈ Cn[z, z−1] and n L-polynomial λi positive
on C such that

H(z)vi(z) ≈ λi(z)vi(z)

with vi(z)
Hvj(z) ≈ δij ,∀z ∈ C.

Because of lack of space, the proof is postponed
to a full-length paper.

5 Concluding remarks

Example 6 pointed out that the L-polynomial PEVD
does not always exist. On the other hand, the above
property proved in [7] shows that an approximate
PEVD exists, in the sense of the infinite norm of
continuous functions on C. This had been already
guessed by the authors of [6], who devised numerical
algorithms.

Appendix

The maximization of the real part of uHAv on C
in Property 8 should be carried out with care. In-
deed, let A(z) = diag{z−1 + 3 + z, jz−1 + 3 −
jz} be a diagonal positive definite parahermitian
matrix on C. It can be shown that σ1(z) =
max{|a11(z)|, |a22(z)|} ∀z ∈ C. σ1 is illustrated be-
low, where ω stands for the argument of z. Clearly
σ1 is continuous but not differentiable, so its L-
polynomial approximation will lead to a high degree
polynomial. On the other hand, as A is diagonal,
its eigenvalues are z−1 + 3 + z and jz−1 + 3 − jz.
The apparent swapping between σi’s comes from the

fact that ones imposed σi to be optimum for each z
on the unit circle, which is not necessary. The per-
mutation can indeed be fixed by only sorting σi at a
given ω, e.g. at ω = 0.
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