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Abstract

We investigate the impact of heterogeneity in the amount of incoming
traffic routed by dispatchers in a non-cooperative load balancing game.
For a fixed amount of total incoming traffic, we give sufficient conditions
on the cost function under which the worst-case social cost occurs when
each dispatcher routes the same amount of traffic, that is, the game is
symmetric. We then analyze the symmetric game and derive an explicit
expression for the equilibrium flows. We also obtain lower bounds on
the Price of Anarchy for (i) cost functions that are polynomial on server
loads; and (ii) cost functions representing the mean delay of the Shortest
Remaining Processing Time (SRPT) service discipline.

1 Introduction

We consider a distributed load-balancing system comprising of multiple dis-
patchers and multiple servers. The task of a dispatchers is to receive requests
and decide which server to route them to. The routing decisions are taken by
the dispatchers so as to minimize the cost (for example, the mean waiting time)
incurred by the requests it routes. We shall assume that the dispatchers do
not exchange information on their strategies and take decisions independently
of the others. Thus, the dispatchers are involved in a non-cooperative game.
Since the number of players (dispatchers) is finite, we shall be interested in the
performance of the system at the Nash Equilibrium (NE).

Although the distributed architecture described above is attractive due to
its scalability and robustness, it can be inefficient from the system performance
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point of view. Indeed, since each dispatcher minimizes its own cost function,
the system performance is possibly worse than that in a centralized architecture.
Thus, before going in for a distributed architecture, a system designer may be
interested in knowing how worse its performance can be compared to that of a
centralized architecture.

Our objective is to find out under what circumstances we can expect to
find the worst-case scenario for the distributed load-balancing system, and then
to characterize how worse this performance can be. We first show that, for a
fixed total incoming traffic to the system, the worst-case performance at the NE
occurs when all the dispatchers have the same amount of traffic to be routed,
that is, they are involved in a symmetric game. We give sufficient conditions on
the objective function under which the above statement is true. We then analyze
the symmetric game and derive an explicit expression for the equilibrium flows.
Using this result, we give a lower bound on the Price of Anarchy (PoA, [8]) for
cost functions of type: (i) 1 + xm; and (ii) 1/(1 − x)m.

1.1 Related work

The distributed load balancing game has been analysed previously by several
authors. In [2], similar results were obtained for the M/M/1 type delay func-
tions, and the present work is a generalization of that to a larger class of cost
functions. In terms of methodology, our work is closely related to that of Orda
et al [7, 9] and the arguments we use are inspired from their work. However,
there are a couple of differences with their work. First, in [7], the authors re-
strict themselves to the M/M/1 delay function, whereas we consider a larger
class of cost functions. In particular, we allow for the association of a hetero-
geneous cost per unit time (holding cost) with each server. The introduction
of heterogeneous holding costs can significantly change the PoA for certain cost
functions. For example, for the M/M/1 delay function and equal holding costs,
it was shown in [6] that the PoA is upper bounded by the number of servers
whereas for the same model and unequal holding costs, it was shown in [2] that
the PoA is of the order of the square root of the number of dispatchers as long
as there is at least one server. Second, in [7], it is shown that, for a fixed in-
coming traffic vector, transferring capacity from a server to another one that
has a higher service rate improves the performance at the NE. We look at the
complementary problem in which we fix the service capacities, and look at what
happens when we transfer traffic from one dispatcher to another.

The computation of PoA for disciplines other than Processor Sharing (or
the M/M/1 delay function) has also been previously investigated. In [1], the
authors compute the PoA of routing policies with memory in server farms with
First-Come-First-Served or Processor Sharing service discipline using a lower
bound on the cost of the centralized architecture. The computation of PoA for
server farms with SRPT discipline but without memory was given in [4]. The
authors compute the PoA on assuming that the system is in heavy-traffic. Our
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approach and our model differ from these papers in that we give the worst-case
scenario for any fixed total traffic vector whether the system is in heavy traffic
or not. Using this scenario we construct a lower bound on the PoA. Moreover,
in our model, we have a finite number of dispatchers whereas in the model of
both these papers each request takes a decision by itself, thereby leading to an
infinite number of dispatchers.

1.2 Organization of the paper

The rest of the paper is organized as follows. In Section 2, we describe the model
and state the problem. In Section 3, we explore the structure of the underlying
Nash equilibria and prove their existence and uniqueness. We also establish
several properties of these equilibria that form the foundation of the subsequent
analysis. In Section 4, we analyze the social cost at the Nash equilibria, and
show that the maximum of this cost is achieved in the symmetric case. We then
analyze the symmetric game and derive an explicit expression for the equilibrium
flows in Section 5. With this result at hand, in Section 6, we derive lower bounds
on the PoA for the two different cost functions mentioned previously. Finally,
we draw some conclusions in Section 7.

2 Problem Formulation and Main Results

Denote C = {1, . . . ,K} to be the set of dispatchers and S = {1, . . . , S} to be
the set of servers. Jobs received by dispatcher i are said to be jobs of class i.

Server j ∈ S has capacity rj and a holding cost cj per unit time is incurred
for each job sent to this server. We let uj =

cj

rj
denote the ratio of the holding

cost to the capacity for server j. By convention, uS+1 = ∞. It is assumed that
servers are numbered in the order of increasing cost per unit capacity, i.e., if
m ≤ n, then um ≤ un, so that the first servers are more attractive than the last
ones. Let r = (rj)j∈S and c = (cj)j∈S denote the vectors of server capacities
and server costs, respectively, and let r =

∑

n∈S rn denote the total capacity of
the system.

Jobs of class i ∈ C arrive to the system according to a Poisson process and
have generally distributed service-times. Let λi be the traffic intensity of class
i. It is assumed that λi ≤ λj for i ≤ j. Moreover, it will also be assumed that
the vector λ of traffic intensities belongs to the following set:

Λ =

{

λ ∈ IRK :
∑

i∈C

λi = λ

}

,

where λ̄ denotes the total incoming traffic intensity.



4

Let xi = (xi,j)j∈S denote the routing strategy of dispatcher i, with xi,j being
the amount of traffic it sends towards server j. Let

Xi =







xi ∈ IRS : 0 ≤ xi,j ≤ rj , ∀j ∈ S;
∑

j∈S

xi,j = λi







denote the set of feasible routing strategies for dispatcher i. The vector x =
(xi)i∈C will be called a multi-strategy. The multi-strategies belong to the prod-
uct strategy space X =

⊗

i∈C Xi.

Dispatcher i seeks to minimize its cost function which is denoted by Ti(x).
This optimization problem can be formulated as follows:

minimize
xi∈Xi

Ti(x)

The model is illustrated in the figure below.

1

j

S
K

i

1

Dispatchers Servers

λ1

λi

λK

r1, c1

rj , cj

rS , cS

xi,j

Figure 1: Distributed load balancing.

A Nash equilibrium of the routing game is a multi-strategy from which no
class finds it beneficial to deviate unilaterally. Hence, x ∈ X is a Nash Equilib-
rium Point (NEP) if

xi = arg minz∈Xi
Ti(x1, . . . ,xi−1, z,xi+1, . . . ,xK), ∀i ∈ C.

Turning our attention to a server j ∈ S, we let yj be the total flow on that
server, i.e., yj =

∑

i∈C xi,j . We let also ρj = yj/rj denote the utilization rate of
server j ∈ S. In the following, it will be assumed that the cost function of each
user i ∈ C is the sum of server cost function, i.e.,

Ti(x) =
∑

j∈S

ψj(xi,j , yj),
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where,

ψj(xi,j , yj) = uj xi,j φ(ρj).

Note that the cost incurred by class i on server j depends both on its amount
of flow on that server, which measures its “investment” on that server, and
on the total amount of flow through the server, which determines the server
performance.

We shall consider two different types of congestion functions φ. Cost func-
tions of the first type operate over the domain D = [0,+∞) and satisfy the
following assumptions:

I-1 φ : [0,∞) → [1,∞),

I-2 φ(0) = 1 and limρ→∞ φ(ρ) = +∞,

I-3 φ is a continuous, strictly increasing and convex function on [0,∞),

I-4 φ is continuously differentiable and its second derivative φ
′′

exists.

Cost functions satisfying the above assumptions will be referred as type-I
functions in the following. For type-I congestion function, it will be assumed
throughout the paper that rj = 1, j ∈ S. In this case, ψj(xi,j , yj) = cjxi,jφ(yj)
for all j ∈ S. Examples of such functions include polynomial functions φ(ρ) =
1+αk ρ

k with αk > 0 and k ≥ 1, as well as functions of the type φ(ρ) = exp(ρ).

Congestion functions of the second type are defined over the domain D =
[0, 1). They satisfy the following assumptions:

II-1 φ : [0, 1) → [1,∞),

II-2 φ(0) = 1 and limρ→1− φ(ρ) = +∞,

II-3 φ is a continuous, strictly increasing and convex function on [0, 1),

II-4 φ is continuously differentiable and its second derivative φ
′′

exists.

Typical type-II functions are those from queueing theory, e.g. the M/G/1/PS
congestion function φ(ρ) = 1

1−ρ or the M/G/1/FCFS congestion function φ(ρ) =

1+ρ
1+c2

b

2 (1−ρ) , where c2b denotes the squared coefficient of variation of the job sizes.

This class of functions also contains the delay function of theM/Pareto/1/SRPT
in heavy-traffic, which is given by 1

(1−ρ)m , where m depends on the shape pa-

rameter of the Pareto distribution [4]. For type-II functions, it will be assumed
throughout the paper that λ̄ < r, which is the necessary and sufficient condition
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to guarantee the stability of the system.

Cost functions ψj that comply with type-I or type-II assumptions are a spe-
cial case of type-B functions, as defined in [9]. As proved in Theorem 2.1 of this
reference, these assumptions are sufficient to assert the existence of a unique
NEP.

Let ψ′
j be the partial derivative of ψj with respect to its first argument. We

therefore have

ψ′
j(xi,j , yj) = uj

[

φ(ρj) +
xi,j

rj
φ′(ρj)

]

, (1)

for all j ∈ S. According to the Karush-Kuhn-Tucker (KKT) optimality
conditions, x ∈ X is a NEP if and only if there exist multipliers µi such that

ψ′
j(xi,j , yj) = µi if xi,j > 0, (2)

ψ′
j(xi,j , yj) ≥ µi if xi,j = 0. (3)

Let Cj = {i ∈ C : xi,j > 0} be the set of classes which route traffic to server
j. Similarly, let Si = {j ∈ S : xi,j > 0} be the set of servers to which class i
routes traffic. Note that i ∈ Cj ⇐⇒ j ∈ Si. Since φ is strictly increasing, we
can now rewrite equations (2) and (3) as

ψ′
j(0, yj) < µi ⇐⇒ i ∈ Cj ⇐⇒ j ∈ Si. (4)

Let x be the NEP for the system withK dispatchers. The global performance
of the system can be assessed using the global cost

DK(λ, r, c) =
∑

i∈C

Ti(x) =
∑

j∈S

cj ρj φ(ρj)

where the utilization rates ρj are those at the NEP. Note that when there is a
single dispatcher, we have a single class whose traffic intensity is λ1 = λ̄. The
global cost can therefore be written as D1(λ̄, r, c) in this case.

For our model, the PoA is defined as

PoA(K) = sup
λ,r,c

DK(λ, r, c)

D1(λ̄, r, c)
.



7

2.1 Main Results

Our main result states that that the global cost DK(λ, r, c) achieves its maxi-

mum when λ is the symmetric vector λ= =
(

λ̄
K , . . . ,

λ̄
K

)

.

Theorem 1

sup
λ,r,c

DK(λ, r, c) = sup
r,c

DK(λ=, r, c).

This result implies that, for the calculation of the PoA, we can restrict
ourselves to the symmetric game. This, coupled with the fact that in our setting
the symmetric game is also a potential game, makes it more tractable for the
analytic computation of the NEP and the global cost, thereby greatly simplifying
the derivation of the lower and upper bounds on the PoA.

3 Properties of the Nash Equilibrium

In this section, we investigate properties of the traffic flow at the NEP. We first
establish some properties of the cost function φ that will be useful in the sequel.

3.1 Properties of the cost function φ

We prove below some lemmata stating properties of the cost function φ. These
properties are used in the sequel for the characterisation of the NEP.

Lemma 1

∀w ∈ D, φ′(w) < +∞

Proof. If w ∈ D, then ∃ǫ > 0 such that w + ǫ ∈ D. Hence, φ(w + ǫ) < +∞.
However, since φ is convex and continuously differentiable on D, it lies above
all of its tangents: φ(b) ≥ φ(a) + (b − a)φ′(a) for all a, b ∈ D. With a = w and
b = w + ǫ, it yields φ′(w) ≤ [φ(w + ǫ) − φ(w)] /ǫ < +∞.

Lemma 2

∀a, b ∈ D − {0}, b
φ′(b)

φ(b)
≥ a

φ′(a)

φ(a)
⇐⇒ b ≥ a
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Proof. It is sufficient to show that the function g : w → g(w) = w φ′(w)
φ(w) is

increasing on D − {0}. Let f(w) = φ′(w)
φ(w) . Then g(w) = w f(w). Note that

since φ is twice differentiable on D, the derivatives f ′(w) and g′(w) exist for all
w ∈ D, and g′(w) = f(w) +w f ′(w). Note also that f(w) > 0 since φ is strictly
increasing on D.

Let us consider w ∈ D. If f is increasing at point w, then g′(w) > 0 and
g is strictly increasing at point w. Assume now that f is strictly decreasing
at point w, i.e. f ′(w) < 0. From φ′(w) = f(w)φ(w), we obtain φ

′′

(w) =
f ′(w)φ(w) + f(w)φ′(w). Since φ is convex on D, we have φ

′′

(w) ≥ 0, i.e.

f ′(w)φ(w) + f(w)φ′(w) ≥ 0 (5)

The convexity of φ implies that φ(b) ≥ φ(a) + (b − a)φ′(a) for all a, b ∈ D.
With a = w and b = 0, it yields φ(w) ≤ φ(0) + wφ′(w). From 5, we thus get

f ′(w) [φ(0) + wφ′(w)] + f(w)φ′(w) ≥ 0, (6)

and hence,

φ′(w) g′(w) = φ′(w) [f(w) + w f ′(w)] ≥ −φ(0) f ′(w) ≥ 0, (7)

from which we deduce that g′(w) ≥ 0, i.e. that g is increasing at point w.

3.2 Properties related to traffic intensities

We prove below that there is a monotonicity among classes in their use of servers:
a class with a higher demand uses more of each and every server. We first prove
a series of technical lemmata before stating our main results in Proposition 1
and Corollary 1.

Lemma 3 Si ∩ Sk 6= ∅.

Proof. Assume the contrary, i.e., if m ∈ Si then m /∈ Sk, and if n ∈ Sk

then n /∈ Si. For one such pair m and n, from (4), we can conclude that
µi > ψ′

m(0, ym) ≥ µk and µk > ψ′
n(0, yn) ≥ µi, which is a contradiction.

Since Si ∩ Sk 6= ∅, from (2), we have

µi − µk = ψ′
j(xi,j , yj) − ψ′

j(xk,j , yj), ∀j ∈ Si ∩ Sk. (8)

Lemma 4 µi < µk ⇐⇒ ∃j ∈ Sk : xi,j < xk,j .
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Proof. Straight part: From Lemma 3, Si ∩ Sk 6= ∅. If µi < µk, then, from (8),
∃j ∈ Sk : ψ′

j(xi,j , yj) < ψ′
j(xk,j , yj) which implies that ∃j ∈ Sk : xi,j < xk,j .

Converse part: ∃j ∈ Sk : xi,j < xk,j . Either j ∈ Si or j /∈ Si. If j ∈ Si then,
from (8), ψ′

j(xi,j , yj) < ψ′
j(xk,j , yj) implies µi < µk. If j /∈ Si, then, from (4),

µi ≤ ψ′
j(0, yj) < ψ′

j(xk,j , yj) < µk.

Lemma 5 If µi < µk, then Si ⊂ Sk.

Proof. If j ∈ Si, then, from (4), ψ′
j(0, yj) < µi. If µi < µk then ψ′

j(0, yj) < µk.
Hence, from (4) we can conclude that j ∈ Sk. Therefore, Si ⊂ Sk.

Lemma 6 ∃m ∈ Sk : xi,m < xk,m ⇐⇒ xi,j < xk,j , ∀j ∈ Sk.

Proof. Straight part: If ∃m ∈ Sk : xi,m < xk,m, then, from Lemmata 4 and
5, we have µi < µk and Si ⊂ Sk. For j ∈ Si, from (8), we have ψ′

j(xi,j , yj) <
ψ′

j(xk,j , yj), which implies xi,j < xk,j . For j ∈ Sk \ Si, xi,j = 0 and 0 < xk,j .
Hence, xi,j < xk,j , ∀j ∈ Sk.

Converse part: It is true from the statement.

Proposition 1 The following statements are equivalent:

1. µi < µk.

2. ∃j ∈ Sk : xi,j < xk,j .

3. xi,j < xk,j , ∀j ∈ Sk.

4. λi < λk.

Proof. 1 ⇐⇒ 2 ⇐⇒ 3 follows from Lemmata 4 and 6. Now, we show 3 ⇐⇒ 4.

Straight part: If xi,j < xk,j , ∀j ∈ Sk, then, from the fact that 3 ⇐⇒ 1 and
Lemma 5, we can conclude that λi =

∑

j∈Si
xi,j =

∑

j∈Sk
xi,j <

∑

j∈Sk
xk,j =

λk.

Converse part: Since λk =
∑

j∈Sk
xk,j , if λi < λk, then ∃j ∈ Sk : xi,j < xk,j .

Since 2 ⇐⇒ 3, if λi < λk, then xi,j < xk,j , ∀j ∈ Sk.

The above proposition shows that a class with a higher demand uses more of
each and every server. The following corollary shows that if two classes have the
same traffic intensity, then they send the same amount of flow on each server.

Corollary 1 From Proposition 1, it follows that
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1. µi = µk ⇐⇒ ∃j ∈ Sk : xi,j = xk,j ⇐⇒ xi,j = xk,j , ∀j ∈ Sk ⇐⇒ λi =
λk.

2. If λi < λk, then Si ⊂ Sk.

3. If λi = λk, then Si = Sk.

In particular, if all classes have the same demand, i.e. λ = λ=, then, for all
server j ∈ S and for all i ∈ C, we have xi,j = yj/K.

Recall that we have assumed that λi ≤ λk for i ≤ k. Therefore, according to
the above results, if we consider two classes i and k > i, then we have Si ⊆ Sk,
µi ≤ µk and xi,j ≤ xk,j for all servers j ∈ Sk, with the equalities holding if and
only if λi = λk.

Let Nj = |Cj |. Proposition 1 implies that if k ∈ Cj , then i ∈ Cj, ∀i > k. As a
consequence, the set Cj has the following structure: Cj = {K −Nj + 1, . . . ,K}.

3.3 Properties related to server cost functions

The above results tell how an order on λi translates to an order on xi,j , µi

and Si, i.e., quantities of class i. We now give the analogous results for similar
quantities of server j.

Lemma 7 Cm ∩ Cn 6= ∅.

Proof. Assume the contrary, i.e., if i ∈ Cm, then i /∈ Cn, and if k ∈ Cn, then
k /∈ Cm. For one such pair i and k, from (4), we can conclude that ψ′

m(0, ym) <
µi ≤ ψ′

n(0, yn) and ψ′
n(0, yn) < µk ≤ ψ′

m(0, ym), which is a contradiction.

Lemma 8 If ψ′
n(0, yn) ≤ ψ′

m(0, ym), then Cm ⊆ Cn.

Proof. If i ∈ Cm, then, from (4), µi > ψ′
m(0, ym). If ψ′

n(0, yn) ≤ ψ′
m(0, ym),

then µi > ψ′
n(0, yn). Hence, from (4) we can conclude that i ∈ Cn. Therefore,

Cm ⊆ Cn.

Since Cm ∩ Cn 6= ∅, from (2), we have

µi = ψ′
m(xi,m, ym) = ψ′

n(xi,n, yn), ∀i ∈ Cm ∩ Cn. (9)

Lemma 9 The following hold:

ψ′
n(0, yn) < ψ′

m(0, ym) ⇐⇒ ∃i ∈ Cn :
um xi,m

rm
φ′(ρm) <

un xi,n

rn
φ′(ρn).
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Proof. Straight part: From Lemma 7, Cm ∩ Cn 6= ∅. If ψ′
n(0, yn) < ψ′

m(0, ym),
then, from (9), ∃i ∈ Cn : ψ′

m(xi,m, ym) − ψ′
m(0, ym) < ψ′

n(xi,n, yn) − ψ′
n(0, yn),

i.e.
um xi,m

rm
φ′(ρm) <

un xi,n

rn
φ′(ρn).

Converse part: Assume ∃i ∈ Cn :
um xi,m

rm
φ′(ρm) <

un xi,n

rn
φ′(ρn). Then

ψ′
m(xi,m, ym) − ψ′

m(0, ym) < ψ′
n(xi,n, yn) − ψ′

n(0, yn). Either i ∈ Cm or i /∈ Cm.
If i ∈ Cm, then, from (9), ψ′

n(0, yn) < ψ′
m(0, ym). If i /∈ Cm, then, from (3),

ψ′
m(0, ym) ≥ µi = ψ′

n(xi,n, yn) > ψ′
n(0, yn). Hence, ψ′

n(0, yn) < ψ′
m(0, ym).

Lemma 10 The following hold:

ψ′
n(0, yn) < ψ′

m(0, ym) ⇐⇒
um xi,m

rm
φ′(ρm) <

un xi,n

rn
φ′(ρn), ∀i ∈ Cn.

Proof. Straight part: If ψ′
n(0, yn) < ψ′

m(0, ym), then from Lemma 8, Cm ⊂ Cn.
For i ∈ Cm, from (9), ψ′

m(xi,m, ym) − ψ′
m(0, ym) < ψ′

n(xi,n, yn)− ψ′
n(0, yn), i.e.,

um xi,m

rm
φ′(ρm) <

un xi,n

rn
φ′(ρn). For i ∈ Cn \ Cm, xi,m = 0 and 0 < xi,n. Hence,

since φ is strictly increasing,
um xi,m

rm
φ′(ρm) = 0 <

un xi,n

rn
φ′(ρn).

Converse part: the proof is a direct consequence of Lemma 9.

The following proposition proves a monotonic property regarding the order
of preference of servers as seen by each class.

Proposition 2 The following statements are equivalent:

1. ψ′
n(0, yn) < ψ′

m(0, ym).

2. ∃i ∈ Cn :
um xi,m

rm
φ′(ρm) <

un xi,n

rn
φ′(ρn).

3.
um xi,m

rm
φ′(ρm) <

un xi,n

rn
φ′(ρn), ∀i ∈ Cn..

4. un < um.

Proof. 1 ⇐⇒ 2 ⇐⇒ 3 follows from Lemmata 9 and 10. Next, we show 3 ⇐⇒ 4.

Straight part: If
um xi,m

rm
φ′(ρm) <

un xi,n

rn
φ′(ρn), ∀i ∈ Cn, then from the fact

that 3 ⇐⇒ 1 and Lemma 8, we can conclude that

um ρm φ′(ρm) =
∑

i∈Cm

um xi,m

rm
φ′(ρm) <

∑

i∈Cn

un xi,n

rn
φ′(ρn) = un ρn φ

′(ρn)

(10)

Observe that it implies ρn > 0. Assume first that ρm > 0. Note that
ψ′

n(0, yn) < ψ′
m(0, ym) can also be written as unφ(ρn) < umφ(ρm). Together
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with inequality 10, it implies that ρn
φ′(ρn)
φ(ρn) > ρm

φ′(ρm)
φ(ρm) , which according to

Lemma 2 is equivalent to ρn > ρm. Clearly, ρn > ρm also holds if ρm = 0.
We thus get un φ(ρm) < un φ(ρn) < um φ(ρm) in both cases, which implies that
un < um, as claimed.

Converse part: To prove 4 =⇒ 1, we prove that ¬1 =⇒ ¬4. Assume that
unφ(ρn) ≥ umφ(ρm). Since ¬1 ⇐⇒ ¬2, we get

um xi,m

rm
φ′(ρm) ≥ un xi,n

rn
φ′(ρn),

∀i ∈ Cn. According to Lemma 8, unφ(ρn) ≥ umφ(ρm) implies Cn ⊆ Cm, and
thus

umρmφ
′(ρm) ≥

∑

i∈Cm

um xi,m

rm
φ′(ρm) ≥

∑

i∈Cn

un xi,n

rn
φ′(ρn) = unρnφ

′(ρn).

Let us first assume that ρn > 0 and ρm > 0. Together with unφ(ρn) ≥

umφ(ρm), it implies that ρn
φ′(ρn)
φ(ρn) ≤ ρm

φ′(ρm)
φ(ρm) , which is equivalent to ρn ≤ ρm

according to Lemma 2. Clearly, ρn ≤ ρm still holds if ρn = 0. The case
ρm = 0 < ρn is impossible because Cn ⊆ Cm. We thus obtain that ρn ≤ ρm in
all cases. But from unφ(ρn) ≥ umφ(ρm) and φ(ρm) ≥ φ(ρn), we deduce that
un ≥ um. We thus conclude that if un < um, then unφ(ρn) < umφ(ρm), i.e.,
ψ′

n(0, yn) < ψ′
m(0, ym).

Corollary 2 From Proposition 2 it follows that

1. un < um ⇐⇒ um xi,m

rm
φ′(ρm) <

un xi,n

rn
φ′(ρn), ∀i ∈ Cn ⇐⇒ unφ(ρn) <

umφ(ρm)

2. If un < um then Cm ⊂ Cn.

3. If un = um then Cm = Cn.

The above corollary shows that we get a partition of classes among servers
at the NEP: starting with a server m of maximal cost per unit capacity um and
moving towards servers n with lower cost per unit capacity un < um, we observe
more and more classes joining the servers, i.e. Cm ⊂ Cn.

Recall that it is assumed that the servers are numbered in the following
order: c1/r1 ≤ c2/r2 ≤ . . . ≤ cS/rS . According to the above properties, it
implies that if we consider two servers n and m > n, then we have Cm ⊆ Cn,
unφ(ρn) < umφ(ρm) and

um xi,m

rm
φ′(ρm) <

un xi,n

rn
φ′(ρn) for each class i ∈ Cn,

with the equalities holding if and only if cn/rn = cm/rm.

Let Si = |Si|. Proposition 2 implies that if m ∈ Si, then n ∈ Si, ∀n < m.
As a consequence, the set Si has the following structure: Si = {1, . . . , Si}.

The following lemma proves that the above order on the servers implies
exactly the same order on their utilization rates at the NEP.
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Lemma 11

∀j ∈ S, ρj ≥ ρj+1

Proof. The assertion is obviously true if ρj+1 = 0. Let us therefore assume
that ρj+1 > 0. This implies that ρj > 0 because Cj+1 ⊆ Cj . Since Cj+1 ⊆ Cj

and
uj+1 xi,j+1

rj+1
φ′(ρj+1) <

uj xi,j

rj
φ′(ρj) for all i ∈ Cj, we have

uj+1 ρj+1 φ
′(ρj+1) =

∑

i∈Cj+1

uj+1 xi,j+1

rj+1
φ′(ρj+1) <

∑

i∈Cj

uj xi,j

rj
φ′(ρj) = uj ρj φ

′(ρj)

Together with ujφ(ρj) ≤ uj+1φ(ρj+1), it implies that ρj+1
φ′(ρj+1)
φ(ρj+1) ≤ ρj

φ′(ρj)
φ(ρj)

,

from which we deduce that ρj ≥ ρj+1 using Lemma 2.

Before moving to the analysis of the set of servers used by each class at
the equilibrium, we conclude this section with a last property related to the
server costs per unit capacity. This technical result will play a key role when
comparing the costs of two different equilibria.

Lemma 12

ψ′
j(yj , yj) ≥ ψ′

j+1(yj+1, yj+1), ∀j,

with strict inequality if Cj \ Cj+1 6= ∅.

Proof. From (2), if xi,j > 0, then

µi = ψ′
j(xi,j , yj) = uj

[

φ(ρj) +
xi,j

rj
φ′(ρj)

]

,

from which we conclude that

∑

i∈Cj

µi = uj [Nj φ(ρj) + ρj φ
′(ρj)] = (Nj − 1)uj φ(ρj) + ψ′

j(yj , yj).

Similarly, we have

∑

i∈Cj+1

µi = (Nj+1 − 1)uj+1 φ(ρj+1) + ψ′
j+1(yj+1, yj+1).
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Now,

∑

i∈Cj+1

µi =
∑

i∈Cj

µi −
∑

i∈Cj\Cj+1

µi

= (Nj − 1)uj φ(ρj) + ψ′
j(yj , yj) −

∑

i∈Cj\Cj+1

uj

(

φ(ρj) +
xi,j

rj
φ′(ρj)

)

= (Nj − 1)uj φ(ρj) + ψ′
j(yj , yj) − (Nj −Nj+1)uj φ(ρj) − uj φ

′(ρj)
∑

i∈Cj\Cj+1

xi,j

rj

= (Nj+1 − 1)uj φ(ρj) + ψ′
j(yj , yj) − ujφ

′(ρj)
∑

i∈Cj\Cj+1

xi,j

rj
.

Thus,

ψ′
j(yj , yj) − ψ′

j+1(yj+1, yj+1) = (uj+1φ(ρj+1) − ujφ(ρj)) (Nj+1 − 1)

+ ujφ
′(ρj)

∑

i∈Cj\Cj+1

xi,j

rj
.

From Proposition 2, we have uj+1φ(ρj+1) ≥ ujφ(ρj). Moreover φ′(ρj) > 0
because φ is strictly increasing. Since the second term on the RHS is strictly
positive if Cj \Cj+1 6= ∅, we can conclude that ψ′

j(yj , yj)−ψ′
j+1(yj+1, yj+1) ≥ 0,

with strict inequality if Cj \ Cj+1 6= ∅.

3.4 Characterization of the set of servers used

The following proposition shows that the set of servers used by each class has
the so-called water-filling structure.

Proposition 3 For each class i ∈ C, the threshold Si is such that

GSi
< λi ≤ GSi+1, (11)

where

Gs =

s
∑

j=1

rj
uj φ′(ρj)

[us φ(ρs) − uj φ(ρj)] s = 1, . . . , S. (12)

Proof. Let A be a subset of Si. Equation (2) can be rewritten as
rj

uj φ′(ρj)
µi =

rj

φ′(ρj)
φ(ρj) + xi,j for all j ∈ Si. Summing over j ∈ A, we get



15

µi =

∑

j∈A
rj

φ′(ρj) φ(ρj) + xi,j
∑

j∈A
rj

uj φ′(ρj)

A ⊆ Si, (13)

which in the case A = Si can be written as

µi =
λi +

∑

j∈Si

rj

φ′(ρj)
φ(ρj)

∑

j∈Si

rj

uj φ′(ρj)

. (14)

Since Si+1 6∈ Si, we have from (3)

µi =
λi +

∑

j∈Si

rj

φ′(ρj) φ(ρj)
∑

j∈Si

rj

uj φ′(ρj)

≤ uSi+1 φ(ρSi+1),

which yields λi ≤ GSi+1 after some algebra. For the lower bound, observe
that, since Si ∈ Si, (2) holds for j = Si. Therefore, using (13) with A =
{1, . . . , Si − 1}, we can write

µi =

∑Si−1
j=1

rj

φ′(ρj)
φ(ρj) + xi,j

∑Si−1
j=1

rj

uj φ′(ρj)

= uSi

[

φ(ρSi
) +

xi,Si

rSi

φ′(ρSi
)

]

.

With λi >
∑Si−1

j=1 xi,j , it yields

λi > uSi

[

φ(ρSi
) +

xi,Si

rSi

φ′(ρSi
)

] Si−1
∑

j=1

rj
uj φ′(ρj)

−
Si−1
∑

j=1

rj
φ′(ρj)

φ(ρj) + xi,j ,

from which we get λi > GSi
since

xi,Si

rSi

φ′(ρSi
) > 0.

Remark 1 In the special case λi = Gi,Si+1, inequality (3) holds tight for j =
Si + 1. Therefore, in this case, we can define the set of servers used by class
i as Si = {1, . . . , Si, Si + 1}, where server Si + 1 is “marginally” used, with
xi,Si+1 = 0.

From Corollary 1, we can conclude that the thresholds S1, . . . , SK satisfy
the order S1 ≤ S2 ≤ . . . ≤ SK .
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4 Analysis of the Social Cost

In this section, it will be assumed that the cost functions vector ψ is fixed.
Our goal is to prove that the social cost DK(λ,ψ) achieves its maximum in the
symmetric case, i.e. when λ = λ=.

For each rate vector λ ∈ Λ, we already know that there exists a unique NEP
x ∈ X . Let us define the function N : Λ → X such that for each vector λ ∈ Λ,
N (λ) ∈ X is this unique NEP. In the sequel, the function N will be called the
Nash mapping. We have the following result.

Theorem 2 The Nash mapping N is a continuous function from Λ into X .

Proof. Note that for each vector λ ∈ Λ, N (λ) ∈ X ⊂
⊗

i∈C

⊗

j∈S [0, rj ] and
the latter set is a compact set. As a consequence, in order to apply the closed
graph theorem (see Appendix A), we only need to show that the graph GN of
N is closed. Let us therefore consider a convergent sequence (λn, xn)n∈IN of
points in GN , where xn = N (λn). Let (λ, x) denote the limit of this sequence.
Note that λ ∈ Λ since Λ is closed as a topological space. We need to show that
x = N (λ).

We first show that x ∈ X . For i ∈ C and j ∈ S fixed, the sequence (xn
i,j)n∈IN

takes values in the closed set [0, rj ] and converges to xi,j , from which we deduce
that 0 ≤ xi,j ≤ rj . Moreover, for each n ∈ IN and each i ∈ C, we have
∑

j∈S x
n
i,j = λn

i . Since xn → x, we have for each class i ∈ C,

λi = lim
n→∞

λn
i = lim

n→∞

∑

j∈S

xn
i,j =

∑

j∈S

xi,j .

We therefore conclude that the limit point x is such that x ∈ X . Let us now
show that x is the NEP associated to the rate vector λ. For each n ∈ IN, since
xn is a NEP, there exist multipliers µn

i , i ∈ C, such that

µn
i = uj

[

φ(ρn
j ) +

xn
i,j

rj
φ′(ρn

j )

]

if xn
i,j > 0 (15)

µn
i ≤ uj φ(ρn

j ) if xn
i,j = 0. (16)

Now, let us show that there exist µi < +∞ such that µn
i → µi, i ∈ C. Let

yn
j =

∑

i∈C x
n
i,j , ρ

n
j = yn

j /rj and yj and ρj be the respective limits when n→ ∞.
The proof is an immediate consequence of (15) and (16) for type-I congestion
functions since φ(ρn

j ) → φ(ρj) < +∞ and φ′(ρn
j ) → φ′(ρj) < +∞ as n→ ∞ for

all j ∈ S (Lemma 1).
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Let us therefore assume that φ is a type-II congestion function and prove
that µn

i → µi < +∞ as n → ∞. To this end, we first prove that ρn
1 → ρ1 < 1.

Assume on the contrary that ρ1 = 1. In this case, the relation φ(ρn
j ) ≥ u1

uj
φ(ρn

1 )

implies that φ(ρn
j ) → ∞ for all j ∈ S, and hence that ρn

j → 1, ∀j ∈ S. We thus

get yn
j → rj , ∀j ∈ S, which implies that λ̄ =

∑

j∈S y
n
j → r =

∑

j∈S rj . This is

clearly a contradiction with our assumption λ̄ < r.

As a consequence, we have ρ < 1, which implies that φ(ρn
1 ) → φ(ρ1) < +∞

and φ′(ρn
1 ) → φ′(ρ1) < +∞ (Lemma 1) as n → ∞. Since all classes use server

1, we have

µn
i = u1

[

φ(ρn
1 ) +

xn
i,1

r1
φ′(ρn

1 )

]

i ∈ C.

Taking the limit as n→ ∞, we obtain that µn
i → µi < +∞, where

µi = u1

[

φ(ρ1) +
xi,1

r1
φ′(ρ1)

]

i ∈ C.

Observe that it implies that ρj < 1, ∀j ∈ S. Indeed, if ρj > 0, then there
exists k ∈ IN such that ρn

j > 0, ∀n ≥ k. Therefore, there exists i ∈ C such that

xn
i,j > 0 for all n ≥ k. With (4), it yields φ(ρn

j ) <
rj

cj
µn

i for all n ≥ k. As a

consequence, we have limn→∞ φ(ρn
j ) ≤

rj

cj
µi, which proves that ρn

j → ρj < 1 as
n→ ∞.

We have proved above that µn
i → µi < +∞ as n → ∞ for both type-I and

type-II congestion functions. Now, let us consider the complementary slackness
conditions for each NEP xn, that is,

xn
i,j

(

uj

[

φ(ρn
j ) +

xn
i,j

rj
φ′(ρn

j )

]

− µn
i

)

= 0, j ∈ S, i ∈ C.

Taking the limit as n→ ∞, we obtain

xi,j

(

uj

[

φ(ρj) +
xi,j

rj
φ′(ρj)

]

− µi

)

= 0, j ∈ S, i ∈ C.

Since the above are the necessary and sufficient optimality conditions for a
point to be a NEP, we conclude that x = N (λ) and thus that the graph GN is
closed. Applying the closed graph theorem yields the proof.

In order to prove that the global cost achieves its maximum in the symmetric
case, we need to compare the equilibria N (λ) and N (λ̂) that are induced by

two different rate vectors λ and λ̂ in Λ. If the resulting equilibria are such that
the set of servers over which each class sends its flow do not coincide at both
equilibria, then the comparisons become extremely complex, if possible at all.

To avoid this difficulty, we proceed as follows. In section 4.1, we first prove
some preliminary results concerning the comparison of the equilibria induced
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by two different rate vectors λ and λ̂, assuming that these equilibria are such
that each class sends its flow to the same servers under both equilibria. In
Section 4.2, we compare the equilibria induced by two different rate vectors λ
and λ̂, assuming that (i) these equilibria are such that each class sends its flow

to the same servers under both equilibria, and (ii) λ̂ is obtained from λ using
a certain transformation. In Section 4.3 we exploit the continuity of the Nash
mapping to show that the global cost increases under this transformation even
when the set of servers is different at the two equilibria. Finally, in Section 4.4,
we show that the symmetric rate vector λ= can be obtained from any rate vector
λ with a finite number of such transformations.

4.1 Preliminary Results

In this section, we prove some lemmata that will be used in order to compare
the Nash equilibria induced by two vectors λ ∈ Λ and λ̂ ∈ Λ. In the sequel, if
z is a certain quantity related to the Nash equilibrium induced by the vector λ
then we shall denote the corresponding quantity for vector λ̂ by ẑ.

Lemma 13 For i ∈ Cj,

1. if ŷj < yj and x̂i,j ≤ xi,j , then µ̂i < µi.

2. if ŷj ≤ yj and x̂i,j ≤ xi,j , then µ̂i ≤ µi.

3. if ŷj ≤ yj and x̂i,j < xi,j , then µ̂i < µi.

4. if ŷj = yj and µ̂i < µi, then x̂i,j < xi,j .

Proof. Proof of part 1 : for i ∈ Cj, we have µi = ψ′
j(xi,j , yj) and µ̂i ≤

ψ′
j(x̂i,j , ŷj). Since ψ′

j(x, y) is strictly increasing in each of its two arguments,
ŷj < yj and x̂i,j ≤ xi,j implies that µ̂i ≤ ψ′

j(x̂i,j , ŷj) < ψ′
j(xi,j , yj) = µi. The

proofs of parts 2, 3, and 4 follow similarly.

Lemma 14 For m and n in S, and i ∈ Cm ∩ Cn,

if ŷm > ym, x̂i,m ≥ xi,m, and ŷn ≤ yn, then x̂i,n > xi,n.

Proof. Assume the contrary, that is, ∃n,m ∈ S and i ∈ Cm ∩ Cn such that
ŷm > ym, x̂i,m ≥ xi,m, ŷn ≤ yn and x̂i,n ≤ xi,n. From Lemma 13.1, ŷm > ym

and x̂i,m ≥ xi,m implies µ̂i > µi. However, from Lemma 13.2, ŷn ≤ yn and
x̂i,n ≤ xi,n implies µ̂i ≤ µi, which is a contradiction.

In the rest of the section, we shall make the following assumption on the
vectors λ and λ̂.
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Assumption 1 The vectors λ and λ̂ are such that Cj = Ĉj, ∀j ∈ S.

From the above assumption, it follows that Si = Ŝi, ∀i ∈ C.

Lemma 15 For any j ∈ S:

1. ŷj ≥ yj ⇐⇒
∑

i∈Cj
µ̂i ≥

∑

i∈Cj
µi.

2. ŷj > yj ⇐⇒
∑

i∈Cj
µ̂i >

∑

i∈Cj
µi.

Proof. Proof of part 1: from (2), if i ∈ Cj , then

µi = ψ′
j(xi,j , yj) = uj

[

φ(ρj) +
xi,j

rj
φ′(ρj)

]

Thus,
∑

i∈Cj

µi = (Nj − 1) uj φ(ρj) + ψ′
j(yj , yj)

Since Nj = N̂j (from Assumption 1) and ψ′
j(x, y) is strictly increasing in each

of its two arguments, we can conclude that
∑

i∈Cj
µi is an increasing function

of yj .

The proof of part 2 follows similarly.

Lemma 16 If Cm = Cn then :

1. ŷm ≥ ym ⇐⇒ ŷn ≥ yn.

2. ŷm > ym ⇐⇒ ŷn > yn.

Proof. Proof of part 1: from Lemma 15, ŷm ≥ ym is equivalent to
∑

i∈Cm
µ̂i ≥

∑

i∈Cm
µi, which, since Cm = Cn, is equivalent to

∑

i∈Cn
µ̂i ≥

∑

i∈Cn
µi. Again,

from Lemma 15, we can conclude that ŷn ≥ yn.

The proof of part 2 follows similarly.

Corollary 3 For m,n ∈ S1, ŷm > ym ⇐⇒ ŷn > yn.

Proof. Recall from corollary 1 that S1 ⊆ Sk for all k ∈ C. Since, for m,n ∈ S1,
Cm = Cn = {1, 2, ...,K}, the above statement follows from Lemma 16.2.
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4.2 Basic Transformation of a Rate Vector

For each rate vector λ ∈ Λ, recall that by convention λ1 = mini∈C λi and
λK = maxi∈C λi. Define the sets Cmin and Cmax as follows:

Cmin = {i ∈ C : λi = λ1} ,

Cmax = {i ∈ C : λi = λK} ,

and let nmin = |Cmin| and nmax = |Cmax|.

Definition 1 For each rate vector λ ∈ Λ, define the function hλ : [0, nmax λK ] →
Λ as follows:

hλ(ǫ) = λ+ ǫ

(

1

nmin

∑

i∈Cmin

ei −
1

nmax

∑

i∈Cmax

ei

)

, (17)

where ei denotes the vector in IRK with the i-th component equals to 1 and all
other components are equal to 0. A rate vector λ̂ ∈ Λ is said to be obtained
from λ under a basic transformation if and only if there exists ǫ ∈ [0, nmaxλK ]
such that λ̂ = hλ(ǫ). In this case, ǫ is called the step of the transformation.

Note that the above transformation increases the traffic of classes i ∈ Cmin

(the classes with the smallest amount of traffic) and decrease correspondingly
the traffic of classes i ∈ Cmax (the classes with the largest amount of traffic),

i.e., it preserves the total amount of traffic:
∑

i∈C λi =
∑

i∈C λ̂i = λ̄. There
are several other properties of the basic transformation which are worthwhile
noticing. They are stated in the following lemma.

Lemma 17 Let λ̂ be obtained from λ under a basic transformation, i.e., λ̂ =
hλ(ǫ). Then,

1. λ̂i ≥ λi, ∀i ∈ Cmin, λ̂i ≤ λi, ∀i ∈ Cmax, and λ̂i = λi, ∀i 6∈ Cmin ∪ Cmax,
where the inequalities are strict if and only if Cmin 6= Cmax and ǫ > 0.

2. λ̂i = λ̂1 ∀i ∈ Cmin and λ̂i = λ̂K ∀i ∈ Cmax,

3. λ̂i ≤ λK ∀i ∈ Cmin and λ̂i ≥ λ1 ∀i ∈ Cmax for ǫ ≤ min(nmin, nmax)(λK −
λ1).

4.
∑

i∈Cmin
λ̂i − λi = −

∑

i∈Cmax
λ̂i − λi,

5.
∑

j∈S yj =
∑

j∈S ŷj,
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Proof. In part 1, if either Cmin = Cmax or ǫ = 0, then λ̂ = λ. Hence, the
equalities are satisfied. So, we consider the case when Cmin 6= Cmax and ǫ > 0,
and show that the inequalities are strict. From (17), it is immediate that λ̂i = λi

for i 6∈ Cmin∪Cmax. Moreover λ̂i = λi +
ǫ

nmin
for all i ∈ Cmin and λ̂i = λi−

ǫ
nmax

for all i ∈ Cmax. Since ǫ > 0, we thus obtain λ̂i > λi for i ∈ Cmin and λ̂i < λi

for i ∈ Cmax, and 1 is proved.

We note that if Cmin = Cmax, then λ̂ = λ. Hence, the parts 2 to 5. So, for
the rest of the proof, we assume that Cmin 6= Cmax. ¿From λi = λ1 for i ∈ Cmin

and λi = λK for i ∈ Cmax, we obtain that λ̂i = λ1 + ǫ
nmin

= λ̂1 for i ∈ Cmin and

λ̂i = λK + ǫ
nmax

= λ̂K for i ∈ Cmax, which proves 2.

To prove 3, let us consider i ∈ Cmin. We observe that ǫ ≤ min(nmin, nmax)(λK−

λ1) implies that λ̂i = λi+
ǫ

nmin
≤ λi+

min(nmin,nmax)
nmin

(λK−λ1) ≤ λi+(λK−λ1) =

λK . The proof of λ̂i ≥ λ1 for i ∈ Cmax is symmetric.

To prove 4, we observe that,

∑

i∈Cmin

λ̂i − λi =
∑

i∈Cmin

ǫ

nmin
= ǫ =

∑

i∈Cmax

ǫ

nmax
= −

∑

i∈Cmax

λ̂i − λi

Finally, the proof of property 5 is immediate since it is equivalent to
∑

i∈C λi =
∑

i∈C λ̂i.

In the following, we will compare two rate vectors λ and λ̂. If z is a certain
quantity related to the Nash equilibrium induced by the vector λ then we shall
denote the corresponding quantity for vector λ̂ by ẑ. The comparison is done
under the following assumption.

Assumption 2 The rate vectors λ ∈ Λ and λ̂ ∈ Λ are such that:

1. λ̂ is obtained from λ under a basic transformation,

2. Cj = Ĉj, ∀j ∈ S.

In other words, we assume that the transformation λ into λ̂ leaves unaffected
the set of servers used by each class.

The key point here is that in order to determine the impact of a basic
transformation of the rate vector λ on the global cost, we need to compare the
server loads under the equilibria x = N (λ) and x̂ = N (λ̂). To this end, let us
define the sets S+ and S− as follows:

S+ = {j ∈ S : ŷj > yj} and S− = S \ S+,

i.e., S+ is the set of servers whose load increases under the transformation while
S− is the set of servers whose load is non-increasing under the transformation.
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We first prove two lemmata concerning the sets S+ and S−. The first one
shows that S+ is empty if and only if the load of each and every server is
constant under the transformation.

Lemma 18 yj = ŷj, ∀j ∈ S ⇐⇒ S+ = ∅.

Proof. If S+ = ∅ then S− = S. That is, ŷj ≤ yj , ∀j ∈ S. We also have
∑

j∈S ŷj =
∑

j∈S yj . This is possible only if ŷj = yj , ∀j ∈ S.

The converse is true by definition of S+.

The second lemma shows that S− cannot be empty, i.e. that there is at least
one server whose load is non-increasing under the transformation.

Lemma 19 S− 6= ∅.

Proof. Assume S− = ∅, then yj < ŷj , ∀j ∈ S. Therefore,
∑

j∈S yj <
∑

j∈S ŷj .
This is in contradiction with Assumption 2 which says

∑

j∈S yj =
∑

j∈S ŷj.

We now prove three fundamental propositions regarding the impact of the
transformation on server loads. We first show in proposition 4 that if there exists
at least one server whose load increases under the transformation, then the load
of each and every server used by class 1 increases. We then prove in proposition
5 that the load of all servers is non-increasing under the transformation if and
only if all traffic classes use the same set of servers. Finally, proposition 6 proves
that the transformation induces a monotonic partition of servers: there exists a
threshold J < S such that for all servers j > J the load is non-increasing under
the transformation.

Proposition 4 If S+ 6= ∅ then S1 ⊂ S+.

Proof. Assume by contradiction that we can find a server s ∈ S1 such that
s ∈ S−. Then, according to Corollary 3, S1 ⊂ S−. Since S+ 6= ∅ and ŷj > yj

for all j ∈ S+, we have
∑

j∈S+ ŷj >
∑

j∈S+ yj , i.e.,

∑

i∈C





∑

j∈S+

x̂i,j



 >
∑

i∈C





∑

j∈S+

xi,j



,

from which we conclude that there exists i such that
∑

j∈S+ x̂i,j >
∑

j∈S+ xi,j .

Since Sk = S1 ⊂ S− for all k ∈ Cmin, we necessarily have i 6∈ Cmin and thus
λ̂i ≤ λi. Therefore,

λ̂i =
∑

j∈S−

x̂i,j +
∑

j∈S+

x̂i,j ≤
∑

j∈S−

xi,j +
∑

j∈S+

xi,j = λi.
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Thus,

∑

j∈S−

x̂i,j ≤
∑

j∈S−

xi,j +





∑

j∈S+

xi,j −
∑

j∈S+

x̂i,j



 <
∑

j∈S−

xi,j .

We therefore conclude that class i is such that
∑

j∈S+ x̂i,j >
∑

j∈S+ xi,j and
∑

j∈S− x̂i,j <
∑

j∈S− xi,j . Therefore, we can find a server m ∈ S+ and a server

n ∈ S− such that x̂i,m > xi,m and x̂i,n < xi,n. But according to Lemma 14,
this is impossible. We therefore conclude that S1 ⊂ S+.

Proposition 5 S+ = ∅ ⇐⇒ S1 = SK .

Proof. We first prove that if S+ = ∅ then S1 = SK . From Lemma 18, this
is equivalent to proving that if yj = ŷj , ∀j ∈ S then S1 = SK . Assume the
contrary, that is S1 ( SK . Then, ∃m : m ∈ SK ,m /∈ S1.

Since ym = ŷm, from Lemma 15, we get
∑

i∈Cm
µi =

∑

i∈Cm
µ̂i, which we

can rewrite as
∑

i∈Cmax

µi +
∑

i∈Cm\Cmax

µi =
∑

i∈Cmax

µ̂i +
∑

i∈Cm\Cmax

µ̂i. (18)

We shall show that the above equality is not possible, which then proves the
claim.

For i ∈ Cmax, since λi > λ̂i,
∑

j∈Si
xi,j >

∑

j∈Si
x̂i,j . Thus, there exists an

n ∈ Si such that xi,n > x̂i,n. Since yn = ŷn, from Lemma 13.3, we can conclude
that µi > µ̂i, and that

∑

i∈Cmax
µi >

∑

i∈Cmin
µ̂i, which, upon substitution in

(18), leads to
∑

i∈Cm\Cmax

µi <
∑

i∈Cm\Cmax

µ̂i.

If Cm\Cmax = ∅, then the above inequality cannot be possible which then proves
the claim. So, assume Cm \ Cmax 6= ∅. Then the above inequality implies that
∃i /∈ Cmin ∪ Cmax : µi < µ̂i. Since yj = ŷj , ∀j ∈ Si, application of Lemma 13.4
leads to xi,j < x̂i,j , ∀j ∈ Si, and consequently to λi =

∑

j∈Si
xi,j <

∑

j∈Si
x̂i,j =

λ̂i. However, for i /∈ Cmin ∪ Cmax, from Lemma 17.1, λi = λ̂i. Hence, there is a
contradiction, and we can conclude that S1 = SK .

As a direct consequence of the above proposition, we get the following corol-
lary that tells us that if at equilibria x and x̂ all classes use the same set of
servers, then the server loads are constant under the transformation.

Corollary 4 yj = ŷj , ∀j ∈ S ⇐⇒ S1 = SK .
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We now turn our attention to the set S− and prove the following result.

Proposition 6 For all j ∈ S, if j ∈ S− then j + 1 ∈ S−.

Proof. If S+ = ∅ then the proposition is true. So, assume S+ 6= ∅. Then,
from Proposition 4, S1 ⊂ S+. In order to prove the proposition, assume by
contradiction that there exists a server j ∈ {S1 + 1, . . . , SK − 1} such that
j ∈ S− and j + 1 ∈ S+. Again, if S1 + 1 = SK then the proposition is true. So,
assume that S1 + 1 < SK .

Since j ∈ S− and j + 1 ∈ S+, from Lemma 16,

∑

i∈Cj

µ̂i ≤
∑

i∈Cj

µi, (19)

and
∑

i∈Cj+1

µ̂i >
∑

i∈Cj+1

µi, (20)

Moreover, from the contrapositive of Lemma 16, we can conclude that Cj\Cj+1 6=
∅. Note that since j < SK , classes i ∈ Cmax do not belong to Cj \Cj+1. Similarly,
since j > S1, classes i ∈ Cmin do not belong to Cj \ Cj+1.

Since Cj+1 ⊂ Cj , we have, for all i ∈ Cj+1,

µi = ψ′
j(xi,j , yj) = uj

[

φ(ρj) +
xi,j

rj
φ′(ρj)

]

.

Therefore,
∑

i∈Cj+1
µ̂i >

∑

i∈Cj+1
µi is equivalent to

(Nj+1 − 1) φ(ρ̂j)+ψ
′
j





∑

i∈Cj+1

x̂i,j , ŷj



 > (Nj+1 − 1) φ(ρj)+ψ
′
j





∑

i∈Cj+1

xi,j , yj





and since ŷj ≤ yj, this implies that
∑

i∈Cj+1
x̂i,j >

∑

i∈Cj+1
xi,j . Since

ŷj ≤ yj , necessarily
∑

i∈Cj\Cj+1
x̂i,j <

∑

i∈Cj\Cj+1
xi,j . However, since all classes

k ∈ Cmin ∪ Cmax do not belong to Cj \ Cj+1, we know that λ̂i = λi for all
i ∈ Cj \ Cj+1, and thus

j
∑

l=1

∑

i∈Cj\Cj+1

xi,l =

j
∑

l=1

∑

i∈Cj\Cj+1

x̂i,l,

from which we obtain

∑

l<j

∑

i∈Cj\Cj+1

xi,l =
∑

l<j

∑

i∈Cj\Cj+1

x̂i,l +





∑

i∈Cj\Cj+1

x̂i,j −
∑

i∈Cj\Cj+1

xi,j



 ,



25

and therefore

∑

l<j

∑

i∈Cj\Cj+1

xi,l <
∑

l<j

∑

i∈Cj\Cj+1

x̂i,l. (21)

Subtracting (20) from (19), we obtain

∑

i∈Cj\Cj+1

µ̂i <
∑

i∈Cj\Cj+1

µi.

Hence, for each server l < j,

(Nj −Nj+1) φ(ρ̂l)+ψ
′
l





∑

i∈Cj\Cj+1

x̂i,l, ŷl



 < (Nj −Nj+1) φ(ρl)+ψ
′
l





∑

i∈Cj\Cj+1

xi,l, yl



 .

But, for l < j and l ∈ S+, it implies that
∑

i∈Cj\Cj+1

x̂i,l <
∑

i∈Cj\Cj+1

xi,l,

and thus
∑

l<j,l∈S+

∑

i∈Cj\Cj+1

x̂i,l <
∑

l<j,l∈S+

∑

i∈Cj\Cj+1

xi,l. (22)

¿From (21), we have

∑

l<j,l∈S−

∑

i∈Cj\Cj+1

x̂i,l >
∑

l<j,l∈S−

∑

i∈Cj\Cj+1

xi,l+





∑

l<j,l∈S+

∑

i∈Cj\Cj+1

xi,l −
∑

l<j,l∈S+

∑

i∈Cj\Cj+1

x̂i,l



 ,

and using (22) it leads to
∑

l<j,l∈S−

∑

i∈Cj\Cj+1

x̂i,l >
∑

l<j,l∈S−

∑

i∈Cj\Cj+1

xi,l. (23)

According to (20), for each server l < j,

(Nj+1 − 1) φ(ρ̂l)+ψ
′
l





∑

i∈Cj+1

x̂i,l, ŷl



 > (Nj+1 − 1) φ(ρl)+ψ
′
l





∑

i∈Cj+1

xi,l, yl



 .

But, for l < j, l ∈ S−, it implies that
∑

i∈Cj+1

x̂i,l >
∑

i∈Cj+1

xi,l,
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and thus
∑

l<j,l∈S−

∑

i∈Cj+1

x̂i,l >
∑

l<j,l∈S−

∑

i∈Cj+1

xi,l (24)

Now, summing (24) and (23) gives

∑

l<j,l∈S−

∑

i∈Cj

x̂i,l >
∑

l<j,l∈S−

∑

i∈Cj

xi,l. (25)

However, for each server l ∈ S−, we have ŷl ≤ yl and thus
∑

l<j,l∈S− ŷl ≤
∑

l<j,l∈S− yl. Since, for l < j, yl can also be written as yl =
∑

i∈Cj
xi,l +

∑

i6∈Cj
xi,l, it yields

∑

l<j,l∈S−

∑

i/∈Cj

x̂i,l ≤
∑

l<j,l∈S−

∑

i/∈Cj

xi,l +





∑

l<j,l∈S−

∑

i∈Cj

xi,l −
∑

l<j,l∈S−

∑

i∈Cj

x̂i,l



 ,

and using (25),

∑

l<j,l∈S−

∑

i/∈Cj

x̂i,l <
∑

l<j,l∈S−

∑

i/∈Cj

xi,l. (26)

Therefore, there exists a class i /∈ Cj such that

∑

l<j,l∈S−

x̂i,l <
∑

l<j,l∈S−

xi,l. (27)

It implies that, for this class i, we can find a server ninSi and n ∈ S− such
that x̂i,n < xi,n. Since Cmax ( Cj , we know that i 6∈ Cmax. Moreover, since

Sk = S1 ⊂ S+ for all k ∈ Cmin, i 6∈ Cmin. We therefore have λ̂i = λi. Thus,

∑

l∈S−

x̂i,l +
∑

l∈S+

x̂i,l =
∑

l∈S−

xi,l +
∑

l∈S+

xi,l,

which implies

∑

l∈S+

x̂i,l =
∑

l∈S+

xi,l +

(

∑

l∈S−

xi,l −
∑

l∈S−

x̂i,l

)

,

and with (27), it yields
∑

l∈S+

x̂i,l >
∑

l∈S+

xi,l.

This implies that there exists a server m < j, m ∈ S+ such that x̂i,m > xi,m.
But, according to Lemma 14, there cannot be two servers m,n ∈ S such that
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ŷm > ym, ŷn ≤ yn, x̂i,m > xi,m and x̂i,n < xi,n. This is a contradiction.
Therefore, if j ∈ S−, then j + 1 ∈ S− for all servers j ∈ S.

Proposition 6 proves that the transformation induces a monotonic partition
of servers: there exists a threshold J < S such that for all servers j > J the
load is non-increasing under the transformation.

Using the above results regarding the impact of the transformation on the
server loads, the following two theorems compare the costs D(λ) and D(λ̂).
The first theorem uses the following lemma.

Lemma 20 If bi, i = 1, 2, ..., is such that

1. b1 > 0,

2. bi ≤ 0 ⇒ bi+1 ≤ 0, and

3.
∑

i bi = 0,

and ai, i = 1, 2, ..., is such that

1. ai ≥ ai+1, and

2. aI − aI+1 > 0,

where I = max{i : bi > 0}, then
∑

i aibi > 0.

Proof. We have

∑

i

aibi =
∑

i≤I

aibi +
∑

i>I

aibi

≥ aI

∑

i≤I

bi +
∑

i>I

aibi

≥ aI

∑

i≤I

bi − aI+1

∑

i>I

|bi|

≥ (aI − aI+1)
∑

i≤I

bi

> 0.

We are now in position to state our main results.

Theorem 3 D(λ) < D(λ̂) ⇐⇒ S1 ( SK .
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Proof. We first show that if S1 ( SK then D(λ) < D(λ̂). Let ∆yj = ŷj−yj

for all j ∈ S. Since the global cost D is a convex function of the offered traffics
yj, j ∈ S, we have

D(λ̂) ≥ D(λ) + ∇D(λ).∆y.

We thus have

D(λ̂) −D(λ) ≥
∑

j

∂D

∂yj
∆yj =

∑

j

ψ′
j(yj , yj)∆yj (28)

We now show that the RHS in the above inequality is strictly positive. Since
S1 ( SK , from Proposition 4 and Lemma 19, we can infer that S+ 6= ∅ and
S− 6= ∅. From Proposition 4, we can also infer that S1 ⊂ S+. Hence, ∆y1 > 0.
From Proposition 6, if j ∈ S− then j + 1 ∈ S−. Therefore, the sequence
∆yj , j ∈ S is such that

1. ∆y1 > 0,

2. ∆yj ≤ 0 ⇒ ∆yj+1 ≤ 0, and

3.
∑

j∈S ∆yj = 0.

Let J = max{j : j ∈ S+}. Then, J + 1 = min{j : j ∈ S−}. Note that
CJ 6= CJ+1, otherwise from Lemma 16, either both J and J + 1 belong to S+ or
both belong to S−. From Lemma 12, we can conclude that

1. ψ′
j(yj , yj) ≥ ψ′

j+1(yj+1, yj+1), ∀j, and

2. ψ′
j(yJ , yJ) ≥ ψ′

J+1(yJ+1, yJ+1).

Since the sequences ψ′
j(yj , yj) and ∆yj satisfy the conditions of Lemma 20, we

have
∑

j

ψ′
j(yj , yj)∆yj > 0,

and hence, from (28), we can conclude that D(λ) < D(λ̂).

To show the converse, if D(λ) < D(λ̂) then necessarily there exists an m
such that ym 6= ŷm. From Proposition 4, we obtain S1 6= SK . Since S1 ⊂ SK ,
we can conclude that S1 ( SK .

Theorem 3 shows that if all the classes do not use the same set of servers at
the equilibrium x, then the transformation will strictly increase the cost. The
following theorem proves that the cost is constant under the transformation if
all classes use the same set of servers.
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Theorem 4 D(λ) = D(λ̂) ⇐⇒ S1 = SK .

Proof. From Lemma 19 and Proposition 4, if S1 = SK then yj = ŷj , ∀j ∈ S

and therefore, D(λ) = D(λ̂). To prove the inverse, if S1 6= SK then necessarily
S1 ( SK . From Theorem 3, we can conclude that D(λ) 6= D(λ̂).

4.3 Maximum Step of a Basic Transformation

Theorems 3 and 4 enable the comparison of the equilibria induced by two differ-
ent rate vectors λ and λ̂, provided that λ̂ can be obtained from λ under a basic
transformation which leaves unaffected the set of servers used by each class. The
main limitation of these results comes from the latter assumption. However, as
will be shown below, the continuity of the Nash mapping can be exploited to
prove that, under certain conditions, the global cost is non-decreasing under the
transformation even if some classes change the set of servers they use.

Definition 2 For each rate vector λ ∈ Λ, the maximum step of the transfor-
mation hλ is

∆ = min (nmin ∆min, nmax ∆max) , (29)

where ∆min = −λ1+min
(

λ̄
K ,mini∈C\Cmin

λi

)

and ∆max = λK−max
(

λ̄
K ,maxi∈C\Cmax

λi

)

.

Intuitively, if the step ǫ of a basic transformation is lower than the maximum
step ∆, then the sets Cmin and Cmax will be unaffected by the transformation.
On the contrary, if ǫ = ∆, then, after the transformation, we will have either (i)
one more class in the set Cmin or Cmax, or (ii) λ = λ

=.

For each rate vector λ, let λ(ǫ) = hλ(ǫ) for ǫ ∈ [0,∆]. All quantities of
interest can be treated as functions of ǫ. Therefore, in the following, if z is a
certain quantity related to the Nash equilibrium induced by the vector λ then
we shall denote the corresponding quantity for vector λ(ǫ) by z(ǫ).

We first prove the following properties of the transformation when ǫ ≤ ∆.

Lemma 21 For each ǫ ≤ ∆,

1. λi(ǫ) ≤ min
(

λ̄
K ,mink∈C\Cmin

λk

)

for all i ∈ Cmin, and the inequality

is strict if ǫ < nmin ∆min whereas it holds as an equality if ǫ = ∆ =
nmin ∆min,
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2. λi(ǫ) ≥ max
(

λ̄
K ,maxk∈C\Cmax

λk

)

for all i ∈ Cmax, and the inequality

is strict if ǫ < nmax ∆max, whereas it holds as an equality if ǫ = ∆ =
nmax ∆max.

Proof. For i ∈ Cmin, we have λi(ǫ) = λ1 + ǫ
nmin

. Since ǫ ≤ nmin ∆min, it yields

λi(ǫ) ≤ λ1 + ∆min, i.e. λi(ǫ) ≤ min
(

λ̄
K ,mink∈C\Cmin

λk

)

, as claimed. Note

that the inequality is strict if ǫ < nmin ∆min and that it holds as an equality if
ǫ = nmin ∆min. The proof of property 2 is symmetric.

The following two lemmata detail how the sets Cmin and Cmax evolve under
the transformation.

Lemma 22 For each ǫ ≤ ∆,

1. Cmin ⊆ Cmin(ǫ) and Cmax ⊆ Cmax(ǫ),

2. If ǫ < nmin ∆min, then Cmin = Cmin(ǫ),

3. If ǫ < nmax ∆max, then Cmax = Cmax(ǫ),

4. If ǫ = nmin ∆min and Cmin 6= C, then Cmin ( Cmin(ǫ),

5. If ǫ = nmax ∆max and Cmax 6= C, then Cmax ( Cmax(ǫ).

Proof. We just prove the relations between Cmin and Cmin(ǫ), since the proofs of
the relations between Cmax and Cmax(ǫ) are symmetric. We first prove assertion
1. Let i ∈ Cmin. From Lemma 21.1, we have λi(ǫ) ≤ λk for all k ∈ C \ Cmin.
For k 6∈ Cmin ∪ Cmax, Lemma 17.1 states that λk(ǫ) = λk, which implies that
λi(ǫ) ≤ λk(ǫ) for all k 6∈ Cmin ∪ Cmax. From Lemma 21.1, we also have λi(ǫ) ≤
λ̄
K ≤ λk(ǫ) for all k ∈ Cmax, where the last inequality comes from Lemma 21.2.
We therefore conclude that λi(ǫ) ≤ λk(ǫ) for all k ∈ C \ Cmin. However, from
Lemma 17.2, we have λk(ǫ) = λi(ǫ) = λ1(ǫ) for all k ∈ Cmin. We conclude that
if i ∈ Cmin, then λi(ǫ) ≤ λk(ǫ) for all k ∈ C, and thus i ∈ Cmin(ǫ). This shows
that Cmin ⊂ Cmin(ǫ).

Let us now prove assertion 2. Assume ǫ < nmin ∆min. Since Cmin ⊂ Cmin(ǫ),
we just need to prove that Cmin(ǫ) ⊂ Cmin. It is sufficient to show that if
k 6∈ Cmin, then k 6∈ Cmin(ǫ). Let k ∈ C \ Cmin. If k 6∈ Cmax, then, according to

Lemma 21.1, λ1(ǫ) < λk = λk(ǫ), whereas if k ∈ Cmax, λ1(ǫ) <
λ̄
K ≤ λk(ǫ), also

from Lemma 21. Since λ1(ǫ) = mini∈C λi(ǫ), we conclude that k 6∈ Cmin(ǫ), and
thus that Cmin = Cmin(ǫ).

We now prove assertion 4. From Lemma 21.1, we have either λ1(ǫ) = λ̄
K or

λ1(ǫ) = mink∈C\Cmin
λk.
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• If λ1(ǫ) = λ̄
K , then it clearly implies that λi(ǫ) = λ̄

K for all i ∈ C. However,
since Cmin 6= C, it implies that class K belongs to Cmin(ǫ) but not to Cmin.

• If λ1(ǫ) = mink∈C\Cmin
λk, we can find j ∈ C \ Cmin such that λj ≤ λ̄

K and

λj = mink∈C\Cmin
λk. From λj ≤ λ̄

K we deduce that j 6∈ Cmax. Therefore
from Lemma 17.1 we obtain λj(ǫ) = λj = λ1(ǫ). We conclude that class j
belongs to Cmin(ǫ) but not to Cmin.

Since in both cases we can find a class i ∈ Cmin(ǫ) such that i 6∈ Cmin, we
conclude that Cmin ( Cmin(ǫ).

Lemma 23 The following statements hold.

1. If Cmin ∪ Cmax 6= C, then Cmin ∪ Cmax ( Cmin(∆) ∪ Cmax(∆).

2. If Cmin ∪ Cmax = C, then λ(∆) = λ=.

Proof. We first prove assertion 1. Assume that Cmin ∪ Cmax 6= C. We have
either ∆ = nmin ∆min, or ∆ = nmax ∆max. According to Lemmata 22.4 and
22.5, if ∆ = nmin ∆min, then Cmin ( Cmin(ǫ), while if ∆ = nmax ∆max we have
Cmax ( Cmax(ǫ). We therefore conclude that Cmin∪Cmax ( Cmin(∆)∪Cmax(∆).

The following proposition states that if we consider two rate vectors obtained
from λ under basic transformations of steps lower than the maximum step, then
one can be obtained from the other by a basic transformation.

Proposition 7 Let ǫ1, ǫ2 ∈ [0,∆], ǫ1 < ǫ2. Then λ(ǫ2) can be obtained from
λ(ǫ1) under a basic transformation.

Proof. Since ǫ1 < ǫ2 implies ǫ1 < ∆, from Lemmata 22.2 and 22.3 we have
Cmin(ǫ1) = Cmin and Cmax(ǫ1) = Cmax. Accordingly, λ(ǫ2) can be written as

λ(ǫ2) = λ+ ǫ1









∑

i∈Cmin

ei

nmin
−

∑

i∈Cmax

ei

nmax









+(ǫ2 − ǫ1)











∑

i∈Cmin(ǫ1)

ei

nmin(ǫ1)
−

∑

i∈Cmax(ǫ1)

ei

nmax(ǫ1)











,
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i.e., λ(ǫ2) = hλ(ǫ1)(ǫ2 − ǫ1).

We now show that even if some classes change the set of servers they use, the
global cost is non-decreasing under the transformation λ(ǫ) = hλ(ǫ) provided
that ǫ ≤ ∆. The proof is based on the following theorem which is proved in [7]
(Theorem 5, page 321), and closely parallels the discussion in section III.B of
the above reference.

Theorem 5 (Theorem 5 in [7]) Let f : X → IR, where X ⊂ IR is a closed
interval. Consider a family A = {A1, . . . , An} of closed subsets of X, such
that (i) ∪n

i=1Ai = X, and (ii) for every Ai ∈ A, we have : x, y ∈ Ai and
x < y ⇒ f(x) < f(y). Then f is non-decreasing in X.

The following theorem extends Theorems 3 and 4 to the case when the
transformation changes the set of servers used by some classes.

Theorem 6 For ǫ ≤ ∆, D(λ(ǫ)) ≥ D(λ).

Proof. Consider a rate vector λ and the transformation λ(ǫ) = hλ(ǫ) of this
rate vector for ǫ ∈ [0,∆]. We want to prove that D(λ(ǫ)) ≥ D(λ). Since
all quantities of interest, and in particular the global cost, can be treated as
functions of ǫ, it suffices to show that D is a non-decreasing function of ǫ on
[0,∆].

Let Ai,j = {ǫ ∈ [0,∆] : Gi,j(ǫ) ≤ λi(ǫ) ≤ Gi,j+1(ǫ)}, denote the set of ǫ ∈
[0,∆] for which class i sends flow to servers {1, . . . , j} under equilibrium N (ǫ).
From (12), one can see that Gi,j is a continuous function of the ρj , which in
turn are continuous function of the equilibrium strategies of all classes. The
continuity of the Nash mapping then implies that Gi,j is a continuous function
of ǫ ∈ [0,∆]. Continuity of the functions Gi,j(ǫ) and λi(ǫ) implies that Ai,j is a
closed set.

For each S ∈ SK , define

AS = ∩i∈CAi,Si
,

which is also a closed set. If ǫ1, ǫ2 ∈ AS, then each class sends its flow to the
same set of servers under equilibria N (ǫ1) and N (ǫ2).

Consider a vector S ∈ SK and assume that we can find ǫ1, ǫ2 ∈ AS such that
ǫ1 < ǫ2, i.e. AS is neither empty nor reduced to an isolated point. According
to Proposition 7, the vector λ(ǫ2) can be obtained from λ(ǫ1) under a basic
transformation. Since ǫ1, ǫ2 ∈ AS, this transformation satisfies Assumption 1,
and according to Theorems 3 and 4 we have either D(ǫ2) > D(ǫ1) or D(ǫ2) =
D(ǫ1). We therefore conclude that if we can find ǫ1, ǫ2 ∈ AS such that ǫ1 < ǫ2,
then D(ǫ2) ≥ D(ǫ1).

Since [0,∆] = ∪S∈SKAS, all conditions of Theorem 5 are fulfilled, and we
can conclude that D is a non-decreasing function of ǫ on [0,∆].
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4.4 Maximum of the Global Cost

The purpose of this section is to prove that the global cost achieves its maximum

in the symmetric case, i.e., when λ = λ= =
(

λ̄
K , . . . ,

λ̄
K

)

. To this end, starting

from a fixed rate vector λ, we build a sequence
(

λk
)

k∈IN
of rate vectors such

that:

• λ0 = λ, and

• λk+1 is obtained from λk under a basic transformation of maximum step,
i.e., λk+1 = hλk(∆k).

The following proposition shows that the sequence
(

λ
k
)

k∈IN
converges to

λ= in a finite number of steps.

Proposition 8 The sequence
(

λ
k
)

k∈IN
converges to λ= in at most K steps.

Proof. Let wk be the number of classes in Ck
min ∪ Ck

max. Note that w0 ≥ 2.
According to Lemma 23.2, if wk = K, then λk+1 = λ=. Otherwise, according
to Lemma 23.1, we have Ck

min ∪Ck
max ( Ck+1

min ∪Ck+1
max, and thus wk < wk+1 ≤ K.

This structure implies that in at most K steps we have wk = K, and thus
λk+1 = λ=.

We now prove Theorem 1.

Proof of Theorem 1. For each λ ∈ Λ, the sequence
(

λk
)

k∈IN
converges to λ=

in a finite number of steps. According to Theorem 6, we haveD(λk+1) ≥ D(λk).
This implies that D(λ=) ≥ D(λ).

5 Analysis of the Symmetric Game

In the sequel, we will need the following assumption:

Assumption 3 φ(0) = 1.

Note that the above assumption is satisfied by type-II functions. The results
established below are therefore valid for all type-II functions. They also hold
for all type-I functions that satisfy assumption 3.
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According to Theorem 1, we have

PoA(K) = sup
λ,r,c

DK(λ, r, c)

D1(λ̄, r, c)
= sup

r,c

DK(λ=, r, c)

D1(λ̄, r, c)
. (30)

Therefore, in order to analyze the PoA, we can focus on the symmetric case.
We first introduce some preliminary results in Section 5.1 and then analyze the
symmetric game in Section 5.2 where we derive an explicit expression for the
equilibrium flows.

5.1 Preliminary Results

We introduce below some results that will be used to derive the NEP of the
symmetric game.

Let
◦
D be the interior of the interval D upon which the function φ is defined.

For each server j ∈ S and for K ≥ 1, let the function fj(K, ρ) :
◦
D→ (uj ,+∞)

be defined as follows

fj(K, ρ) = uj

(

φ(ρ) +
ρ

K
φ′(ρ)

)

∀ρ ∈
◦
D . (31)

From our assumptions regarding the function φ, it is easy to see that fj(K, ρ)

is a continuous, strictly increasing and differentiable function on
◦
D. It follows

that the inverse function of fj(K, ρ) exists and maps (uj ,+∞) onto
◦
D. In the

following, it will be denoted as ρj(K, z), i.e., for each z ∈ (uj ,+∞), ρj(K, z) is

the unique value of ρ ∈
◦
D such that fj(K, ρ) = z.

The following lemma establish some properties of the function ρj(K, z).

Lemma 24 The function ρj(K, z) has the following properties:

a) For a fixed K, the function ρj(K, z) is continuous and strictly increasing in
z on (uj ,+∞).

b) For a fixed K, the function ρj(K, z) is differentiable on (uj,+∞) and

ρ′j(K, z) =
1

f ′
j(K, ρj(K, z))

(32)

c) if fj(K, ρ) is convex, then ρj(K, z) is concave.
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d) For a fixed z, the function ρj(K, z) is strictly increasing in K.

e) limz→u+

j
ρj(K, z) = 0

f) For two strictly positive integers K1 and K2, and for each z ∈ (uj , uj+1), the
following statement holds:

∃i ≤ j , ρi(K1, z) < ρi(K2, z) ⇐⇒ ρs(K1, z) < ρs(K2, z) , ∀s ≤ j

g) For type-I functions, limz→+∞ ρj(K, z) = +∞, while for type-II function
limz→+∞ ρj(K, z) = 1.

Proof. Properties (a), (b) and (c) are well known properties of the inverse
function of a continuous, strictly increasing and differentiable function (with a
strictly positive derivative everywhere). See e.g. [3].

To prove (d), let us consider two strictly positive integers K1 and K2 such
that K1 < K2. For z > uj , assume that ρj(K1, z) ≥ ρj(K2, z). Since fj(K, ρ)
is strictly decreasing in K and strictly increasing in ρ, it yields

fj(K1, ρj(K1, z)) > fj(K2, ρj(K1, z)) ≥ fj(K2, ρj(K2, z)),

which is clearly a contradiction with fj(K1, ρj(K1, z)) = fj(K2, ρj(K2, z)) = z.
As a consequence, ρj(K1, z) < ρj(K2, z), which shows that for a fixed z, ρj(K, z)
is increasing in K.

Property (e) follows from φ(0) = 1 and the fact that φ and φ′ are continuous
functions.

Let us now prove property (f). Straight part: if ∃i ≤ j such that ρi(K1, z) <
ρi(K2, z) then K1 < K2 because ρi(K, z) is strictly increasing in K. Since
z ∈ (us,+∞) and ρs(K, z) is strictly increasing in K, it implies that ρs(K1, z) <
ρs(K2, z) for all s ≤ j, as claimed. Converse part: it is true from the statement.

Finally, to prove property (g), assume that z = fj(K, ρ) → ∞. In view
of (31), this is only possible if we have either φ(ρ) → ∞, or ρ φ′(ρ) → ∞, or
both. Since φ(w) < +∞ and φ′(w) < +∞ for all w ∈ D, this implies that
ρj(K, z) → ∞ for type-I functions, while ρj(K, z) → 1 for type-II functions.

Let us now define the function W (K, z) =
∑

j∈S Wj(K, z), where

Wj(K, z) = 1{z∈[uj ,uj+1)} ·

(

j
∑

s=1

rs ρs(K, z) −λ̄

)

.
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The following lemma states some properties of the function W (K, z).

Lemma 25 The function W (K, z) is such that:

1. for a fixed K, the function W : [u1,∞) → R is continuous, strictly in-
creasing and differentiable in z,

2. for a fixed z, W (K, z) is strictly increasing in K,

3. for a fixed K, W (K, z) = 0 has a unique solution in the interval (u1,∞).

Proof. Let us first prove property 1. By definition W (k, x) = Wj(K,x) in the
interval [uj , uj+1). The functions ρs(K, z) are continuous and strictly increas-
ing in (us,+∞), which implies that W is continuous and strictly increasing in
(uj , uj+1). To conclude the proof, we need to verify that W is continuous at
uj, j = 2, 3, . . . , S. We have

lim
x→u+

j

W (K,x) − lim
x→u−

j

W (K,x) = lim
x→u+

j

Wj(K,x) − lim
x→u−

j

Wj−1(K,uj)

=

(

j−1
∑

i=1

riρi(K,uj) + rj lim
x→u+

j

ρj(K,x) − λ̄

)

−

(

j−1
∑

i=1

riρi(K,uj) − λ̄

)

= rj lim
x→u+

j

ρj(K,x)

= 0,

where the last equality follows from Lemma 24.(e). This shows that the function
W (K,x) is also continuous at the points uj, j = 2, 3, ..., S.

To prove property 2, let us considers two strictly positive integers K1 and
K2 such that K1 < K2. For z ∈ (uj , uj+1), we have using Lemma 24.(f)

W (K1, z) < W (K2, z) ⇐⇒

j
∑

s=1

rs ρs(K1, z) −λ̄ <

j
∑

s=1

rs ρs(K2, z) −λ̄

⇐⇒ ρs(K1, z) < ρs(K2, z)

⇐⇒ K1 < K2,

which shows that for a fixed z ∈ (uj, uj+1), W (K, z) is strictly increasing in K.
Continuity of W (K, z) at points uj, j = 2, 3, . . . , S implies that this is true for
all z ∈ [u1,+∞).
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Finally, let us now prove property 3. First, we note that W (K,u1) =
r1ρ1(K,u1) − λ̄ = −λ̄. From Lemma 24.(g), we have W (K,∞) = +∞ for
type-I functions, while for type-II functions W (K,∞) = r − λ̄. In both cases,
W (K,∞) is strictly positive. Also according to property 1, W (K, z) is contin-
uous and increasing in the interval [u1,∞). Hence, there is a unique value of z
for which W (K, z) = 0.

In the following, we let γ(K) be the unique solution of W (K, z) = 0 in
[u1,∞).

5.2 Analysis of the Symmetric Game

It is well known that in this case the non-cooperative routing game is a potential
game, i.e., the equilibrium flows are the global minima of a standard convex
optimization problem (see e.g. Theorem 4.1 in [5]). This is formally stated in
the following proposition.

Proposition 9 If the vector ρ is global optimum of the following convex opti-
mization problem

minimize
ρ

∑

j∈S

cjρjφ(ρj) + (K − 1)

∫ ρj

0

cj φ(z)dz

s.t.
∑

j∈S rjρj = λ̄,

0 ≤ ρj < 1, ∀j ∈ S,

(33)

then the multi-strategy x such that xi,j = rj
ρj

K , ∀i ∈ C, ∀j ∈ S, is the NEP of
the symmetric game.

Proof. The statement follows from Theorem 4.1 in [5] with ca(xa) = ua φ(xa

ra
).

Note that when K = 1, the above problem reduces to the global optimiza-
tion problem solved by the centralized scheme. When K → ∞, the equivalent
problem states the common function that is optimized jointly by an infinite
number of players and is characteristic of the Wardrop equilibrium.

The following proposition gives the solution of the symmetric game.

Proposition 10 The set of servers used at the NEP of the symmetric game is
S∗(K) = {1, . . . , j∗(K)}, where j∗(K) is the unique server such that W (K,uj∗(K)) <
0 ≤ W (K,uj∗(K)+1). Moreover, the offered traffic of server j ∈ S at the NEP
is 0 if uj ≤ γ(K) and ρj(K, γ(K)) otherwise.
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Proof. Let ρ be an optimal solution of the equivalent problem stated in Propo-
sition 9. According to the KKT conditions, there exists γ such that for each
j ∈ S,

fj(K, ρj) = uj

[

φ(ρj) +
ρj

K
φ′(ρj)

]

≥ γ, (34)

with equality if and only if ρj > 0.

Let us now consider a server j ∈ S. Let us first assume that uj < γ. In
this case, a necessary condition for (34) to hold is fj(K, ρj) > uj, which im-
plies ρj > 0. We therefore obtain that (34) holds as an equality, and thus that
γ = fj(K, ρj), i.e. ρj = ρj(K, γ).

Let us now assume on the contrary that uj ≥ γ. If ρj > 0, then fj(K, ρj) >
uj ≥ γ, which implies that ρj = 0, i.e. a contradiction. Therefore, if uj ≥ γ,
then ρj = 0.

Let j∗(K) be the unique value of j such that uj < γ ≤ uj+1. Then
∑j∗(K)

j=1 rjρj = λ̄ can be written as
∑j∗(K)

j=1 rjρj(K, γ)− λ̄ = 0, i.e. W (K, γ) = 0,
from which we deduce that γ = γ(K). From Lemma 25.1 and uj∗(K) < γ(K) ≤
uj∗(K)+1, we then obtain that W (K,uj∗(K)) < 0 ≤W (K,uj∗(K)+1).

We now prove that the distributed scheme with K dispatchers uses only a
subset of the servers used by the centralized scheme. The proof is based on the
following proposition.

Proposition 11 The function γ(K) is decreasing in K.

Proof. For K1 < K2, we have W (K1, z) < W (K2, z) for all z ∈ [u1,+∞).
With z = γ(K1), it yields 0 = W (K1, γ(K1)) < W (K2, γ(K1)). Since W (K2, z)
is strictly increasing in z, we conclude that γ(K2) < γ(K1). Therefore, γ(K) is
decreasing in K.

The fact that γ(K) is decreasing in K implies that j∗(K) is non-increasing
in K. We therefore have the following important corollary.

Corollary 5 For K ≥ 1, S∗(K + 1) ⊂ S∗(K).

As an immediate consequence, we can conclude that S∗(K) ⊂ S∗(1), i.e., the
distributed scheme with K dispatchers uses only a subset of the servers used by
the centralized scheme.
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6 Lower bound on Price of Anarchy

In this section we give lower bounds on the PoA for the functions of type (i)
φ(x) = 1

(1−x)m , and (ii) φ(x) = 1 + xm.

According to Theorem 1, we can restrict the analysis to that of the symmetric
game.

In order to prove the lower bounds, we shall construct an example with two
servers and symmetric dispatchers. For this symmetric game, we use its analysis
given in Section 5.2 to show that the ratio DK/D1 attains the desired value,
which will then give a lower bound on the PoA.

Proposition 12 For φ(x) = 1
(1−x)m ,

PoA(K) ≥
K

(

K1/(m+1) +mK1/(m+1) −m
) . (35)

Proof. We consider the symmetric game of section 5.2 instance in which all the
classes use only server 1 in the distributed case whereas they use all the servers
in the centralized case. Let λ̄ < r1, and cj = rj = 1 for j ≥ 2. For simplicity,
let us consider the case of two servers. The same result holds for any number
of servers as well. From the KKT conditions, if

c1
r1

[

φ(λ̄/r1) +
λ̄

r1
φ′(λ̄/r1)

]

≥
c2
r2
,

c1
r1

[

φ(λ̄/r1) +
λ̄

Kr1
φ′(λ̄/r1)

]

≤
c2
r2
,

then in the distributed case all the classes use only the first server whereas in

the centralized case all the servers are used. For φ(x) =
(

1
1−x

)m

, the above

condition become

c1
r1

[

(

r1

r1 − λ̄

)m

+
λ̄

r1
m

(

r1

r1 − λ̄

)m+1
]

≥
c2
r2

(36)

c1
r1

[

(

r1

r1 − λ̄

)m

+
λ̄

Kr1
m

(

r1

r1 − λ̄

)m+1
]

≤
c2
r2

(37)

Let us assume that c1 is such that the above two inequalities are satisfied,
and that it is closer to the upper bound. We note that when λ̄ ↑ r1, the first
term within the square brackets of (37) can be neglected with respect to the
second term so that

c1
r1

m

K

(

r1

r1 − λ̄

)m+1

→ 1 (38)
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In the distributed case, since all the classes use only server 1,DK = c1
λ̄
r1

(

r1

r1−λ̄

)m

.

As λ̄ ↑ r1, we can approximate DK as

DK ≈
K

m
(r1 − λ̄). (39)

In the centralized case, in order to compute the total cost, D1, we need to
first find the traffic on each of the servers. From the KKT conditions, the loads
yj satisfy

cj
rj

[

(

rj
rj − yj

)m

+
yj

r1
m

(

r1
r1 − yj

)m+1
]

= γ(1), (40)

∑

j

yj = λ̄. (41)

From the optimality conditions we know that γ(1) > c2/r2 = 1, and we also
know that when λ̄ ↑ r1, γ(1) → c2/r2 = 1. From (40) and (38) as λ̄ ↑ r1,

r1 − y1 ≈ K1/(m+1)(r1 − λ̄). (42)

Since y1 + y2 = λ̄,

y2 = λ̄− y1

≈ λ̄− (r1 −K1/(m+1)(r1 − λ̄))

= (r1 − λ̄)(K1/(m+1) − 1),

that is, y2 tends to zero in proportion to (r1 − λ̄).

As λ̄ ↑ r1, the centralized cost can now be computed as

D1 = c1
y1
r1

(

r1
r1 − y1

)m

+ c2
y2
r2

(

r2
r2 − y2

)m

≈ r1

(

m

K

(

r1

r1 − λ̄

)m+1
)−1

y1
r1

(

r1
r1 − y1

)m

+ c2
y2
r2

≈
K

m
(r1 − λ̄)

(

r1 − λ̄

r1 − y1

)m

+ (r1 − λ̄)(K1/(m+1) − 1)

≈ (r1 − λ̄)

(

K

m

1

Km/(m+1)
+K1/(m+1) − 1

)

= (r1 − λ̄)

(

K1/(m+1)

m
+K1/(m+1) − 1

)

. (43)

Using (43) and (39), we obtain the lower bound (35) on the PoA as was
claimed.
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Conjecture 1 For φ(x) = 1 + xm and m ≥ 1,

PoA(K) ≥
(1 +m/K)−1

(1 +m/K)−1
(

1+m/K
1+m

)
m+1

m

+m−1 log
(

1+m
1+m/K

)

. (44)

We shall give numerical evidence to support our claim that (44) is a lower
bound for the PoA. We first note that for the polynomial function, the stability
condition is λ̄ < ∞. We now construct an example in which the number of
servers is λ̄ and λ̄→ ∞. Following the steps in the proof of Proposition 12, we
can show that

DK

D1
=

(1 +m/K)−1

(1 +m/K)−1(1 − ρ2)m+1 + ρ2(1 + ρm
2 )
, (45)

where ρ2 is the solution of

(

1 +m/K

1 +m

)1/m

(1 + (1 +m)ρm
2 )1/m + ρ2 = 1.

We now claim that the denominator of DK/D1 is upper bounded by (1 +

m/K)−1
(

1+m/K
1+m

)
m+1

m

+m−1 log
(

1+m
1+m/K

)

, which then supports the conjecture.

In support of the conjecture, in figures 2, 3 and 4, we plot the exact value
of DK/D1, and the lower bound for various values of m and K.
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Figure 2: Comparison of DK/D1 and its lower bound for m = 1, 2, ..., 100 and
K = 2.

Remark 2 1. The lower bounds obtained above are independent of r and c.
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Figure 3: Comparison of DK/D1 and its lower bound for m = 1, 2, ..., 100 and
K = 20.

2. As K → ∞, the lower bound of (44) tends to a constant, unlike the lower
bound (35) which tends to infinity. Thus, for delay function of the type
of M/Pareto/1/SRPT queues, the PoA can be unbounded when each job
minimizes its own mean delay.

3. Moreover, for K = ∞, the lower bound (44) is of the order of m/ log(m),
which matches the PoA obtained by Roughgarden [10] for polynomial func-
tions for the Wardrop equilibrium.

4. For m = 1 the delay function of M/Pareto/1/SRPT tends towards that
of the M/G/1/PS. From the lower bound formula given above, we retrieve
the lower bound in [2].

Although we do not have the upper bounds for PoA as in [2], we conjecture
that the lower bounds constructed using the above method give the right order
of the PoA, just as was proved in [2] for the case of M/M/1 delay functions.

7 Conclusion

We investigated the performance of non-cooperative load-balancing in processor-
sharing server-farms. We have first shown that the worst global performance
is obtained when all K dispatchers route exactly the same amount of traffic.
This result implies that the analysis of the PoA can be done by focusing on the
symmetric case, and therefore using the potential function method.



43

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

m

D
K
/D

1

K = 200

 

 

exact
lower bound

Figure 4: Comparison of DK/D1 and its lower bound for m = 1, 2, ..., 100 and
K = 200.
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