
HAL Id: hal-00747238
https://hal.science/hal-00747238

Preprint submitted on 30 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A CONSERVATIVE AND CONVERGENT SCHEME
FOR UNDERCOMPRESSIVE SHOCK WAVES

Christophe Chalons, Patrick Engel, Christian Rohde

To cite this version:
Christophe Chalons, Patrick Engel, Christian Rohde. A CONSERVATIVE AND CONVERGENT
SCHEME FOR UNDERCOMPRESSIVE SHOCK WAVES. 2012. �hal-00747238�

https://hal.science/hal-00747238
https://hal.archives-ouvertes.fr


A CONSERVATIVE AND CONVERGENT SCHEME
FOR UNDERCOMPRESSIVE SHOCK WAVES

CH. CHALONS† , P. ENGEL‡ , AND CH. ROHDE‡

Abstract. Undercompressive shock waves arise in numerous physical applications. We propose
a class of conservative finite-volume type schemes to approximate weak solutions of conservation
laws that contain undercompressive shock waves. We prove the convergence of a subsequence of
approximate solutions towards a generalized entropy solution if the mesh width tends to zero. The
proof relies on a refined BV compactness analysis, which accounts for the effect of the kinetic relation
that drives the undercompressive wave. At the same time we establish a new proof for the existence
of solutions to the underlying model. Numerical experiments supplement the analytical results.

1. Introduction. Let f ∈ C2(R), u0 ∈ L∞(R), and T > 0 be given. We consider
solutions u : R × [0, T ) → R of the scalar conservation law

ut + f(u)x = 0 in R × (0, T ), (1.1)

with initial condition

u(·, 0) = u0 in R. (1.2)

If the flux is nonlinear, the Cauchy problem (1.1), (1.2) cannot be solved within the
class of smooth functions. Therefore, weak solutions, i.e., distributional solutions in
L∞(R × (0, T )) have to be considered. However, (1.1), (1.2) can have multiple weak
solutions. Uniqueness is restored in the class of entropy solutions. That are weak
solutions which satisfy the entropy inequality

η(u)t + q(u)x ≤ 0 for all entropies η in D′(R × [0, T )). (1.3)

Thereby, an entropy η ∈ C2(R) is a convex function and the entropy flux q ∈ C2(R) is
given through q′ = η′f ′. Weak solutions of shock wave type that satisfy the entropy
condition (1.3) are necessarily compressive. That means that characteristics impinge
on the discontinuity from both sides. We refer to [9] for a comprehensive treatment
of the classical scalar well-posedness theory.
In a wide range of applications (cf. [1, 2, 6, 7, 16, 29] for an incomplete list of exam-
ples), discontinuous waves appear that take the form of undercompressive waves. In
the scalar case of problem (1.1), undercompressive shock waves are characterized by
the fact that characteristics pass through the shock wave. For the precise definition
see Section 2 below. Note that this is only possible in the case that the flux in (1.1)
has inflection points.
As a matter of fact, undercompressive waves are ruled out by (1.3). In any case, phys-
ically relevant weak solutions with undercompressive waves should still be consistent
with the second law of thermodynamics. Thus, they are supposed to satisfy

η̄(u)t + q̄(u)x ≤ 0 for (at least) one entropy η̄ in D′(R × [0, T )). (1.4)

Obviously condition (1.4) does no ensure unique solvability of the Cauchy problem
(1.1), (1.2). Other criteria are required.
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An approach to guarantee unique solvability is embedding the first order equation
(1.1) into an enlarged model of type

uε
t + f(uε)x = R[ε;uε] in R × (0, T ). (1.5)

Here, ε > 0 is a small parameter and R[ε; ·] some operator with R[0; ·] ≡ 0. In
the limit ε → 0 the sequence of solutions {uε}ε>0 to (1.5), (1.2) selects a unique
weak solution for (1.1), (1.2) (provided solutions uε exist and converge at all in an
appropriate function space). To recover undercompressive waves that satisfy (1.4) in
the limit, the operator R has to be chosen such that solutions of (1.5), (1.2) dissipate
the entropy η̄. Examples typically take the form of higher-order differential or integral
operators, and can be found in e.g. [2, 8, 12, 26, 29].

Another approach is motivated by the study of configurational forces for phase
transformation in solids [1, 28]. This ansatz enforces uniqueness by restrictions on
undercompressive shock waves through kinetic relations and nucleation criteria. A
kinetic relation is an algebraic condition on the traces across an undercompressive
shock wave. In view of (1.4) and the application background, kinetic functions are
usually chosen to determine exactly the amount of entropy dissipation with respect
to η̄.
For a discussion of both methods and its analytical implications we refer to the book
[19].

The numerical approximation of undercompressive waves is a nontrivial issue. On
the one hand the exact solutions are neither monotone nor total-variation diminish-
ing [19]. As a consequence, the highly successful finite volume schemes with these
properties are ruled out from the beginning. On the other hand, one of the selection
mechanisms outlined above has to be accounted for on the discrete level.
Following the idea of embedding, one discretizes first (1.5) and then identifies the role
of ε with the spatial mesh parameter. Thus, one obtains a consistent discretization for
(1.1) that mimics the effect of the operator R in (1.5) if the mesh width vanishes. The
schemes from the papers [13, 15, 20, 21, 22] fall into this class. Up to our knowledge,
the proof of convergence for these methods is an open issue.
The other class of schemes relies on the kinetic relation directly. The first of such
schemes is the Glimm-type ansatz in [18], see also [5]. Deterministic versions that
use an extra tracking of the undercompressive waves have been introduced in [4, 14,
23, 24, 30]. The drawback of all these schemes is the fact that the discrete solution
does not conserve the integral of the solution. To overcome this problem, conservative
finite-volume type methods have been suggested in [3, 25]. These schemes use a spe-
cial numerical flux close to undercompressive waves (and standard monotone fluxes
away from the wave). From the point of view of error analysis these schemes can usu-
ally be proven to converge if the initial data corresponds to a single undercompressive
wave that satisfies the given kinetic relation.

In this contribution we introduce a new conservative method. It imposes the
kinetic relation directly, and thus belongs to the second class of schemes described
above. We prove the convergence towards a generalized entropy solution. The proof
applies to solutions which contain a finite number of undercompressive waves but is
not restricted to well-prepared initial data as in many previous works.
Our proof does not only yield the weak solution, but does also identify the location of
the phase boundary, the associated entropy dissipation, and its characteristic struc-
ture.
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In Section 2 we give a rigorous definition of the generalized entropy solutions we are
searching for. We introduce the novel method in Section 3. In Section 4 we state the
convergence theorem (Theorem 4.4). Section 5 is devoted completely to the proof.
The last section contains numerical experiments that illustrate the analytical findings
and the future potential of the method.

2. The Mathematical Model. We assume that the flux f ∈ C2(R) has a
concave-convex shape with inflection point at u = 0, i.e.,

uf ′′(u) > 0 for all u ∈ R \ {0} and f ′′(0) = 0. (2.1)

With this assumption and having in mind the application scenario of phase transfor-
mations we define two phases by

Z+ = {u > 0} and Z− = {u < 0}.

By a phase boundary we mean a function u = u(x, t) of shock wave type, i.e.,

u(x, t) =







u− : x− āt < 0

u+ : x− āt > 0
ā = ā(u−, u+) :=

f(u−) − f(u+)

u− − u+
, (2.2)

such that either u± ∈ Z± or u± ∈ Z∓ holds. The choice of ā guarantees the validity
of the Rankine-Hugoniot conditions. Phase boundaries can be of compressive/Laxian
type if

f ′(u+) ≤ ā ≤ f ′(u−) (2.3)

holds, or of undercompressive type if either

f ′(u+) < ā, ā > f ′(u−) or f ′(u+) > ā, ā < f ′(u−) (2.4)

hold. Note that by (2.3) also the (one-sided) characteristic case is included for the
sake of simplicity.
We are in particular interested in weak solutions of (1.1) that contain undercom-
pressive phase boundaries. For the initial data we assume that u0 ∈

(
BV∩L1

)
(R)

and

xu0(x) < 0 (2.5)

holds for almost all x ∈ R. The property (2.5) implies that exactly one phase change
at x = 0 is prescribed by u0.

The extension of the analysis of this paper to initial data with (finitely) many
phase boundaries is possible but would lead to a much more heavy notational over-
head. In view of phase transformation applications the assumption (2.1) on the flux
function appears to be a generic situation [1]. The treatment of the interesting case of
flux functions with multiple inflection points and thus problems with multiple phases
is out of the scope of this paper.

As the next step, we introduce a generalized notion of entropy solution for weak
solutions that contain undercompressive waves. Let us recall that a weak solution of
(1.1) is a function u ∈ L∞(R × (0, T )) such that

∫

R×R+

uψt + f (u)ψx dx dt = −
∫

R

ψ(x, 0)u0(x) dx (2.6)
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holds for all ψ ∈ C1
0 (R × [0, T )). Rewriting (1.4) leads to

∫

R×R+

η̄(u)ψt + q̄(u)ψx dxdt ≥ −
∫

R

ψ(x, 0)η̄
(
u0(x)

)
dx (2.7)

for all non-negative functions ψ ∈ C1
0 (R × [0, T )).

In recent years several well-posedness theories for weak solutions have been developed
that allow for undercompressive waves [19]. We detail here the concept of a kinetic
relation.

Definition 2.1 (Kinetic Relation). A function ϕ : Z+ → Z− is called kinetic
relation if

∃L > 0 :
∣
∣ϕ(u) − ϕ(u′)

∣
∣ ≤ L

∣
∣u− u′

∣
∣ ∀u, u′ ∈ Z+, (2.8a)

ϕ is decreasing, (2.8b)

ϕ♯(u) ≥ ϕ(u) and ϕ(0) = 0 (2.8c)

hold. In (2.8c) the function ϕ♯ : Z+ → Z− is defined by

ā
(

u, ϕ♯(u)
)

= ā
(
u, ϕ(u)

)
and ϕ♯(u) 6= ϕ(u). (2.9)

According to (2.1) the function ϕ♯ is well-defined.
A kinetic relation ϕ : Z+ → Z− is called compatible with an entropy η̄ ∈ C2(R)
if

ā(u, ϕ(u))
(
η̄(u) − η̄(ϕ(u))

)
−

(
q̄(u) − q̄(ϕ(u))

)
≤ 0 (2.10)

holds for all u ∈ Z+, with ā as in (2.2). To illustrate the interplay of kinetic relations
and the notion of entropy compatibility consider the following example that will also
be used later in Section 6.

Example 2.2. Let f(u) = 1
3u

3 + cu with c ∈ R and the kinetic relation ϕ(u) =
−κu with κ ∈ [12 , 1] be given. Consider the entropy pairs (η, q) given by

η(u) =
1

r
ur and q(u) =

1

r + 2
ur+2 +

c

r
ur,

r

2
∈ N. (2.11)

The left-hand side of (2.10) is computed as

2(r − 1)
(
κr+2 − 1

)
+ (r + 2)

(
κr+1 − κr + κ2 − κ

)

3r(r + 2)
ur+2 ≤ 0,

thus ϕ is compatible with all entropies from (2.11).
In the following we will construct an entropy which is not compatible with ϕ. We
choose for k ∈ R the Kruzkov entropy η(u) = |u− k| with entropy flux q(u) = sign(u−
k)

(
f(u) − f(k)

)
. Fix u ∈ Z+ and take k ∈ [ϕ(u), u], then (2.10) is equivalent to

t(k) = ā(u, ϕ(u))
(
u+ ϕ(u) − 2k

)
−

(
f(u) + f(ϕ(u)) − 2f(k)

)
≤ 0.

If we maximize t(k) for k ∈ [ϕ(u), u] we find the maximum at k∗ = − 1
3

√
3κ2 − 3κ+ 3u

and t(k∗) > 0 for κ ∈ [ 12 , 1]. In the sequel we search for functions in the space

V :=

{

v ∈ C0
(

[0, T ];L1(R)
)

∣
∣
∣
∣
v(·, t) ∈ BV(R), ∀t ∈ [0, T ]

}

. (2.12)
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We can now present our generalized notion of entropy solutions.
Definition 2.3 ((η̄, ϕ)-solution). Let an entropy η̄ ∈ C2(R) and a kinetic relation

ϕ be given such that ϕ is compatible with η̄.
A weak solution u ∈ V of (1.1) together with p ∈ C0(0, T ) is called an (η̄, ϕ)-solution
of (1.1) if it satisfies the following properties:

1. The function u fulfills the entropy condition (2.7) for η̄.
2. p is differentiable for almost all t ∈ (0, T ) and fulfills there

pt(t) = ā
(
u−(t), u+(t)

)
. (2.13)

3. For almost all t ∈ (0, T ) we have

u+(t) = ϕ(u−(t)) or u+(t) ≥ ϕ♯(u−(t)). (2.14)

In (2.13) and (2.14) the function u± : [0, T ) → R is defined by

u±(t) := lim
ε→0

u(p(t) ± ε, t). (2.15)

Remark 2.4.
(i) Our notion of solution should be understood as a free-boundary formulation

for phase boundaries. The function p tracks the position of the phase bound-
ary.

(ii) Undercompressive waves cannot satisfy (2.7) for all entropies. Nevertheless
in applications with undercompressive waves some physical energy function
is naturally dissipated. In fact kinetic relations occur in applications as dis-
sipation rates for the (negative of the) physical entropy. This motivates the
definition of entropy compatible kinetic relations and the first condition in
Definition 2.3.

(iii) We recall that phase boundaries can be either Laxian or undercompressive
waves. As we will see later in Example 6.4 a phase boundary can change its
type which has to be reflected in the formulation of the weak solution: the first
condition in (2.14) identifies the discontinuity across p as an undercompres-
sive case, the second one as Laxian wave (see [19]).

(iv) The limits in (2.15) are well-defined, since u(·, t) ∈ BV(R) for all t ∈ [0, T ].
(v) In view of assumption (2.5) we will have u−(t) ∈ Z+ in (2.14). In the general

case the inequality in (2.14) should be written as

u−(t)u+(t) ≥ u−(t)ϕ♯(u−(t)).

We believe that the notion of weak solution from Definition 2.3 can be used
to prove the well-posedness of the initial value problem (1.1). Rigorous proofs for
existence and uniqueness can be found in [19]. Let us discuss here the Riemann
problem for the sake of illustration. Consider for uL > 0 and uR ∈ R the Riemann
initial data

u0(x) =

{

uL for x < 0,
uR for x > 0.

(2.16)

The cases uR ≥ uL and uR ∈ [0, uL) correspond to one-phase initial data. They are
solved by a single rarefaction wave and a single Laxian shock wave, respectively. We
concentrate on two-phase initial datum (cf. (2.5)).
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Example 2.5. Recalling the results from [19] we know that solutions of the
Riemann problem (1.1), (2.16) have the following structure for a given kinetic relation
ϕ : Z+ → Z−:

(i) uR ∈ [ϕ♯(uL), 0): The solution

u(x, t) =

{
uL for x

t ≤ ā(uL, uR)

uR for ā(uL, uR) ≤ x
t

is a Laxian wave.
(ii) uR ∈ [ϕ(uL), ϕ♯(uL)): The solution

u(x, t) =







uL for x
t ≤ ā(uL, ϕ(uL))

ϕ(uL) for ā(uL, ϕ(uL)) ≤ x
t ≤ ā(ϕ(uL), uR)

uR for ā(ϕ(uL), uR) ≤ x
t

is an undercompressive phase boundary followed by a shock wave.
(iii) uR < ϕ(uL): The solution

u(x, t) =







uL for x
t ≤ ā(uL, ϕ(uL))

ϕ(uL) for ā(uL, ϕ(uL)) ≤ x
t ≤ f ′(ϕ(uL))

(f ′
∣
∣
Z−

)−1(x
t ) for f ′(ϕ(uL)) ≤ x

t ≤ f ′(uR)

uR for f ′(uR) ≤ x
t

is an undercompressive phase boundary followed a rarefaction wave.

Note that the solution from (ii) is neither monotone nor total variation diminishing.
Both properties hold for classical entropy solutions [9]. It is easy to check that the
function u in (i), (ii), and (iii) is an (η, ϕ)-solution for all entropies (2.11).

3. The Numerical Method. In this section we propose a numerical method
to approximate (η̄, ϕ)-solutions in the sense of Definition 2.3. The approximation of
(η̄, ϕ)-solutions requires a very accurate flux balancing close to the undercompressive
waves. In particular the numerical method must detect two-wave structures as in
cases (ii) and (iii) in Example 2.5. Standard finite volume schemes fail in these
situations. Therefore, the new explicit time-stepping method uses a background grid
in the regions away from the phase boundary. At the phase boundary we cut the
space-time cells into two smaller cells according to its exact position. As this might
lead to extremely small cells and corresponding vanishing time steps, the cutted cells
are merged with the closest spatial background grid cell in the same phase. Then we
use this time-space calculation grid to perform an explicit time stepping with exact
flux balancing at the interface and standard fluxes away from the phase boundary.
Finally, for the new time step, the results are projected to the spatial part of the
background grid. The approach is in the spirit of moving mesh methods [27]. We give
some illustration in Figure 3.1. The background grid is plotted with dotted lines, the
space calculation grid with solid lines. Note that the cell edges of the calculation grid
might vary during a single time step.

For the formal presentation of the method in Algorithm 3.1 below, consider a
uniform (for the sake of simplicity) background grid on R×[0, T ) with mesh parameter
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xm(n)−2 xm(n)−1 xm(n) xm(n)+1 xm(n)+2 xm(n)+3

tn

tn+1

tn+2

tn+3

tn+4

b

b

b

b

b

pn

pn+1

pn+2

pn+3

pn+4

j1 j2 j3

j4

Fig. 3.1. Background and calculation grid for four different geometric configurations h1 to h4 .

A possible fifth case is described as the mirrored case to h4 .

h > 0. It consists for spatial cells Ij := [xj− 1
2
, xj+ 1

2
) of elements Ij × [tn, tn+1) with

xj+ 1
2

:=

(

j +
1

2

)

h (j ∈ Z) and 0 = t0 < t1 < · · · < tN := T for some N ∈ N.

The time steps will be related to the spatial mesh parameter by a CFL-like condition.
The spatial grid midpoints are given by xj := jh.
The discrete position of the phase boundary at time tn is denoted as pn ∈ R. We
represent pn uniquely with numbers m(n) ∈ Z and αn ∈ [0, 1) by the formula

pn =

(

m(n) + αn − 1

2

)

h. (3.1)

Thus m(n) denotes the index of the spatial cell, where the discrete phase boundary is
located, i.e., pn ∈ Im(n). At t = 0 we have p0 = 0 and therefore m(0) = 0 and α0 = 1

2 .
Furthermore, we use the following notations: We define ∆m(n) := m(n+ 1) −m(n)
and the set J(n) by

J(n) := Z \
{
m(n) − 1,m(n),m(n) + 1

}
.

We write ∆m+(n) := max(0,∆m(n)) and ∆m−(n) := −min(0,∆m(n)). Last, we
introduce the indices m−(n) = m(n) − ∆m−(n) and m+(n) = m(n) + ∆m+(n).

We define the initial values for j ∈ J(0) by integral averages, i.e.,

u0
j :=

1

h

∫ x
j+ 1

2

x
j− 1

2

u0(x) dx (3.2a)

and u0
1, u

0
−1 by

u0
1 :=

2

3h

∫ 3
2h

0

u0(x) dx , u0
−1 :=

2

3h

∫ 0

− 3
2h

u0(x) dx . (3.2b)

Note that u0
0 is not initialized. Furthermore, we ensure that u0

j ∈ Z± ⇔ j ∈ Z∓.

Let F : R
2 → R be a numerical flux, i.e., F (u, u) = f(u) for u ∈ R. Finally we

select an entropy η̄ ∈ C2 and a kinetic relation ϕ : Z+ → Z− which is compatible
with η̄.



8 Ch. Chalons, P. Engel, Ch. Rohde

Algorithm 3.1. Let {un
j }j and pn be given for n ∈ N0.

Then {un+1
j }j and pn+1 are calculated by the following procedure.

1. Consider the (η̄, ϕ)-solution of (1.1), (1.2), (2.16) with uL = un
m(n)−1 and

uR = un
m(n)+1. Define the velocity sn of the phase boundary by

sn :=

{
ā(ϕ(un

m(n)−1), u
n
m(n)−1) if un

m(n)+1 < ϕ♯(un
m(n)−1),

ā(un
m(n)+1, u

n
m(n)−1) if un

m(n)+1 ≥ ϕ♯(un
m(n)−1),

(3.3)

and the numerical phase boundary flux hn by

hn := f(un
m(n)−1) − snun

m(n)−1. (3.4)

2. Define the time step ∆t through

∆t :=
h

8Ĉ
. (3.5)

For the definition of the constant Ĉ > 0 see Assumption 4.2 below.
3. Calculate m(n+ 1) ∈ Z and αn+1 ∈ [0, 1) from αn and sn such that

m(n+ 1) + αn+1 = m(n) + αn +
∆t

h
sn (3.6)

holds.
4. Calculate {un+1

j }j by the following formulas. For j ∈ J(n) ∩ J(n + 1) (type

j1 in Figure 3.1) we use

un+1
j := un

j − ∆t

h

(

fn
j+ 1

2
− fn

j− 1
2

)

, fn
j+ 1

2
= F (un

j , u
n
j+1). (3.7)

We give the formulas for the other cells for the different cases ∆m(n) ∈
{−1, 0, 1} separately: For ∆m(n) = 0 (type j2 and j3 in Figure 3.1) we
have

un+1
m(n+1)−1 :=

(1 + αn)un
m(n)−1 − ∆t

h

(

hn − fn
m(n)− 3

2

)

1 + αn+1
,

un+1
m(n+1)+1 :=

(2 − αn)un
m(n)+1 − ∆t

h

(

fn
m(n)+ 3

2

− hn
)

2 − αn+1
.

(3.8)

For ∆m(n) = 1 (type j2 and j4 in Figure 3.1) we have

un+1
m(n+1)−2 := un+1

m(n+1)−1 :=
(1 + αn)un

m(n)−1 − ∆t
h

(

hn − fn
m(n)− 3

2

)

2 + αn+1
,

un+1
m(n+1)+1 :=

(2 − αn) un
m(n)+1 + un

m(n)+2 − ∆t
h

(

fn
m(n)+ 5

2

− hn
)

2 − αn+1
.

(3.9)

For ∆m(n) = −1 (type j5 and j3 in Figure 3.1) we get

un+1
m(n+1)−1 :=

(1 + αn)un
m(n)−1 + un

m(n)−2 − ∆t
h

(

hn − fn
m(n)− 5

2

)

1 + αn+1
,

un+1
m(n+1)+1 := un+1

m(n+1)+2 :=
(2 − αn) un

m(n)+1 − ∆t
h

(

fn
m(n)+ 3

2

− hn
)

3 − αn+1
.

(3.10)
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The three expressions (3.8), (3.9), and (3.10) can be summarized in the compact
form

un+1
m(n+1)−1

un+1
m−(n)−1






:=

(1 + αn)un
m(n)−1 + ∆m−(n)un

m(n)−2 − ∆t
h

(

hn − fn
m−(n)− 3

2

)

1 + ∆m+(n) + αn+1

(3.11a)

and

un+1
m(n+1)+1

un+1
m+(n)+1






:=

(2 − αn)un
m(n)+1 + ∆m+(n)un

m(n)+2 − ∆t
h

(

fn
m+(n)+ 3

2

− hn
)

2 + ∆m−(n) − αn+1
.

(3.11b)

Finally, let us define the approximate (η̄, ϕ)-solution uh : R × [0, T ] → R for x ∈ Ij
and t ∈ [tn, tn+1) through

uh(x, t) =







un
j for j ∈ J(n),
un

m(n)−1 for j /∈ J(n) and x < pn + sn(t− tn),

un
m(n)+1 for j /∈ J(n) and x ≥ pn + sn(t− tn).

(3.12)

The symbol un
h denotes uh(·, tn). As the first simple but striking property of Algo-

rithm 3.1 we get
Proposition 3.2. Algorithm 3.1 is conservative, i.e., for all n ∈ N

∫

R

uh(x, tn) dx =

∫

R

u0(x) dx .

Proof. From (3.1), (3.6), (3.7), (3.11), and (3.12) we get
∫

R

uh(x, tn+1) dx

= h




∑

j∈J(n+1)

un+1
j +

(

1 + αn+1
)

un+1
m(n+1)−1 +

(

2 − αn+1
)

un+1
m(n+1)+1





= h




∑

j∈J(n)∩J(n+1)

un+1
j +

(

1 + ∆m+(n) + αn+1
)

un+1
m(n+1)−1

+
(

2 + ∆m−(n) − αn+1
)

un+1
m(n+1)+1





= h




∑

j∈J(n)∩J(n+1)

un
j + ∆m−(n)un

m(n)−2 + (1 + αn)un
m(n)−1

+ (2 − αn)un
m(n)+1 + ∆m+(n)un

m(n)+2





= h




∑

j∈J(n)

un
j + (1 + αn) un

m(n)−1 + (2 − αn)un
m(n)+1




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=

∫

R

uh(x, tn) dx ,

which implies the statement by induction.
Remark 3.3. Thanks to the time step restriction (3.5) we have ∆m(n) ∈

{−1, 0, 1}. Therefore, ∆m+(n), ∆m−(n) ∈ {0, 1}. We interpret ∆m+(n) (∆m−(n))
as a trigger telling whether the phase boundary moves one cell to the right (left) or
not. Thus the following equalities hold:

∆m+(n)un
m(n)+2 = ∆m+(n)un

m+(n)+1,

(1 − ∆m+(n))un
m(n)+1 = (1 − ∆m+(n))un

m+(n)+1.

4. The Main Theorem. In this section we state the main result. The proof
will be given in the subsequent Section 5. We summarize the assumptions on the
model and the scheme.

Assumption 4.1 (Assumptions on the Model). Let f ∈ C2(R) with (2.1) and
η̄ ∈ C2(R) be a fixed entropy. Let ϕ : Z+ → Z− be a kinetic relation in the sense of
Definition 2.1 that is compatible with η̄. Let u0 ∈

(
L1 ∩ BV

)
(R) with (2.5).

Assumption 4.2 (Assumptions on the Scheme). Let M := max(1, L)‖u0‖L∞(R).

Let F ∈ C1(R2,R) be a numerical flux consistent with f , which is monotone and
locally Lipschitz-continuous, i.e.,

F (u, u) = f(u), (4.1a)

F (·, u) is increasing, F (u, ·) is decreasing, (4.1b)
∣
∣F (u, v) − F (u′, v′)

∣
∣ ≤ Ĉ

(∣
∣u− u′

∣
∣ +

∣
∣v − v′

∣
∣

)

(4.1c)

for all u, u′, v, v′ ∈ [−M,M ]. Here Ĉ is the local Lipschitz constant of F on the
domain [−M,M ]2. Let Q ∈ C1(R2,R) be a numerical entropy flux function, which is
consistent to q̄, local Lipschitz-continuous, and compatible to F , i.e.,

Q(u, u) = q̄(u), (4.2a)

∃C = C(M) :
∣
∣F (u, v) − F (u′, v′)

∣
∣ ≤ C(M)

(∣
∣u− u′

∣
∣ +

∣
∣v − v′

∣
∣

)

, (4.2b)

∂2Q(u, v) = η̄′(v)∂2F (u, v) (4.2c)

for all u, v, u′, v′ ∈ [−M,M ].
Remark 4.3. Let us mention that there are consistent, monotone, and locally

Lipschitz-continuous numerical fluxes that allow the construction of a corresponding
numerical entropy flux with (4.2). Examples are provided by the Lax-Friedrichs and
the Enquist-Osher flux [17].

Theorem 4.4 (Convergence and Existence). Let Assumptions 4.1 and 4.2 be
fulfilled. Consider for h > 0 the sequence {uh}h>0 of approximate solutions given by
Algorithm 3.1. Then we have:

• There exists a subsequence {uhn
}n∈N of {uh}h>0 and u ∈ V such that

lim
n→∞

‖uhn
− u‖L1 = 0.

• The limit u is a (η̄, ϕ)-solution of (1.1) in the sense of Definition 2.3.
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If we additionally assume that there exists a unique solution, then the statement
is also true for the complete sequence.

Proof. The proof is the combination of the Lemmata 5.3, 5.4, and 5.6, Helly’s
Theorem, Theorem 5.8, and Theorem 5.13 (see below).

5. Proof of Theorem 4.4.

5.1. Preliminary Note. Lemma 5.1 (Properties of αn+1 and sn). Under the
assumptions of Theorem 4.4, we have for n = 0, . . . , N − 1 the inequalities

∆m(n) = 1 =⇒ αn+1 ≤ 1

4
, (5.1a)

∆m(n) = −1 =⇒ αn+1 ≥ 3

4
. (5.1b)

Furthermore, if un
m(n)+1 < ϕ♯(un

m(n)−1), then we have for all ξ ∈ (−∞, ϕ♯(un
m(n)−1))

f ′(ξ) − sn ≥ 0. (5.2)

Proof. From (3.5), (3.6), and ∆m(n) = m(n+ 1) −m(n) we get

αn+1 = αn +
∆t

h
sn − ∆m(n)







≤ ∆t
h Ĉ ≤ 1

4 for ∆m(n) = 1,

≥ 1 − ∆t
h Ĉ ≥ 3

4 for ∆m(n) = −1.

Note that αn ∈ [0, 1) for all n ≥ 0.

The inequality (5.2) follows directly from (2.1).

In this section we will prove Theorem 4.4 step by step. Note that we will extract
several times subsequence of {uh}h>0. All subsequences are also denoted by {uh}h>0

to avoid an unnecessary notation overload.

5.2. Reformulation of the Scheme in Harten Form. As a first step, we
rewrite Algorithm 3.1 in a Harten-like form (see [11]), which enables us to apply BV
compactness theory. We get for j ∈ J(n) ∩ J(n+ 1) the formula

un+1
j = un

j +
∆t

h
Cn

j+ 1
2

(

un
j+1 − un

j

)

− ∆t

h
Dn

j− 1
2

(

un
j − un

j−1

)

(5.3)

with

Cn
j+ 1

2
:= −

F (un
j , u

n
j+1) − F (un

j , u
n
j )

un
j+1 − un

j

and Dn
j− 1

2
:=

F (un
j , u

n
j ) − F (un

j−1, u
n
j )

un
j − un

j−1

.

Next, we rewrite the cell values near the phase boundary. With (3.3), (3.4), and (4.1a)
we get

un+1
m(n+1)−1 = un+1

m−(n)−1

= un
m−(n)−1 −

∆t

h
Dn

m−(n)− 3
2

(

un
m−(n)−1 − un

m−(n)−2

)

+ ∆m−(n)Sn
−

(

un
m(n)−1 − un

m(n)−2

)

,

(5.4a)
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un+1
m(n+1)+1 = un+1

m+(n)+1

= un
m+(n)+1 +

∆t

h
Cn

m+(n)+ 3
2

(

un
m+(n)+2 − un

m+(n)+1

)

− ∆t

h
Dn

m(n)+ 1
2

(

un
m(n)+1 − ϕ(un

m(n)−1)
)

− ∆m+(n)Sn
+

(

un
m(n)+2 − un

m(n)+1

)

(5.4b)

with

Cn
m+(n)+ 3

2
:= − 1

2 + ∆m−(n) − αn+1

F (un
m+(n)+1, u

n
m+(n)+2) − F (un

m+(n)+1, u
n
m+(n)+1)

un
m+(n)+2 − un

m+(n)+1

,

Dn
m(n)+ 1

2
:=







ā
“

un
m(n)+1,ϕ(un

m(n)−1)
”

−sn

2+∆m−(n)−αn+1 for un
m(n)+1 < ϕ♯(un

m(n)−1),

0 for un
m(n)+1 ≥ ϕ♯(un

m(n)−1),

Dn
m−(n)− 3

2
:=

1

1 + ∆m+(n) + αn+1

F (un
m−(n)−1, u

n
m−(n)−1) − F (un

m−(n)−2, u
n
m−(n)−1)

un
m−(n)−1 − un

m−(n)−2

,

Sn
− := 1 − 1

1 + αn+1

(

1 +
∆t

h
ā(un

m(n)−2, u
n
m(n)−1)

)

,

and

Sn
+ := 1 − 1

2 − αn+1

(

1 − ∆t

h
ā(un

m(n)+1, u
n
m(n)+2)

)

.

We use the local Lipschitz-continuity of the numerical flux to bound the general-
ized Harten coefficients provided we have a uniform L∞-bound on the approximate
solution. To ease the notation we set Cn

m(n)− 1
2

= Cn
m(n)+ 1

2

= Dn
m(n)− 1

2

= 0.

Lemma 5.2. Let the assumptions of Theorem 4.4 and

−M ≤ uh(x, t) ≤M , (x, t) ∈ R × [0, T ]

be satisfied.
Then we have

∆t

h
Cn

j+ 1
2
,

∆t

h
Dn

j+ 1
2
, ∆m−(n)Sn

−, ∆m+(n)Sn
+ ∈

[

0,
1

2

]

for all h > 0, j ∈ Z, and n ∈ {0, . . . , N}.
Proof. By using (3.5), (4.1b) and (4.1c) we get the result for all values except

Dn
m(n)+ 1

2

. For the exceptional value Dn
m(n)+ 1

2

we make a distinction of cases: The

case un
m(n)+1 ≥ ϕ♯(un

m(n)−1) is trivial. In the case un
m(n)+1 < ϕ♯(un

m(n)−1) we can

deduce from (2.1) the positivity of Dn
m(n)+ 1

2

. We get the inequality ∆t
h D

n
m(n)+ 1

2

≤ 1
2 ,

since sn and ā(·, ·) are bounded by Ĉ from (4.1c).

5.3. A Uniform L∞-Bound for the Approximate Solution. Lemma 5.3.
Let the assumptions of Theorem 4.4 be fulfilled.
Then the following estimate holds for all h > 0 and t ∈ [0, T ]:

‖uh(·, t)‖L∞(R) ≤M := max(1, L)‖u0‖L∞(R). (5.5)
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Proof. In view of (3.2) it is obvious that ‖u0
h‖L∞(R) ≤ ‖u0‖L∞(R) ≤ M holds.

From (5.3) we get for all j ∈ J(n) ∩ J(n+ 1)

∣
∣
∣un+1

j

∣
∣
∣ ≤

(

1 − ∆t

h
Cn

j+ 1
2
− ∆t

h
Dn

j− 1
2

) ∣
∣
∣un

j

∣
∣
∣ +

∆t

h
Cn

j+ 1
2

∣
∣
∣un

j+1

∣
∣
∣ +

∆t

h
Dn

j− 1
2

∣
∣
∣un

j−1

∣
∣
∣

≤ max

{∣
∣
∣un

j−1

∣
∣
∣ ,

∣
∣
∣un

j

∣
∣
∣ ,

∣
∣
∣un

j+1

∣
∣
∣

}

.

(5.6)

With formula (5.4a) and Lemma 5.2 we get also

∣
∣
∣un+1

m(n+1)−1

∣
∣
∣ =

∣
∣
∣un+1

m−(n)−1

∣
∣
∣

≤
(

1 − ∆t

h
Dn

m−(n)− 3
2
− ∆m−(n)Sn

−

) ∣
∣
∣un

m−(n)−1

∣
∣
∣

+
∆t

h
Dn

m−(n)− 3
2

∣
∣
∣un

m−(n)−2

∣
∣
∣ + ∆m−(n)Sn

−

∣
∣
∣un

m(n)−1

∣
∣
∣

≤ max

{∣
∣
∣un

m−(n)−1

∣
∣
∣ ,

∣
∣
∣un

m−(n)−2

∣
∣
∣ ,

∣
∣
∣un

m(n)−1

∣
∣
∣

}

.

(5.7)

From (5.6) and (5.7) we get by induction

∣
∣
∣un

j

∣
∣
∣ ≤ ‖u0

h‖L∞(−∞,p0) ≤ ‖u0‖L∞(−∞,p0) for all j ≤ m(n) − 1 and n ∈ {0, . . . , N}.

We proceed with the cell values right to the phase boundary, i.e., j ≥ m(n)+1. With
the last formula and (2.8a) we immediately get

∣
∣
∣ϕ(un

m(n)−1)
∣
∣
∣ ≤

∣
∣ϕ(0)

∣
∣ + L

∣
∣
∣un

m(n)−1 − 0
∣
∣
∣ ≤ L‖u0‖L∞(−∞,p0). (5.8)

From (5.4b) and in view of Remark 3.3 we get

∣
∣
∣un+1

m(n+1)+1

∣
∣
∣ =

∣
∣
∣un+1

m+(n)+1

∣
∣
∣

≤
(

1 − ∆t

h
Cn

m+(n)+ 3
2
− (1 − ∆m+(n))

∆t

h
Dn

m(n)+ 1
2
− ∆m+(n)Sn

+

) ∣
∣
∣un

m+(n)+1

∣
∣
∣

+ ∆m+(n)

(

Sn
+ − ∆t

h
Dn

m(n)+ 1
2

) ∣
∣
∣un

m(n)+1

∣
∣
∣

+
∆t

h
Cn

m+(n)+ 3
2

∣
∣
∣un

m+(n)+2

∣
∣
∣ +

∆t

h
Dn

m(n)+ 1
2

∣
∣
∣ϕ(un

m(n)−1)
∣
∣
∣

≤ max

{∣
∣
∣un

m+(n)+1

∣
∣
∣ ,

∣
∣
∣un

m+(n)+2

∣
∣
∣ ,

∣
∣
∣un

m(n)+1

∣
∣
∣ ,

∣
∣
∣ϕ(un

m(n)−1)
∣
∣
∣

}

.

From this and again (5.6), we obtain by induction

∣
∣
∣un

j

∣
∣
∣ ≤ max(1, L)‖u0‖L∞ for all j ≥ m(n) + 1 and n ∈ {0, . . . , N}. (5.9)

Combining the results (5.8) and (5.9) implies (5.5).
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5.4. A Uniform Total Variation Bound for the Approximate Solution.
We derive a uniform estimate on the total variation (TV) of uh. Similarly as in
Section 5.3 it is possible to estimate the total variation left to the phase boundary
only using values left to it.

Lemma 5.4. Let the assumptions of Theorem 4.4 be fulfilled.
Then the following formula holds for all N ∈ {1, . . . , N}

∑

j<m(N )−1

∣
∣
∣uNj+1 − uNj

∣
∣
∣ +

N−1∑

n=0

∣
∣
∣un+1

m(n+1)−1 − un
m(n)−1

∣
∣
∣ ≤

∑

j<m(0)−1

∣
∣
∣u0

j+1 − u0
j

∣
∣
∣ .

Proof. Let us first define wn
j+ 1

2

=
∣
∣
∣un

j+1 − un
j

∣
∣
∣. We get

wn+1
j+ 1

2

≤
(

1 − ∆t

h
Dn

j+ 1
2
− ∆t

h
Cn

j+ 1
2

)

wn
j+ 1

2
+

∆t

h
Dn

j− 1
2
wn

j− 1
2

+
∆t

h
Cn

j+ 3
2
wn

j+ 3
2
.

Then we sum over j < m(n) − 1 and get
∑

j<m(n+1)−1

wn+1
j+ 1

2

=
∑

j<m−(n)−1

wn+1
j+ 1

2

≤
∑

j<m−(n)−1

wn
j+ 1

2
− ∆t

h
Dn

m−(n)− 3
2
wn

m−(n)− 3
2
− ∆t

h
Cn

m−(n)− 1
2

︸ ︷︷ ︸

=0

wn
m−(n)− 1

2

=
∑

j<m(n)−1

wn
j+ 1

2
− ∆t

h
Dn

m−(n)− 3
2
wn

m−(n)− 3
2
− ∆m−(n)wn

m(n)− 3
2

≤
∑

j<m(n)−1

wn
j+ 1

2
−

∣
∣
∣un+1

m(n+1)−1 − un
m(n)−1

∣
∣
∣ .

The last inequality follows directly from (5.4a), since

∣
∣
∣un+1

m(n+1)−1 − un
m(n)−1

∣
∣
∣ ≤ ∆t

h
Dn

m−(n)− 3
2

∣
∣
∣un

m−(n)−1 − un
m−(n)−2

∣
∣
∣

+ ∆m−(n)Sn
−

∣
∣
∣un

m(n)−1 − un
m(n)−2

∣
∣
∣

≤ ∆t

h
Dn

m−(n)− 3
2
wn

m−(n)− 3
2

+ ∆m−(n)wn
m(n)− 3

2
.

Finally, we sum over 0 ≤ n ≤ N − 1 and get the result by rearranging the terms

∑

j<m(N )−1

wN
j+ 1

2
+

N−1∑

n=0

∣
∣
∣un+1

m(n+1)−1 − un
m(n)−1

∣
∣
∣ ≤

∑

j<m(0)−1

w0
j+ 1

2
.

Let us now recall the definition of the total variation. For v ∈ L1(R) we define

TV(v) := lim
h→0

∫

R

1

h

∣
∣v(x+ h) − v(x)

∣
∣ dx .

A function v is total variation bounded if TV(v) < ∞. For a piecewise constant
function as un

h, we get

TV(un
h) =

∑

j /∈{m(n)−1,m(n)}

∣
∣
∣un

j+1 − un
j

∣
∣
∣ +

∣
∣
∣un

m(n)+1 − un
m(n)−1

∣
∣
∣ .
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We further introduce the operator TV∗ as

TV∗(un
h) :=

∑

j /∈{m(n)−1,m(n)}

∣
∣
∣un

j+1 − un
j

∣
∣
∣ +

∣
∣
∣un

m(n)+1 − ϕ(un
m(n)−1)

∣
∣
∣ +

∣
∣
∣ϕ(un

m(n)−1) − un
m(n)−1

∣
∣
∣ .

We have the trivial relation

TV(un
h) ≤ TV∗(un

h).

However, the advantage of TV∗ is that the difference TV∗(un+1
h ) − TV∗(un

h) can be
estimated independently of un

m(n)+1, see proof of Lemma 5.5 below. Note that the
maximally possible increase in total variation is not realized within one time step but
only in the asymptotic regime. That makes it hard to control TV(un

h) directly.
Lemma 5.5. Let the assumptions from Theorem 4.4 be fulfilled.

Then we have for all h > 0 and n ∈ {0, . . . , N}

TV(un
h) ≤ (1 + 2L)TV∗(u0). (5.10)

Here, TV∗(u0) is given by

TV∗(u0) := TV (u0) − |u+ − u−| +
∣
∣u+ − ϕ(u−)

∣
∣ +

∣
∣ϕ(u−) − u−

∣
∣ , u± = u0(0±).

Proof. The following proof exploits again the fact that the scheme can be written
in Harten form. For n ≥ 0 we have

TV∗(un+1
h ) − TV∗(un

h)

=
∑

j∈Z\[m−(n)−1,m+(n)]

(∣
∣
∣un+1

j+1 − un+1
j

∣
∣
∣ −

∣
∣
∣un

j+1 − un
j

∣
∣
∣

)

+
∣
∣
∣un+1

m(n+1)+1 − ϕ(un+1
m(n+1)−1)

∣
∣
∣ −

∣
∣
∣un

m(n)+1 − ϕ(un
m(n)−1)

∣
∣
∣ − ∆m+(n)

∣
∣
∣un

m(n)+2 − un
m(n)+1

∣
∣
∣

+
∣
∣
∣ϕ(un+1

m(n+1)−1) − un+1
m(n+1)−1

∣
∣
∣ −

∣
∣
∣ϕ(un

m(n)−1) − un
m(n)−1

∣
∣
∣ − ∆m−(n)

∣
∣
∣un

m(n)−1 − un
m(n)−2

∣
∣
∣

+ ∆m+(n)
∣
∣
∣un+1

m(n+1)−1 − un+1
m(n+1)−2

∣
∣
∣ + ∆m−(n)

∣
∣
∣un+1

m(n+1)+2 − un+1
m(n+1)+1

∣
∣
∣

=: L1 + L2 + L3 + L4.

For L1 we get from (5.3)

L1 ≤ −∆t

h
Cn

m+(n)+ 3
2

∣
∣
∣un

m+(n)+2 − un
m+(n)+1

∣
∣
∣ +

∆t

h
Dn

m(n)+ 1
2

∣
∣
∣un

m(n)+1 − ϕ(un
m(n)−1)

∣
∣
∣

+ ∆m+(n)Sn
+

∣
∣
∣un

m(n)+2 − un
m(n)+1

∣
∣
∣

− ∆t

h
Dn

m−(n)− 3
2

∣
∣
∣un

m−(n)−1 − un
m−(n)−2

∣
∣
∣ + ∆m−(n)Sn

−

∣
∣
∣un

m(n)−1 − un
m(n)−2

∣
∣
∣

=: R1 +R2 +R3.

(5.11)

For the terms L2 and L3 we use the following representation of ϕ(un+1
m(n+1)−1)

ϕ(un+1
m(n+1)−1) = ϕ(un

m(n)−1) − T n
ϕ

(

un+1
m(n+1)−1 − un

m(n)−1

)

(5.12)
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with

T n
ϕ :=

ϕ(un+1
m(n+1)−1) − ϕ(un

m(n)−1)

un+1
m(n+1)−1 − un

m(n)−1

.

From (2.8b) it is clear that T n
ϕ ∈ [−L, 0]. To further examine L2, we use (5.4b),

(5.12), and get

L2 ≤ −R1 −R2 +
∣
∣
∣T n

ϕ

∣
∣
∣

∣
∣
∣un+1

m(n+1)−1 − un
m(n)−1

∣
∣
∣ . (5.13)

With (5.4a) and (5.12) we get

L3 ≤ −R3 +
∣
∣
∣T n

ϕ

∣
∣
∣

∣
∣
∣un+1

m(n+1)−1 − un
m(n)−1

∣
∣
∣ . (5.14)

By the definition of the scheme, see (5.4a) and (5.4b), we have L4 = 0. Finally, we
sum all terms from (5.11), (5.13), (5.14) and use Lemma 5.2 to get

TV∗(un+1
h ) − TV∗(un

h) ≤ 2L
∣
∣
∣un+1

m(n+1)−1 − un
m(n)−1

∣
∣
∣ .

By summing all time steps up to N ≥ 0 we get the final result:

TV∗(uN+1
h ) = TV∗(u0

h) +

N∑

n=0

(

TV∗(un+1
h ) − TV∗(un

h)
)

≤ TV∗(u0
h) + 2L

N∑

n=0

∣
∣
∣un+1

m(n+1)−1 − un
m(n)−1

∣
∣
∣

≤ (1 + 2L)TV∗(u0
h).

For the last inequality we used Lemma 5.4. Finally, we get (5.10).

5.5. Continuity in Time. Lemma 5.6 (Continuity in Time). Under the as-
sumptions of Theorem 4.4, there is a C > 0 such that for all 0 ≤ t1 < t2 ≤ T

‖uh(·, t2) − uh(·, t1)‖L1(R) ≤ C(t2 − t1).

Proof. Thanks to the Harten form of the scheme the proof follows exactly the
same lines as for monotone schemes, see e.g. [17], Theorem 2.3.9.
From Lemmas 5.3, 5.5, and 5.6 and Helly’s theorem imply that there is a subsequence
of {uh}h>0 and a function u ∈ V such that the first assertion of Theorem 4.4 holds.
In the following we will show that the limit function u is a (η̄, ϕ)-solution of (1.1).

5.6. A Cell Entropy Inequality. In this section we will prove cell entropy
inequalities, which will be used in Section 5.7 to prove that uh converges to a function
that obeys (2.7).

Lemma 5.7 (Cell Entropy Inequality). Under the assumptions of Theorem 4.4,
the entropy inequality

η̄(un+1
j ) ≤ η̄(un

j ) − ∆t

h

(

qn
j+ 1

2
− qn

j− 1
2

)

(5.15)
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holds for all j ∈ J(n) ∩ J(n+ 1), n ∈ {0, . . . , N}, and h > 0. Furthermore, we have
(

1 + ∆m+(n) + αn+1
)

η̄(un+1
m(n)−1)

≤ (1 + αn) η̄(un
m(n)−1) + ∆m−(n)η̄(un

m(n)−2) −
∆t

h

(

qn
m(n) − qn

m−(n)− 3
2

) (5.16)

and
(

2 + ∆m−(n) − αn+1
)

η̄(un+1
m(n)+1)

≤ (2 − αn) η̄(un
m(n)+1) + ∆m+(n)η̄(un

m(n)+2) −
∆t

h

(

qn
m+(n)+ 3

2
− qn

m(n)

)

.
(5.17)

Here, the entropy fluxes are defined by

qn
j+ 1

2
= Q

(

un
j , u

n
j+1

)

and qn
m(n) = q̄(un

m(n)−1) − snη̄(un
m(n)−1).

Proof. The proof for (5.15) can be done as for monotone schemes, see e.g. [17],
Proposition 3.3.26.

We show only (5.17) for ∆m(n) = 1, which is the most complicated case. The
case ∆m(n) 6= 1 follows the same lines. Using (3.11b) we get

un+1
m(n+1)+1 =

T1 + T2 + (1 − αn+1) (T3 + T4)

2(2 − αn+1)
(5.18)

with

T1 := un
m(n)+2 − 2

∆t

h

(

fn
m(n)+ 5

2
− f(un

m(n)+2)
)

,

T2 := un
m(n)+2 − 2

∆t

h

(

f(un
m(n)+2) − fn

m(n)+ 3
2

)

,

T3 := un
m(n)+1 −

2

1 − αn+1

∆t

h

(

f(un
m(n)+1) − snun

m(n)+1 − hn
)

,

T4 := un
m(n)+1 −

2

1 − αn+1

∆t

h

(

fn
m(n)+ 3

2
− f(un

m(n)+1)
)

.

As the next step, we state the inequalities

η(T1) ≤ η(un
m(n)+2) − 2

∆t

h

(

qn
m(n)+ 5

2
− q(un

m(n)+2)
)

, (5.19a)

η(T2) ≤ η(un
m(n)+2) − 2

∆t

h

(

q(un
m(n)+2) − qn

m(n)+ 3
2

)

, (5.19b)

η(T3) ≤ η(un
m(n)+1) −

2

1 − αn+1

∆t

h

(

q(un
m(n)+1) − snη(un

m(n)+1) − qn
m(n)

)

, (5.19c)

η(T4) ≤ η(un
m(n)+1) −

2

1 − αn+1

∆t

h

(

qn
m(n)+ 3

2
− q(un

m(n)+1)
)

. (5.19d)

We give the proof of (5.19c), all others inequalities are similar as in the standard

situation [17]. In the Laxian case, where sn = ā
(

un
m(n)+1, u

n
m(n)−1

)

, the inequality is

trivially fulfilled, since T3 = un
m(n)+1 and the wave connecting un

m(n)−1 and un
m(n)+1

fulfils the entropy inequality

sn
(

η(un
m(n)−1) − η(un

m(n)+1)
)

−
(

q(un
m(n)−1) − q(un

m(n)+1)
)

≤ 0.
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In the undercompressive case, we set a = un
m(n)+1, λ = 2

1−αn+1
∆t
h , and

g(b) := η
(

a− λ
(
f(a) − f(b) − sn(a− b)

))

− η(a) + λ
(
q(a) − q(b) − sn(η(a) − η(b))

)
.

We have to show the inequality g(ϕ(un
m(n)−1)) ≤ 0, which together with (2.10) implies

(5.19c). We will prove g(b) ≤ 0 for the whole interval b ∈
(

−M,ϕ♯(un
m(n)−1)

)

. Here

M is defined as before by M := max(1, L)‖u0‖L∞ .

By differentiating g we get

g′(b) = η′
(

a− λ
(
f(a) − f(b) − sn(a− b)

))

λ
(
f ′(b) − sn

)
+ λ

(
q′(b) − snη′(b)

)

= λ
(
f ′(b) − sn

)
(

η′
(

a− λ
(
f(a) − f(b) − sn(a− b)

))

− η′(b)

)

= λ
(
f ′(b) − sn

)
η′′(ξ1)

(

a− b− λ
(
f(a) − f(b) − sn(a− b)

))

= λ
(
f ′(b) − sn

)
η′′(ξ1)

(
1 − λ(f ′(ξ2) − sn)

)
(a− b),

where

ξ1 ∈ I
(

a− λ
(
f(a) − f(b) − sn(a− b)

)
, b

)

and ξ2 ∈ I (a, b)

are values arising in the mean value theorem. Here, I(a, b) = [a, b] ∪ [b, a]. By
Lemma 5.1, (3.5), and

∣
∣λ(f ′(ξ2) − sn)

∣
∣ ≤ 2

8Ĉ(1 − αn+1)

(∣
∣f ′(ξ2)

∣
∣ + |sn|

)

≤ 2 · 2Ĉ
8Ĉ 3

4

< 1

we get g′(b)(a − b) ≥ 0 for b ∈
(

−M,ϕ♯(un
m(n)−1)

)

. As we have g(a) = 0, we get

g(b) ≤ 0 for b ∈
(

−M,ϕ♯(un
m(n)−1)

)

.

Putting (5.19a)-(5.19d) together, we get

(

2 − αn+1
)

η(un+1
m(n)+1) ≤

1

2

(

η(T1) + η(T2) + (1 − αn+1)
(
η(T3) + η(T4)

))

= (2 − αn) η(un
m(n)+1) + η(un

m(n)+2) −
∆t

h

(

qn
m(n)+ 5

2
− qn

m(n)

)

.

The proof for (5.16) is done in the same way.

5.7. Lax-Wendroff Theorem. In this section we state a Lax-Wendroff theorem
for the scheme.

Theorem 5.8 (Lax-Wendroff). Let the assumptions of Theorem 4.4 be fulfilled.
If the sequence {uh}h>0 converges to a limit function u ∈ V , then the limit function u
is a weak solution in the sense of (2.6) and an entropy solution in the sense of (2.7).

Proof. For the proof we refer to [10], which states a result for general quasi-
uniform grid. We point out that the computational grid introduced in Section 3
fulfils the requirements of a quasi-uniform grid.
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5.8. Recovery of the Phase Boundary Position. To prove Theorem 4.4
completely it remains to verify the pointwise properties 2. and 3. in Definition 2.3. In
this section we construct the function p : [0, T ] → R from the Definition 2.3. We will
verify (2.13) in the next section.

We define a continuous version ph : [0, T ] → R of the position of the discrete phase
boundary (pn)n≥0 from (3.1) by

ph(t) = pn + sn (t− tn) for all t ∈
[

tn, tn+1
)

.

The set {ph : [0, T ] → R}h>0 is uniformly Lipschitz-continuous, since sn defined

in (3.3) is bounded, since Lemma 5.3 states that
{

un
m(n)−1

}

n
is bounded. By the

Arzela-Ascoli theorem we can select a subsequence with

ph −→ p in C0([0, T ]) for h→ 0.

5.9. Trace Values. After the construction of p the trace values u− and u+ at
the phase boundary are well-defined. The next definition introduces more quantities
defined on the phase boundary.

Definition 5.9. Let u ∈ V be the limit of {uh}h>0 and p ∈ Lip([0, T ]) the limit
of {ph}h>0.
We define the phase boundary speed s ∈ L1([0, T ]), the phase boundary flux H ∈
L1([0, T ]) and the entropy dissipation D ∈ L1([0, T ]) by the following formulas:

s(t) = ā
(
u+(t), u−(t)

)
,

H(t) = f(u−(t)) − s(t)u−(t),

D(t) = −s(t)
(
η̄(u+(t)) − η̄(u−(t))

)
+

(
q̄(u+(t)) − q̄(u−(t))

)
.

All quantities defined in Definition 5.9 have discrete analogons, which we define in
the next definition.

Definition 5.10. We define the discrete traces values u∗h,−, u
∗
h,+ ∈ L1([0, T ]),

the discrete phase boundary speed s∗h ∈ L1([0, T ]), the discrete phase boundary flux
H∗

h ∈ L1([0, T ]) and the discrete phase boundary dissipation D∗
h ∈ L1([0, T ]) by

u∗h,−(t) = un
m(n)−1,

u∗h,+(t) = un
m(n)+1,

s∗h(t) = sn,

H∗
h(t) = hn = f(un

m(n)−1) − snun
m(n)−1,

D∗
h(t) =

h

∆t

(

αn+1η(un+1
m(n)−1) + (1 − αn+1)η(un+1

m(n)+1) − αnη(un
m(n)−1)

−(1 − αn)η(un
m(n)+1)

)

+ q(un
m(n)+1) − q(un

m(n)−1)

for t ∈ [tn, tn+1). The next lemma provides convergence properties of these quanti-
ties:

Lemma 5.11. Under the assumptions of Theorem 4.4, there are functions u∗−,
u∗+, H∗, s∗, D∗ ∈ L1([0, T ]), such that for a subsequence it is true that

u∗h,− → u∗−, u∗h,+ → u∗+, s∗h → s∗, H∗
h → H∗, and D∗

h → D∗
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for h→ 0 in L1([0, T ]). Furthermore, we have for almost all t ∈ [0, T ]

D∗(t) = −ā
(
u∗−(t), u∗+(t)

) (
η̄(u∗+(t)) − η̄(u∗−(t))

)
+

(
q̄(u∗+(t)) − q̄(u∗−(t))

)
. (5.20)

Proof. Note that u∗h,−, u∗h,+, s∗h, H∗
h, and D∗

h are TV-bound by using Lemma 5.4.
Helly’s theorem selects a converging subsequence. For the convergence of D∗

h and the
limit representation (5.20) we need (3.5) to control the term h

∆t and the iteration
formula (3.6) for the representation.
In the next step we analyze the relationship between the ∗-quantities in Lemma 5.11
and corresponding trace quantities of the limit function u in Definition 5.9.

Lemma 5.12. Under the assumptions of Theorem 4.4, we have

s(t) = s∗(t), H(t) = H∗(t), and D(t) ≤ D∗(t)

for almost all t ∈ [0, T ].

Proof.

s(t) = s
∗(t): From the facts that s∗h = ∂ph

∂t → s∗ in L1([0, T ]), ph → p in C0([0, T ]),

the existence of s = ∂p
∂t and the uniform bound of ‖s∗h‖L∞

, we immediately
get the result.

H(t) = H
∗(t): We get for almost all 0 ≤ t1 < t2 ≤ T the mass balance

∫ ph(t2)

−∞

uh(x, t2) dx−
∫ ph(t1)

−∞

uh(x, t1) dx =

∫ t2

t1
H∗

h(t) dt+O(∆t).

In the limit h→ 0 we get by ph → p in C0([0, T ]) and uh(·, t) → u(·, t)
∫ p(t2)

−∞

u(x, t2) dx−
∫ p(t1)

−∞

u(x, t1) dx =

∫ t2

t1
H∗(t) dt . (5.21)

Since u is a weak solution, we get (5.21) also for H instead of H∗, what
finishes the proof.

D(t) ≤ D
∗(t): To prove this, we introduce a dissipation measure D̂ ∈ M(R× [0, T ])

by

D̂ = ∂tη̄(u) + ∂xq̄(u).

We see that D̂
∣
∣
∣
x=p(t)

= Dµ1
{x=p(t)}. Here µ1 is the one-dimensional Hausdorff

measure and λ the Lebesgue measure. We have to be more careful in the
discrete setting to obtain a similar result. We define

Dn
j :=

1

∆t

(

η̄(un
j+1) − η̄(un

j )
)

+
1

h

(

qn
j+ 1

2
− qn

j− 1
2

)

,

D̂∗
h :=

∑

0≤n<N

∑

j /∈{m(n)−1,m(n),m(n)+1}

Dn
j λ[x

j− 1
2

,x
j+ 1

2
)×[tn,tn+1) +D∗

hµ
1
{x=ph(t)}.

Again we have D̂∗
h

∣
∣
∣
x=ph(t)

= D∗
hµ

1
{x=ph(t)}. From D̂∗

h ≤ 0 (see Lemma 5.7)

and D̂∗
h → D̂ in the sense of measures the result follows directly.
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Let us mention that Lemma 5.12 shows that p fulfils (2.13), which is equivalent to
s(t) = s∗(t). With the help of the just introduced definitions and lemmas, we can
state the main result of this section.

We note that the relation s(t) = s∗(t) from Lemma 5.12 is equivalent to (2.13) in
the definition of the (η̄, ϕ)-solutions. It remains to verify condition (2.14).

Theorem 5.13. Under the assumptions of Theorem 4.4, we have for almost
every t ∈ [0, T ] that either

u+(t) = ϕ(u−(t)) or u+(t) ≥ ϕ♯(u−(t)) (5.22)

is fulfilled.
Proof. Fix t ∈ [0, T ] and select a subsequence of {uh}h>0 such that u∗h,−(t),

u∗h,+(t), s∗h(t), and D∗
h(t) converge. This is possible for almost every t ∈ [0, T ] and we

will show (5.22) under these assumptions. Define a sequence {nh}h>0 such that

nh = max

{

n ∈ N

∣
∣
∣ tnh ≤ t

}

, tnh = n∆th =
nh

8Ĉ
.

For this sequence we have

u∗h,−(t) = unh

m(nh)−1 → u∗−(t), . . . for h→ 0.

In the following we will drop the index h for better reading.
Case 1: There are infinitely many h > 0 such that un

m(n)+1 < ϕ♯(un
m(n)−1). In this

case we can restrict ourselves to a subsequence of {uh}h>0 which fulfils this
condition in every step. Recall H∗(t) from Definition 5.10 and consider for
t ∈ [0, T ] fixed the equation

H∗
h(t) = f(w) − s∗h(t)w. (5.23)

It allows three solutions, namely w = un
m(n)−1, w = ϕ♯(un

m(n)−1) and w =

ϕ(un
m(n)−1). From the continuity of the solutions of (5.23) with respect to

the parameters H∗
h(t) and s∗h(t) we get, that the limit equation

H∗(t) = f(w) − s∗(t)w (5.24)

allows solutions w = v, w = ϕ♯(v), and w = ϕ(v) for some v ∈ R. From
Lemma 5.12 and the fact that u is a weak solution, we know that

u−(t), u+(t) ∈
{

v, ϕ♯(v), ϕ(v)
}

.

Two situations are possible:

u−(t) = v, u+(t) = ϕ(v) =⇒ first equation of (5.22) is fulfilled.

u−(t) = v, u+(t) = ϕ♯(v) =⇒ second inequality (5.22) is fulfilled.

Case 2: If we do not have infinitely many h > 0 with un
m(n)+1 < ϕ♯(un

m(n)−1) as in

Case 1, then we can choose a subsequence such that un
m(n)+1 ≥ ϕ♯(un

m(n)−1).

Equation (5.23) has again three solutions given by un
m(n)−1, u

n
m(n)+1 and
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Ψ(un
m(n)−1, u

n
m(n)+1). The value Ψ(v, w) ∈ R\{v, w} is defined as the solution

of

ā(v, w) = ā
(
v,Ψ(v, w)

)
.

By the same argument as in Case 1 we get that the limit equation (5.24)
has also three solutions given by v, w, Ψ(v, w). The situation u−(t) = v,
u+(t) = w fulfils the second part of (5.22), but u−(t) = v, u+(t) = Ψ(v, w) in
general not. However, the latter situation does not show up: we prove that
for u−(t) = v, u+(t) = Ψ(v, w) we get the contradiction

D(t) ≤ D∗(t) < D(t). (5.25)

The first inequality in (5.25) was already shown in Lemma 5.12. To show the
second one, we use (5.20), v = u∗−(t) and w = u∗+(t) (what is a consequence
of u∗−(t), u∗+(t) ∈ {v, w,Ψ(v, w)}) and

ā (v, w) = ā
(
v,Ψ(v, w)

)
= ā

(
w,Ψ(v, w)

)
,

to find that D∗(t) < D(t) is equivalent to

−ā
(
w,Ψ(v, w)

) (
η(Ψ(v, w)) − η(w)

)
+

(
q(Ψ(v, w)) − q(w)

)
> 0. (5.26)

The inequality (5.26) is finally correct, since the shock wave connecting w to
Ψ(v, w) is not entropy consistent.

6. Numerical Experiments. In this section we will demonstrate the efficiency
of Algorithm 3.1 numerically. We do this by calculating the so-called experimental
order of convergence (EOC). For a given sequence of grid widths hi and corresponding
numerical solutions uhi

we define the EOC by

EOCi =
ln ‖uhi

− u‖L1 − ln ‖uhi−1 − u‖
L1

lnhi − lnhi−1
.

By u we denote here the (η̄, ϕ)-solution with η̄(u) = 1
2u

2 and ϕ to be fixed.
Furthermore, we will present an experiment showing the convergence of the trace

values for non-Riemann initial data. The test was proposed in [3] and we compare
our results with the results given there. We give also an example of an (η̄, ϕ)-solution
switching between a Laxian and an undercompressive phase transition, compare to
Remark 2.4 (iii).

In the following experiments are done on equi-distant meshes with N grid cells.
For the numerical flux we use an upwind numerical flux except for Example 6.4, where
a Lax-Friedrichs numerical flux is used.

Example 6.1 (Experimental Order of Convergence I). For Algorithm 3.1 we
proved the convergence to an (η̄, ϕ)-solution. The question of the rate remains open.
Therefore we study the experimental order of convergence (EOC) for the scheme. We
use the simple flux f(u) = 1

3u
3 with ϕ(u) = − 3

4u as a kinetic relation. The entropy
plays no role in this example. First we study the Riemann problem (1.1), (2.16) with
uL = 1 and uR = − 1

2 on the domain [−1, 1] for different grids with N cells. The
(η̄, ϕ)-solution is given by

u(x, t) =







1 for x
t <

13
48 ,

− 3
4 for 13

48 <
x
t <

19
48 ,

− 1
2 for x

t >
19
48 .
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x

t

− 1
2

0 1
2

0.45

u = 3
2

u = 1

u = − 1
2

u = − 3
4

u = − 9
8

Fig. 6.1. Solution to initial conditions given in Example 6.2. Solid lines indicate phase bound-
aries and dashed line shock waves.

We measure the L1([−1, 1])-error at time t = 1. The measured errors and resulting
EOCs are listed in Table 6.1. We observe an approximately linear rate, which we can
expect for Riemann initial data, since the undercompressive wave is exactly reproduced
in this case.

Example 6.1 Example 6.2
N L1-Error EOC L1-Error EOC
40 0.01567 0.02791
80 0.00858 0.868 0.01592 0.810

160 0.00449 0.934 0.00709 1.167
320 0.00226 0.993 0.00389 0.864
640 0.00113 1.000 0.00240 0.696

1280 0.00056 1.000 0.00143 0.754
2560 0.00028 1.000 0.00072 0.992
5120 0.00014 1.000 0.00036 0.985

Table 6.1
Errors and EOC for the calculations done in Example 6.1 and 6.2 with different numbers of

grid cells N .

Example 6.2 (Experimental Order of Convergence II). In contrast to Exam-
ple 6.1 we use here initial data such that the phase boundary is not reproduced ex-
actly. We achieve this by putting two discontinuities into the initial conditions, which
evolve as single Laxian shock wave and phase boundary, and collide after some time.
After the interaction the phase boundary contributes to the total error. The initial
conditions are

u0(x) =







3
2 for x < − 1

2 ,

1 for − 1
2 < x < 0,

− 1
2 for x > 0.

The solution of this problem is illustrated in Figure 6.1. We measure the error in the
L1([−1, 1])-norm at time t = 0.45 (see Table 6.1). As in Example 6.1 we observe an
EOC of 1.
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Fig. 6.2. Non Riemann problem test case. The test is described in [3]. In 6.2(c) we mean by
kinetic relation the graph (u, ϕ(u)).

Example 6.3 (Non-Riemann Initial Conditions). To demonstrate the conver-
gence rate of the trace values, we run Test G from [3] on the interval [−0.5, 0.5].
The results are visualized in Figure 6.2. The authors of [3] use f(u) = u3 + u and
ϕ(u) = − 3

4u. As initial datum they choose

u0(x) =







0 for x < −0.5,
1 + 20(x+ 0.45) for x ∈ [−0.5,−0.45],
−0.75 for x > −0.45.

Figure 6.2(a) shows a numerical solution at different times on a grid with 5000 cells.
Figure 6.2(b) shows the decay of the total entropy

∫ 1
2

− 1
2

η̄(u(x, t)) dx +

∫ t

0

q̄(u(x, s))

∣
∣
∣
∣

1
2

x=− 1
2

ds with η̄(u) =
1

2
u2, q̄(u) =

3

4
u4 +

1

2
u2.

in time for the same calculation. This confirms the statement of Theorem 5.8. In
Figure 6.2(c) the trace values

(

un
m(n)−1, u

n
m(n)+1

)

n

are plotted. We observe convergence to the kinetic relation for N → ∞, as already
proved in Theorem 5.13. Calculating the EOC for the traces values gives: 0.1537,
0.5030 and 0.8765. We expect a convergence rate of 0.5. Compared to [3] we get the
same qualitative behavior.
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Fig. 6.3. Initial value problem with a switch from Laxian to undercompressive phase boundaries.
The switch takes place at approximately t = 0.2.

Example 6.4 (Laxian and Undercompressive Phase Boundaries). In this exam-
ple we give initial conditions for which the phase boundary switches from a Laxian
to an undercompressive phase boundary. We used f(u) = u3 − 1

2u and ϕ(u) = − 3
4u.

The initial datum is given by

u0(x) =







1
2 for x < 2

5 ,
1 for x ∈ [25 , 0],
− 3

16 for x > 0.

For the discretization we used 5000 grid cells. The initial conditions are constructed
such that the phase boundary propagates as a Laxian wave to the right. At approx-
imately t = 0.1 a rarefaction wave hits the phase boundary and makes it undercom-
pressive for t > 0.2. The undercompressive phase boundary now travels to the left.
In Figure 6.3(c) the evolution of the traces values ϕ♯(un

m(n)−1) and un
m(n)+1 in time

is plotted. The intersection point marks the switch from a Laxian to an undercom-
pressive phase boundary. We refer to Remark 2.4 for the definition and (3.3) for the
realization in the scheme.

Acknowledgments. The authors P. Engel and C. Rohde would like to thank
the German Research Foundation (DFG) for financial support of the project within
the Cluster of Excellence in Simulation Technology (EXC 310/1) at the University of
Stuttgart.

REFERENCES



26 Ch. Chalons, P. Engel, Ch. Rohde

[1] Rohan Abeyaratne and James K. Knowles, Kinetic relations and the propagation of phase
boundaries in solids, Arch. Rational Mech. Anal., 114 (1991), pp. 119–154.

[2] A. L. Bertozzi, A. Münch, and M. Shearer, Undercompressive shocks in thin film flows,
Phys. D, 134 (1999), pp. 431–464.

[3] Benjamin Boutin, Christophe Chalons, Frédéric Lagoutière, and Philippe G. LeFloch,
Convergent and conservative schemes for nonclassical solutions based on kinetic relations.
I, Interfaces Free Bound., 10 (2008), pp. 399–421.

[4] Christophe Chalons, Frédéric Coquel, Patrick Engel, and Christian Rohde, Fast relax-
ation solvers for hyperbolic-elliptic phase transition problems, SIAM Journal on Scientific
Computing, 34 (2012).

[5] C. Chalons and P. G. LeFloch, Computing undercompressive waves with the random choice
scheme. Nonclassical shock waves, Interfaces Free Bound., 5 (2003), pp. 129–158.

[6] Rinaldo M. Colombo and Andrea Corli, Sonic and kinetic phase transitions with applica-
tions to Chapman-Jouguet deflagrations, Math. Methods Appl. Sci., 27 (2004), pp. 843–864.

[7] Rinaldo M. Colombo and Massimiliano D. Rosini, Pedestrian flows and non-classical
shocks, Math. Methods Appl. Sci., 28 (2005), pp. 1553–1567.

[8] Andrea Corli and Christian Rohde, Singular limits for a parabolic-elliptic regularization of
scalar conservation laws, J. Differential Eq., 253 (2012), pp. 1399–1421.

[9] Constantine M. Dafermos, Hyperbolic conservation laws in continuum physics, vol. 325 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], Springer-Verlag, Berlin, third ed., 2010.

[10] Volker Elling, A Lax-Wendroff type theorem for unstructured quasi-uniform grids, Math.
Comp., 76 (2007), pp. 251–272.

[11] Ami Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49
(1983), pp. 357–393.

[12] Brian T. Hayes and Philippe G. LeFloch, Non-classical shocks and kinetic relations: scalar
conservation laws, Arch. Rational Mech. Anal., 139 (1997), pp. 1–56.

[13] , Nonclassical shocks and kinetic relations: finite difference schemes, SIAM J. Numer.
Anal., 35 (1998), pp. 2169–2194.

[14] Thomas Y. Hou, Phoebus Rosakis, and Philippe LeFloch, A level-set approach to the
computation of twinning and phase-transition dynamics, J. Comput. Phys., 150 (1999),
pp. 302–331.

[15] Frederike Kissling and Christian Rohde, The computation of nonclassical shock waves with
a heterogeneous multiscale method, Netw. Heterog. Media, 5 (2010), pp. 661–674.

[16] A. Kluwick, E.A. Cox, and S. Scheichl, Non-classical kinematic shocks in suspensions of
particles in fluids, Acta Mech., 144 (2000), pp. 197–210.
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