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When a Constraint Satisfaction Problem (CSP) admits no solution, it can be useful to
pinpoint which constraints are actually contradicting one another and make the problem
infeasible. In this paper, a recent heuristic-based approach to compute infeasible min-
imal subparts of discrete CSPs, also called Minimally Unsatisfiable Cores (MUCs), is

improved. The approach is based on the heuristic exploitation of the number of times
each constraint has been falsified during previous failed search steps. It appears to en-
hance the performance of the initial technique, which was the most efficient one until
now.
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1. Introduction

Constraint Satisfaction Problems (CSPs) form a very active domain of research

and application in Artificial Intelligence, that has found its way into many problem

domains (see e.g. 1,12). Roughly, a CSP is a set of constraints, involving a set of vari-

ables having their own instantiation domains. Solving a CSP consists in discovering

values for the involved variables in such a way that all constraints are satisfied, or

in showing that no values from the instantiation domains can satisfy all constraints

simultaneously.

In this paper, we are concerned with unsatisfiable CSPs, namely CSPs for which

no solution exists. More precisely, we address the problem of extracting Minimally

Unsatisfiable Cores (MUCs) of finite CSPs, namely of CSPs involving finite num-

bers of constraints and variables with finite instantiation domains. A MUC is a

set of infeasible constraints that is minimal in the sense that dropping any of its

member makes the remaining subset of constraints feasible. Obviously enough, pro-

viding a user with such a piece of information can be highly valuable when a CSP

exhibits no solution. Indeed, it provides one explanation of infeasibility that cannot

be made smaller in terms of involved constraints. Assume for example, that a com-
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plex scheduling problem is expressed in terms of a CSP, where different constraints

represent the sequences of tasks to be performed, the required resources together

with their time-dependent availability. When such a problem does not have a solu-

tion, it is important to pinpoint which constraints actually conflict with one another

and cannot be solved. Indeed, circumscribing the smallest sets of constraints that are

the actual sources of infeasibility can help the user to understand this infeasibility,

and fix it.

Unfortunately, computing MUCs is a highly intractable problem in the worst

case. For example, a specific case of CSPs is given by SAT, which is the NP-complete

problem consisting in checking the satisfiability of a set of Boolean clauses, where

a clause is a disjunction of literals, where a literal is a propositional variable that

can be negated. Deciding whether an unsatisfiable set of clauses of a SAT instance

is minimal or not is DP-Complete 26, which belongs to the second level of the

polynomial hierarchy.

Very recently a novel approach has been presented in 17, called DC(wcore), to

compute MUCs. It appears to be the most efficient one for most CSPs classes. In par-

ticular, DC(wcore) improves a previous method introduced in 3 to extract a MUC,

that was introduced in the specific context of model-based diagnosis. It also proves

more competitive than the QuickXplain 18,19 method to compute MUCs, which is

the seminal work in this domain of research. In this paper, a variant technique that

improves DC(wcore) very often is introduced.

The paper is organized as follows. In the following section, the reader is provided

with the necessary background about CSPs. In Section 3, the first step of Hemery

and co-authors’ DC(wcore) technique, namely the wcore procedure, is briefly re-

called. In Section 4, our improvement to enhance wcore is introduced. In Section 5,

the second step of DC(wcore) is presented and also improved from a practical point

of view. In Section 6, extensive experimental results are described, showing the value

of our proposed enhancements. Main related works are discussed in Section 7. In

Section 8, interesting paths for future research are discussed.

2. CSP: Technical Background

In this section, the reader is provided with the basic notions about CSPs and MUCs

that are necessary in this paper.

Definition 2.1. A Constraint Satisfaction Problem, in short CSP, is a pair P =

(V ,C) where

(i) V is a finite set of n variables s.t. each variable x ∈ V has an associated finite

instantiation domain, denoted dom(x), which contains the set of values allowed

for x,

(ii) C is a finite set of e constraints s.t. each constraint c ∈ C involves a subset

of variables of V , called scope and denoted vars(c), and is given an associated

relation rel(c), which contains the set of tuples allowed for the variables of its

scope.
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Fig. 1: Graphical Representation of the CSP of Example 2.1

Definition 2.2. Solving a CSP P = (V ,C) consists in checking whether P admits

at least one solution, i.e. an assignment of values for all variables of V s.t. all

constraints of C are satisfied. If P admits at least one solution then P is called to

be satisfiable else P is called to be unsatisfiable.

Example 2.1. Let V be {i,j,k,l,m} where each variable has the same domain

{0,1,2,3,4}. Let C = {m > i,m = l + 2, k < i, k 6= l, j < k, i < j, j ≥ l} be a set

of 7 constraints. In Figure 1a, the CSP P = (V ,C) is represented as a non-oriented

graph, where each variable is a node and each constraint is an edge, labelled with

its corresponding relation. P is unsatisfiable. Indeed, no assignment of values for all

variables of V allows all constraints of C to be satisfied at the same time.

A MUC is a subpart of a CSP that is unsatisfiable and that does not contain

any proper subpart that is also unsatisfiable.

Definition 2.3. Let P = (V,C) and P ′ = (V ′, C ′) be two CSPs. P ′ is an unsatis-

fiable core, in short a core, of P iff

(i) P ′ is unsatisfiable

(ii) V ′ ⊆ V and C ′ ⊆ C

P ′ is a Minimal Unsatisfiable Core (MUC) of P iff

(i) P ′ is a core of P

(ii) there does not exist any proper core of P ′

Example 2.2. In the above example, P is unsatisfiable. Indeed, P contains the

MUC represented in Figure 1b: no values for i, j and k can be found such that all

constraints are satisfied, and dropping one constraint leads to feasibility.
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Solving a CSP is an NP-complete problem. There exists many complete and

incomplete techniques to address it. Most “efficient” complete techniques rely on

a complete depth-first search with backtracking. At each step the set of currently

instantiated variables is incremented and some filtering consistency checks are per-

formed. One widely used family of filtering algorithms is called MAC (Maintaining

Arc Consistency) 29. Roughly, MAC propagates the values of the currently instan-

tiated variables and filters the remaining domains of possible values for the other

variables by removing the values that are not consistent with the current state.

When one domain of a variable becomes empty, this means that the lastly instanti-

ated variable conducts some constraints to be violated. Hence, the algorithm needs

to backtrack in order to consider another possible value for this variable. For more

information about CSP solving, the reader is refered to 5.

In the following we consider a complete CSP solver based on the MAC imple-

mentation by Chmeiss and Säıs 9.

3. The wcore Technique by Hemery et al.

Basically, the DC(wcore) technique by Hemery et al.17 is based on two successive

steps, namely wcore and DC. First, a core that is not guaranteed to be minimal

and thus to be a MUC is extracted using the so-called wcore procedure. Then, a

form of fine-tune process is performed to deliver an actual MUC from this core. Our

contribution consists of an improvement of both steps.

wcore is based on the following findings. First, it is well-known3 that when the

unsatisfiability of a CSP instance is proved thanks to a filtering search algorithm,

this one can deliver a core of the CSP. It is formed of all the constraints that

have been involved in the proof of unsatisfiability, namely all the constraints that

have been used during the search to remove by propagation at least one value from

the domain of any variable. Such constraints are called active. wcore makes use

of the MAC algorithm which maintains arc consistency by exploiting the AC3 24

procedure. As described in Hemery et al.17, it involves successive revisions of arcs

(i.e. pairs composed of a constraint and of a variable) in order to remove the values

that are not consistent anymore with the current state. At the heart of the wcore

system is thus the revise function depicted in Algorithm 1, which removes all

the values of the domain of a given variable that are not currently supported the

given constraint. The function also allows the active property to be triggered for

the constraint causing such a removal.

When the CSP is shown unfeasible, active constraints form a core since the

other constraints did not actually take part to this proof of inconsistency; conse-

quently, constraints that are not active could be removed while the problem is kept

unsatisfiable.

Clearly enough, the resulting core can depend on the the way the partial as-

signments are investigated, which is guided by the branching heuristic. In practice,

wcore takes advantage of the powerful dom/wdeg heuristic 6, which consists in as-
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Algorithm 1: revise

Input: a CSP : (V,C), a variable v ∈ V

Output: false if a domain wipe-out occurs, otherwise true

begin1

foreach a ∈ dom(v) do2

foreach c ∈ C s.t. v ∈ scope(c) do3

if find a support(a, c) = false then4

dom(v) ←− dom(v)\{a} ;5

active[c] ←− true ;6

if dom(v) = ∅ then7

weight[c] ←− weight[c] + 1 ;8

return false9

return true ;10

end11

Algorithm 2: wcore

Input: a CSP : (V,C)

Output: a core: (V,C ′)

begin1

foreach c ∈ C do weight[c] ←− 1 ;2

Ccore ←− C ;3

repeat4

C ′ ←− Ccore ;5

foreach c ∈ C do active[c] ←− false ;6

MAC revise(V,C) ;7

Ccore ←− {c ∈ C | active[c] = true} ;8

until |Ccore| < |C ′| ;9

return (V,Ccore) ;10

end11

sociating for each constraint a counter initialized to 1 and incremented each time

the corresponding constraint is involved in a conflict, namely each time it has been

used by the filtering step to wipe out the domain of a variable.

In this respect, the dom/wdeg heuristic selects the variable with the smallest

ratio between the current domain size and a weighted degree, which is defined

as the sum of the counters of the constraints in which the variable is involved.

This technique allows one to take the difficulty to satisfy the constraints related

to each variable into consideration, in order to quickly encounter a conflict if the

current instantiation does not lead to a model. Hence, it is a dynamic and adaptive
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variable ordering heuristic that can be expected to guide the systematic search

toward unsatisfiable or hard parts of the considered CSP.

Thus, the first step of DC(wcore), depicted in Algorithm 2, is a loop where calls

to a complete MAC-based solver (using the filtering procedure involving the revise

function) are iterated on a CSP instance as long as the number of active constraints

decreases. Importantly, the counters, or weights of the aforementioned dom/wdeg

heuristic associated to each variable are preserved from one call of MAC to the next

one. By keeping these counters, or weights, from one call to a complete method

to the next one, the solver focuses on some over-constrainted part of the problem,

and reduces more and more the number of constraints that are useful during the

computation. It has been shown that recording those counters is extremely valuable

for obtaining smaller cores at each iteration step, from an empirical point of view.

Accordingly, wcore delivers a core when the last call to the MAC-based solver

leads to a larger or equal number of active constraints than a previous call. We then

consider the smallest computed core, in terms of the number of involved constraints.

4. First Improvement: the MAC-based Solver Backtracks too

Early

The power of wcore relies on the efficiency of the MAC-based solver. Such a solver

increments the counters of the constraints that are violated at filtering steps, and

resumes its exploration by focusing on “difficult” constraints first, thanks to the use

of the dom/wdeg heuristic.

The goal of the MAC-based solver is to show in the most efficient manner that

a CSP is either unsatisfiable or exhibits at least one solution. However, we believe

that it could prove useful to modify the solver when the final goal is to get a

MUC. More precisely, when the MAC-based solver has shown that one constraint

is violated due to the propagation of the value of the last instantiated variable, it

backtracks. We believe that such a backtrack occurs too early. Other constraints are

also perhaps violated in the same circumstances and it could prove useful to take

all those violations into consideration, too. Indeed, such a more systematic checking

feature has already been proved useful in other contexts (see e.g. 30). This could

be recorded through the counters associated with the constraints that will be used

further on by the dom/wdeg ordering heuristic. Clearly, such a policy could require

(a small) computation overhead. However, our experimental studies show us that

collecting this strategic information proves useful and makes the whole procedure

become more efficient, most often.

Example 4.1. For instance, let us consider the CSP P = ({a, b, c, d}, {a 6= b, b+c =

2, a+c = 2, c ≤ d, b+d 6= 2}), with {0, 1, 2} as instantiation domain for each variable.

This problem is represented in Figure 2 (1), with nodes labelled by both variables

names and their respective domains.

Assume that a search for satisfiability is run, starting by assigning b to 0. First,

the domains of neighboring variables are filtered according to arc-consistency: values
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Fig. 2: Filtering domains of variables w.r.t. arc-consistency

that do not satisfy constraints w.r.t. the current partial assignment are removed

from the domains of those variables. For instance, the value 2 is removed from the

domain of d, since it falsifies the constraint b + d 6= 2, assuming that b = 0. The

resulting instantiation domains are depicted in Figure 2 (2). As a result of this

first step of arc-consistency enforcement, the only remaining value for c is 2. This

variable is thus assigned to 2 thanks to this filtering step. Then, arc-consistency

is performed w.r.t. this new piece of information. Assume the domain of variable

a is first filtered by this second step. Clearly, its domain becomes empty since

no previously remaining value satisfies the a + c = 2 constraint. Accordingly, a

backtrack is triggered and wcore increments the weight of this latter constraint.

However, this constraint is not the only one that is falsified by the current partial

instantiation. Indeed, c ≤ d is also violated. It seems natural to increment the weight

of all violated constraints, rather than the first discovered one, only.

Hence, we have modified a MAC-based solver in such a way that it does not

backtrack when a constraint is shown infeasible under a partial instantiation. On

the contrary, all relevant constraints are checked for feasibility under a given partial

assignment of the set of variables.

First, the revise function has been adapted to this end. The new function is

called full-revise and is depicted in Algorithm 3. Contrary to revise, the new

function does not stop its computation as soon as a domain wipe-out occurs. Instead,

a list La of all the constraints that would cause the removal of a tested value a from

the domain of the variable v is recorded. Then, the value a is removed provided

that the list La is not empty (line 7). When a domain wipe-out occurs for v, the

weight of each constraint of La is incremented (lines 13-14) whereas revise would

increment the weight of one constraint, only. The set of active constraints is updated

in the following way. The active constraints must form a somewhat irredundant

proof of unsatisfiability since they are intended to form a MUC. Accordingly, a new

constraint is set active only when the no constraint from the La list is already active
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Algorithm 3: full-revise

Input: a CSP : (V,C), a variable v ∈ V

Output: false is a domain wipe-out occurs, otherwise true

begin1

foreach a ∈ dom(v) do2

La ←− ∅ ;3

foreach c ∈ C s.t. v ∈ scope(c) do4

if find a support(a, c) = false then5

La ←− La ∪ {c} ;6

if La 6= ∅ then7

dom(v) ←− dom(v)\{a} ;8

if ∄c ∈ La s.t. active[c] = true then9

ca ←− pick a constraint(La) ;10

active[ca] ←− true ;11

if dom(v) = ∅ then12

foreach c ∈ La do13

weight[c] ←− weight[c] + 1 ;14

return false ;15

return true ;16

end17

(lines 9-11). Such a constraint is selected randomly within La.

Second, the MAC-based solver has also be modified in order to take the fol-

lowing phenomenon into account. Whenever the domain of a variable is wiped out,

other variables can have their domains wiped out in their turn if arc-consistency

is performed until a fixed-point occurs. Indeed, any constraint linking a variable

with an empty domain is violated, leading the domain of the involved variables to

be wiped out. In order to avoid this kind of avalanche effect, the filtering process

has been controled in the following way: let us assume that the arc-consistency

procedure is filtering the domains of variables related to a given variable v (namely

variables linked by a non tautological constraint to v). If one of those domains be-

comes empty, then arc-consistency continues on the remaining variables linked to

v, and the process is then stopped.

Finally, wcore has also be revisited in the following way. Instead of iterating

calls to the MAC-based solver with the same initial CSP instance as input, these

calls are focused on the previously obtained set of active constraints, delivering at

each step a decreasing core. Such a policy that concentrates on refining a specific

core has been shown more efficient from an experimental point of view.

We call the resulting procedure full-wcore (weighting all falsified constraints)
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Algorithm 4: full-wcore

Input: a CSP : (V,C)

Output: a core: (V,C ′)

begin1

foreach c ∈ C do weight[c] ←− 1 ;2

Ccore ←− C ;3

repeat4

C ′ ←− Ccore ;5

foreach c ∈ Ccore do active[c] ←− false ;6

MAC full-revise(V,Ccore) ;7

Ccore ←− {c ∈ C | active[c] = true} ;8

until |Ccore| < |C ′| ;9

return (V,Ccore) ;10

end11

as a reference to the wcore (weight core) name; it is depicted in Algorithm 4.

As our extensive experimental studies show, taking all the constraints that trig-

ger infeasibility into consideration when a conflict occurs improves the performance

of both wcore and DC(wcore).

5. Second Improvement: DC is not Fully Exploiting the Counting

Heuristic

Both wcore and full-wcore provide a core P formed of e constraints that is an

upper-approximation of a MUC. The second step of DC(wcore) is intended to ex-

tract one MUC from this core; it is based on the following property.

Let any ordering c1,...,ce of the constraints in P . P always contains one transition

constraint ci, which is such that c1,...,ci−1 is satisfiable and c1,...,ci is unsatisfiable.

Clearly, ci belongs to at least one MUC of P , and all constraints from ci+1,...,ce

do not belong to this MUC, and can be left aside. Once the transition constraint

ci has been found, the ordering c1,...,ci is reorganized as ci,c1,...,ci−1. The second

transition constraint cj is now to be found in ci,c1,...,ci−1. When it is found, the

ordering becomes ci,cj ,c1,...,cj−1. The process is iterated and stops when the set of

transition constraints that has been found is shown unsatisfiable. This set is then a

MUC and the final result can be delivered. The principle of this iterative technique

has already been exploited in 11,18,27.

A technique to find the transition constraint is thus central in this approach.

Hemery and his co-authors discussed three different families of approaches to dis-

cover transition constraints. The first-ones are called constructive because they con-

sider and add constraints of the core successively in a set until this set becomes un-

satisfiable. The last introduced constraint is the transition one. These approaches

introduced in 11 do not appear competitive from a computational point of view. The
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Algorithm 5: DS(XXcore): destructive algorithm

Input: a CSP : (V,C)

Output: a MUC: (V,C ′)

begin1

(V,C ′ = {c1, . . . , c|C′|}) ←− XXcore((V,C)) ;2

k ←− 0 ;3

repeat4

i ←− |C ′| ;5

while (MAC((V, {c1, . . . , ci−1})) proves unsatisfiability do6

i ←− i − 1 ;7

transitionConstraint ←− ci ;8

for j = (i − 1) downto 1 do9

cj+1 ←− cj ;10

c1 ←− transitionConstraint ;11

C ′ ←− C ′ \ {ci+1, . . . , c|C′|} ;12

k ←− k + 1 ;13

until k = |C ′| ;14

return (V,C ′) ;15

end16

second family of approaches are called destructive in the sense that they remove

constraints from the core until it becomes satisfiable; the constraint that has been

removed in the last place is the transition one (Algorithm 5, first introduced in 3).

Finally, Hemery and his co-authors introduce a dichotomic search on the range of

considered constraints to find the transition one (Algorithm 6).

The worst-case complexity of the approaches based on the constructive, destruc-

tive and dichotomic approaches can be characterized by the number of calls to a

complete MAC prover 17. They are O(e.ke), O(e) and O(log(e). ke), respectively,

where e is the number of constraints of the considered problem P and ke is the

number of constraints in the extracted final MUC.

Based on this worst-case analysis, Hemery et al. recommend the use of their

dichotomic approach, which they call DC(wcore). Especially, they show that its

worst-case complexity is better than the complexity of QuickXplain 18. They also

recommend to order the constraints of P according to their decreasing aforemen-

tioned “hardness” scores collected during the first step.

Our intuition is that whereas this analysis is correct for the worst-cases, it misses

some important practical heuristic information that has already been exploited in

the wcore and full-wcore procedures. Indeed, unless we are faced with worst-cases

situations, constraints with a high score are expected to exhibit a higher probability

of belonging to MUCs than lower-scores constraints. Thus constraints that belong

to the MUC are not expected to be uniformly dispersed among the constraints of
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Algorithm 6: DC(XXcore): dichotomic algorithm

Input: a CSP (V,C)

Output: a MUC (V,C ′)

begin1

(V,C ′ = {c1, . . . , c|C′|}) ←− XXcore((V,C)) ;2

k ←− 0 ;3

repeat4

min ←− k + 1 ;5

max ←− |C ′| ;6

while (min 6= max) do7

med ←− (min + max)/2 ;8

if (MAC((V, {c1, . . . , cmed})) proves unsatisfiability) then9

max ←− med ;10

else11

min ←− med + 1 ;12

transitionConstraint ←− cmin ;13

for j = (min − 1) downto 1 do14

cj+1 ←− cj ;15

c1 ←− transitionConstraint ;16

C ′ ←− C ′ \ {cmin+1, . . . , c|C′|} ;17

k ←− k + 1 ;18

until k = |C ′| ;19

return (V,C ′) ;20

end21

P . On the contrary, they are expected to be grouped within the set of high-scores

constraints whereas the constraints that do not belong to the MUC tend to be

located in the low-score region. The dichotomic approach does not exploit such a

heuristic information. In particular, assume that the core P is already a MUC. In

this case the destructive approaches will require O(e) calls to MAC whereas the

dichotomic one will require O(log(e).e) calls. Let us also note that full-wcore is

expected to deliver a better approximation of a MUC than wcore does. On the

other hand, it is natural to expect the dichotomic approach to be more efficient

when constraints in the MUC are dispersed in P in a random way. Accordingly,

we propose to replace the systematic calls to the dichotomic procedure by means

of the following policy that we have found experimentally more efficient, based on

extensive tests on various benchmarks. It is a trade-off between systematic calls to

the dichotomic procedure and to the destructive approach.

Before reducing the size of the core, constraints are sorted with respect to their

weight in the dom/wdeg heuristic. The first transition constraint is found using
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Algorithm 7: CB(XXcore): combined algorithm

Input: a CSP (V,C)

Output: a MUC (V,C ′)

begin1

(V,C ′ = {c1, . . . , c|C′|}) ←− XXcore((V,C)) ;2

C ′ ←− C ′ s.t. all constraints are sorted by decreasing weight ;3

min ←− 1 ;4

max ←− n ;5

while (min 6= max) do6

med ←− (min + max)/2 ;7

if (MAC((V, {c1, . . . , cmed})) proves unsatisfiability) then8

max ←− med ;9

else10

min ←− med + 1 ;11

C ′ ←− C ′ \ {cmin+1, . . . , c|C′|} ;12

forall c ∈ C ′ do13

if (MAC((V,C ′ \ {c})) proves unsatisfiability) then14

C ′ ←− C ′ \ {c} ;15

return (V,C ′) ;16

end17

the dichotomic approach. This first step takes advantage of the efficiency of the

dichotomic technique and splits the set of constraints in two parts. Especially, it

can allow us to drop “many” low-scores constraints that do not belong to the MUC.

Then, the other transition constraints are discovered using the destructive approach.

Clearly, this procedure exhibits the same worst-case complexity than the destructive

approach, which requires a number of calls to MAC that is linear with respect to

the size of core to be minimized. This new algorithm is called CB(full-wcore) (see

Algorithm 7) since it “ComBines” the dichotomic and the destructive approaches,

in opposition to DC(wcore), DC and DS being shorthands for “dichotomic” and

“destructive”, respectively.

6. Experimental Results

In order to validate these hypotheses, extensive experimentations on various CSP

benchmarks have been conducted. First, several benchmarks (scen*) provided by

the CELAR (Centre Électronique de L’ARmement) that encode a Radio Link Fre-

quency Assignment Problem7 (RLFAP) have been considered. Also, various in-

stances of the Quasi-group Completion Problem (qcp) and a so-called Geometric

problem (geo) proposed by Rick Wallace have also been tested. In addition, ran-
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domly generated instances have been considered. For instance, the ehi family is a

CSP translation of randomly generated 3-SAT instances. Instances of the composed

class, introduced in 23, are composed of several randomly-generated fragments, each

of them being grafted to a main one by means of some additional random binary

constraints. For more information about those various benchmarks, the reader is

refered to 4.

In the following, a sample of

typical results are provided; our software system and the complete experimental

data are available at http://www.cril.fr/~piette/MUC.

full-wcore, DC(full-wcore), DS(full-wcore) and CB(full-wcore) have

been implemented in C. As the DC(wcore) technique from 17 is implemented in

Java, it has been re-implemented -together with its DS and CB variants- in C in

order to conduct a fair comparison. All tests have been performed on a Pentium IV

3GHz, under Linux Fedora Core 4.

In Tables 1 and 2, wcore and full-wcore are compared, together with the 3

minimization procedures applied for both of them, since they are intended to find

one core that is not guaranteed to be minimal. For each CSP, we list the number

of variables (#V), constraints (#C) and provide the number of constraints in the

discovered core (|UC|), together with the CPU time spent in seconds to obtain it.

Next, these cores have been minimized with the three aforementioned approaches.

For each of these latter ones, the numbers of calls to a complete CSP-solving method

are provided, distinguishing the calls leading to satisfiability from calls leading to

unsatisfiability (#S and #U, respectively), the size of the extracted MUC (|MUC|),

and the computation time. A time-out was set to 3600 seconds.

As the results show, exploring all the constraints at the filtering step even after

a violated constraint has been discovered helps the size of the extracted cores to be

reduced. Indeed, most of the time, the size of the core extracted by full-wcore is

smaller than the size of the core delivered by wcore. For example, considering the

scen1 f9 benchmark, full-wcore delivered a core made of 358 constraints in 6.86

seconds, whereas wcore delivered a 1421-constraints core in 3.67 seconds.

Exploring all constraints instead of backtracking as soon as a violated constraint

has been found does not necessarily slow down the whole computation process. Al-

though more time can be needed to compute the approximations, it appears that in

practice the global computation time is often decreased, mainly because more appro-

priate choices of branching variables can be performed as the dom/wdeg heuristic

is guided in a better way towards problematic constraints. For example, the same

core made of the 793 constraints has been extracted from qcp-o15-h120-268-15 ;

however, full-wcore only spent 100 seconds to compute it, whereas wcore needed

more than twice this time.

The tentative enhancement of the minimization step also appears successful in

practice. Although the CB approach does not deliver the best result for every CSP,

its average behavior is very satisfactory. For example, when the approximation is

bad (e.g. scen11 f12), the destructive approach proves very inefficient, whereas the
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Instance #C #V
wcore DC(wcore) DS(wcore) CB(wcore)

|UC| time (#S,#U)|MUC| time (#S,#U) |MUC| time (#S,#U) |MUC| time

scen11 f10 4103 680 711 11.48 (96,46) 16 17.4 (16,695) 16 588.91 (22,513) 16 153.06

scen11 f12 4103 680 610 9.3 (96 ,40) 16 14.42 (-,-) - time out (21,427) 16 129.05

scen1 f9 5548 916 1421 3.67 (-,-) - time out(25,1396) 25 323.43 (31,1260) 25 564.06

composed-75-1-2-2 624 33 529 0.18 (112,23) 14 1291.96 (13, 516) 13 27.13 (20 ,511) 14 33.18

composed-25-1-40-2 262 33 236 0.48 (79,22) 13 13.48 (13,223) 13 13.63 (18,181) 13 6.6

composed-25-1-40-4 262 33 239 0.23 (-,-) - time out (14,225) 14 5.26 (17,184) 13 5.68

composed-25-1-80-0 302 33 240 0.09 (64,22) 11 12.94 (13,227) 13 4.78 (18,146) 14 4.42

dual ehi-85-297-1 4112 297 209 0.26 (159,36) 34 2.43 (42,167) 42 58.49 (39,108) 36 2.08

dual ehi-85-297-24 4105 297 206 0.22 (165,29) 34 2.37 (40,166) 40 2.72 (38,105) 34 1.79

dual ehi-85-297-26 4102 297 179 0.25 (139,32) 30 2.13 (40,139) 40 2.38 (46,113) 41 1.99

dual ehi-85-297-44 4130 297 178 0.2 (135,29) 29 1.99 (26,152) 26 2.34 (33,85) 29 1.43

dual ehi-85-297-49 4124 297 192 0.21 (207,28) 41 2.82 (42,150) 42 2.52 (42,64) 40 1.24

dual ehi-85-297-65 4116 297 156 0.2 (1099,0) 156 13.65 (156,0) 156 1.66 (163,0) 156 1.74

dual ehi-85-297-7 4111 297 160 0.22 (151,27) 30 2.34 (33,127) 33 2.17 (40,107) 34 1.95

dual ehi-90-315-6 4365 297 200 0.27 (261,36) 50 3.81 (51,149) 51 3.1 (52,80) 47 1.67

dual ehi-90-315-94 4380 297 174 0.23 (158,44) 33 2.61 (43,131) 43 2.4 (47,111) 42 2.08

geo50.20.d4.75.70 451 50 424 140.62 (-,-) - time out (-,-) - time out (-,-) - time out

qcp-o15-h120-b-268-15 3150 225 793 237.6 (7146,0) 793 237.78 (793,0) 793 26.42 (802,0) 793 26.45

qcp-o20-h187-b-27-20 7600 400 389 2.6 (3120,0) 389 116.11 (389,0) 389 14.38 (397,0) 389 14.65

qcp-o20-h187-b-29-20 7600 400 958 6.3 (8631,0) 958 551.79 (958,0) 958 63.8 (967,0) 958 64.47

Table 1: wcore experimental results
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Instance #C #V
full-wcore DC(full-wcore) DS(full-wcore) CB(full-wcore)

|UC| time (#S,#U)|MUC| time (#S,#U)|MUC| time (#S,#U)|MUC| time

scen11 f10 4103 680 707 15.27 (97,45) 16 17.29 (16,691) 16 565.71 (22,512) 16 150.18

scen11 f12 4103 680 606 12.98 (97,38) 16 14.22 (-,-) - time out (22,425) 16 130.42

scen1 f9 5548 916 358 6.86 (-,-) - time out (25,333) 25 49.26 (28,242) 25 188.06

composed-75-1-2-2 624 33 529 3.04 (112,23) 14 1293.73 (13,516) 13 27.27 (20,511) 14 32.93

composed-25-1-40-2 262 33 227 0.59 (78,23) 13 25.58 (13,214) 13 4.63 (17,174) 13 4.78

composed-25-1-40-4 262 33 226 0.63 (-,-) - time out (14,212) 14 4.64 (18,171) 13 5.14

composed-25-1-80-0 302 33 232 0.7 (63,22) 11 689.94 (13,219) 13 4.65 (17,139) 14 10.44

dual ehi-85-297-1 4112 297 162 0.42 (169,30) 34 2.42 (40,122) 40 2.06 (37,59) 35 1.13

dual ehi-85-297-24 4105 297 187 0.38 (181,38) 38 2.66 (42,145) 42 8.55 (41,98) 38 1.7

dual ehi-85-297-26 4102 297 148 0.45 (151,37) 32 2.34 (36,112) 36 1.88 (42,91) 37 1.64

dual ehi-85-297-44 4130 297 103 0.35 (624,0) 103 7.28 (103,0) 103 0.98 (109,0) 103 1.06

dual ehi-85-297-49 4124 297 166 0.37 (224,39) 44 3.19 (39,127) 39 2.12 (43,77) 39 1.44

dual ehi-85-297-65 4116 297 156 0.37 (1099,0) 156 13.69 (156,0) 156 1.67 (163,0) 156 1.76

dual ehi-85-297-7 4111 297 109 0.37 (152,20) 32 2.23 (29,80) 29 1.41 (34,37) 31 0.85

dual ehi-90-315-6 4365 297 153 0.38 (236,24) 47 3.31 (46,107) 46 2 (51,52) 46 1.25

dual ehi-90-315-94 4380 297 146 0.36 (158,40) 32 2.56 (31,115) 31 2.13 (32,87) 30 1.54

geo50.20.d4.75.70 451 50 417 171.14 (-,-) - time out (-,-) - time out (-,-) - time out

qcp-o15-h120-b-268-15 3150 225 793 100.04 (7146,0) 793 238.21 (793,0) 793 26.59 (802,0) 793 26.56

qcp-o20-h187-b-27-20 7600 400 389 3.29 (3120,0) 389 116.35 (389,0) 389 14.32 (397,0) 389 14.74

qcp-o20-h187-b-29-20 7600 400 853 7.85 (7686,0) 853 453.98 (853,0) 853 52.04 (862,0) 853 52.78

Table 2: wcore and full-wcore experimental results
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dichotomic one is appropriate. The hybridization schema allows lots of constraints

to be eliminated thanks to the dichotomic step, and a MUC can be obtained within

a reasonable time. On the contrary, full-wcore has extracted a set of constraints

from the qcp-o20-h187-9-20 instance, and this set is in fact one exact MUC.

For this kind of “approximation”, the dichotomic procedure exhibits its worst case,

whereas the destructive one efficiently proves the minimality of the core by perform-

ing a linear number of satisfiability calls, which are in practice very fast compared

to unsatisfiability calls. Once again, CB behaves very well, since it returns this MUC

within less than 1 minute (like DC), but DS can ensure that this core is minimal in

more than 7 minutes.

Moreover, on many benchmarks (see e.g. dual ehi-85-297-24), CB appears to

be the most efficient approach in order to compute one exact MUC. Actually, this

new method takes advantage of both previous ones while, at the same time, it

avoids their main drawbacks as much as possible. By heuristically removing a lot of

constraints in a dichotomic way and by testing all the remaining ones step by step,

the minimization procedure has been improved in many cases, and appears more

robust than previously proposed ones.

Let us also note that different MUCs can be computed using those var-

ious methods. For instance, from the core extracted with full-wcore on

(dual ehi-85-297-24), DS, DC and CB extract MUCs of different sizes. In fact,

a core can exhibit several MUCs. Thus, the order according to which constraints

are removed can conduct us to compute one MUS instead of another one.

7. Related Works

So far, there have been only a few other research results about extracting MUCs from

CSPs. First, there have been several works about the identification of (minimal)

conflict sets of constraints (e.g. 27) that are recorded during the search in order

to perform various forms of intelligent backtracking, like dynamic backtracking 13

21 or conflict-based backjumping 28. In 18 a non-intrusive method was proposed to

detect them, and can be interpreted as the seminal piece of work in this domain

of research. However, there have been few other research works about the problem

of extracting MUCs themselves. A method to find all MUCs from a given set of

constraints has been presented in 16 and in 10, which corresponds to an exhaustive

exploration of a so-called CS-tree but is limited by the combinatorial blow-up in

the number of subsets of constraints. Other approaches are given in 25 and in 19,

where an explanation that is based on the user’s preferences is extracted. Also, the

PaLM framework 20, implemented in the Choco constraint programming system 22,

is an explanation tool that can explain why there is no solution involving the vi

value for a variable A. Moreover, in case of unsatisfiability, PaLM is able to provide

a core, which is however not guaranteed to be a minimal one.

In the Boolean case, MUCs correspond to MUSes (Minimally Unsatisfiable Sub-

formulas). Whereas DC(wcore) was the best current technique to discover MUCs,
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the most current efficient technique for computing MUSes is based on a heuristic

that exploits the number of times a clause has been critical during a failed local

search for satisfiability 14. Local search has also been proved very efficient in prac-

tice to compute the exhaustive set of MUSes of a propositional formula, when it is

hybridized with a complete approach 15.

Let us also note that the problem of finding Irreductible Infeasible Subsystems

(corresponds to MUCs in CSPs) has also been addressed in the mathematical pro-

gramming domain, using specific approaches 8,2.

8. Conclusions and Perspectives

Pinpointing an irreducible set of infeasible constraints is a “harder” problem than

solving a CSP itself, since the former problem belongs to the second level of the

polynomial hierarchy, whereas the latter one is “only” NP-complete. However, de-

livering one MUC is a very valuable piece of information since it can help one to

diagnose, understand and fix a CSP that does not have any solution.

In this paper, the currently most efficient technique to address this problem

has been improved. The key points were to allow the MAC-based solver to check

all constraints for infeasibility during the standard filtering process even after a

first violated constraint has been discovered. It also relied on using the heuristic

information already exploited in the first step to refine the approximation into a

MUC.

This result opens many research and application perspectives. First, the pro-

posed algorithm could be grafted to current CSP solvers, in order to provide them

with a powerful explanation mechanism when a CSP does not have any solution at

all. Second, a promising path for further research concerns the implementation side.

In particular, the procedures described in this paper make repeated calls to a MAC

solver on similar data, without reusing pertinent results from the previous calls.

Improving the efficiency of the next call to MAC by exploiting the results of the

previous calls clearly opens many new interesting issues from both the conceptual

and computational points of view. Some interesting ideas in that direction can be

found in 19. Then, it should be noted that this study has been conducted with the

goal of finding one MUC. However, a given CSP might exhibit several MUCs and

the number of MUCs is even exponential in the worst case (it is in O(C
n/2
n ) where

n is the number of constraints of the CSP). Clearly, the technique introduced in

this paper can be used in a direct way to find a cover of MUCs, namely a series

of MUCs that would render the CSP feasible if they were deleted from the initial

CSP instance. To this end, it suffices to iterate the technique of this paper and

drop successive MUCs as soon as they are discovered. However, MUCs can have

non-empty intersections. In this respect, it should be noted that the approach pre-

sented in this paper requires the MAC-based solver to conduct a more systematic

search for infeasible constraints at each instantiation step. In this respect, it could

better apprehend the topology of all MUCs inside the CSP instance, and could be
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18 Éric Grégoire, Bertrand Mazure, Cédric Piette

an essential ingredient of a future method allowing one to deliver all MUCs, modulo

a possible exponential blow-up restriction.
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