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A Bayesian Framework for Active Artificial
Perception

João Filipe Ferreira, Member, IEEE, Jorge Lobo, Member, IEEE, Pierre Bessière,
Miguel Castelo-Branco, and Jorge Dias, Senior Member, IEEE

Abstract—In this text, we present a Bayesian framework
for active multimodal perception of 3D structure and
motion. The design of this framework finds its inspiration
in the role of the dorsal perceptual pathway of the
human brain. Its composing models build upon a common
egocentric spatial configuration that is naturally fitting for
the integration of readings from multiple sensors using
a Bayesian approach. In the process, we will contribute
with efficient and robust probabilistic solutions for cyclo-
pean geometry-based stereovision and auditory perception
based only on binaural cues, modelled using a consistent
formalisation that allows their hierarchical use as building
blocks for the multimodal sensor fusion framework. We
will explicitly or implicitly address the most important
challenges of sensor fusion using this framework, for vi-
sion, audition and vestibular sensing. Moreover, interaction
and navigation requires maximal awareness of spatial
surroundings, which in turn is obtained through active
attentional and behavioural exploration of the environ-
ment. The computational models described in this text
will support the construction of a simultaneously flexible
and powerful robotic implementation of multimodal active
perception to be used in real-world applications, such as
human-machine interaction or mobile robot navigation.

Index Terms—Sensing and Perception, Computer Vision,
Sensor Fusion, Biologically-Inspired Robots, Multisensory
Exploration, Active Perception, Multimodal Perception,
Bayesian Programming.

I. INTRODUCTION

Humans and robots alike have to deal with the un-
avoidable reality of sensory uncertainty. Consider the
following scenario — a static or moving observer is
presented with a non-static 3D scene containing several
static and moving entities, probably generating some
kind of sound: how does this observer perceive the 3D
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location, motion trajectory and velocity of all entities in
the scene, while taking into account the ambiguities and
conflicts inherent to the perceptual process?

Within the human brain, both dorsal and ventral visual
systems process information about spatial location, but
in very different ways: allocentric spatial information
about how objects are laid out in the scene is computed
by ventral stream mechanisms, while precise egocentric
spatial information about the location of each object in
a body-centred frame of reference is computed by the
dorsal stream mechanisms, and also the phylogeneti-
cally preceding superior colliculus (SC), both of which
mediate the perceptual control of action [1]. On the
other hand, several authors argue that recent findings
strongly suggest that the brain codes complex patterns
of sensory uncertainty in its internal representations and
computations [2, 3].

Finally, direction and distance in egocentric represen-
tations are believed to be separately specified by the
brain [4, 5]. Considering distance in particular, just-
discriminable depth thresholds have been usually plotted
as a function of the log of distance from the observer,
with analogy to contrast sensitivity functions based on
Weber’s fraction [6].

These findings inspired the construction of a prob-
abilistic framework that allows fast processing of
multisensory-based inputs to build a perceptual map of
space so as to promote immediate action on the environ-
ment (as in the dorsal stream and superior colliculus),
effectively postponing data association such as object
segmentation and recognition to higher-level stages of
processing (as in the ventral stream) — this would be
analogous to a tennis player being required to hit a
ball regardless of perception of its texture properties.
Our framework bears a spherical spatial configuration
(i.e. encoding 3D distance and direction), and constitutes
a short-term perceptual memory performing efficient,
lossless compression through log-partitioning of depth.
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Figure 1. View of the current version of the Integrated Multimodal
Perception Experimental Platform (IMPEP). The active perception
head mounting hardware and motors were designed by the Perception
on Purpose (POP - EC project number FP6-IST-2004-027268) team
of the ISR/FCT-UC, and the sensor systems mounted at the Mobile
Robotics Laboratory of the same institute, within the scope of the
Bayesian Approach to Cognitive Systems project (BACS - EC project
number FP6-IST-027140).

A. Contributions of this work

In this text, we intend to present an integrated account
of our work, which has been partially documented in
previous publications [7–13], together with unpublished
results. We will start in section II by presenting a
bioinspired perceptual solution with focus on Bayesian
visuoauditory integration. This solution serves as a short-
term spatial memory framework for active perception
and also sensory control of action, with no immediate
interest in object perception. We will try to explicitly
or implicitly address each of the challenges of sensor
fusion as described by Ernst and Bülthoff [14] using the
Bayesian Volumetric Map (BVM) framework for vision,
audition and vestibular sensing. It is our belief that
perceptual systems are unable to yield useful descriptions
of their environment without resorting to a temporal
series of sensory fusion processed on some kind of short-
term memory such as the BVM.

We mainly expect to contribute with a solution which:
• Deals inherently with perceptual uncertainty and

ambiguity.
• Deals with the geometry of sensor fusion in a

natural fashion.
• Allows for fast processing of perceptual inputs to

build a spatial representation that promotes imme-
diate action on the environment.

The Bayesian models for visuoauditory perception
which form the backbone of the framework are presented
next in section II. We propose to use proprioception (e.g.
vestibular sensing) as ancillary information to promote
visual and auditory sensing to satisfy the requirements
for integration.

To support our research work and to provide a test-
bed for some of the possible applications of the BVM, an
artificial multimodal perception system (IMPEP — In-

tegrated Multimodal Perception Experimental Platform)
has been constructed at the ISR/FCT-UC. The platform
consists of a stereovision, binaural and inertial measuring
unit (IMU) setup mounted on a motorised head, with
gaze control capabilities for image stabilisation and
perceptual attention purposes — see Fig. 1. It presents
the same sensory capabilities as a human head, thus
conforming to the biological conditions that originally
inspired our work. We believe IMPEP has great potential
for use in applications as diverse as active perception
in social robots or even robotic navigation. We present
a brief description of its implementation, its sensory
processing modules and system calibration in section III.

As an illustration of the particular application of
active perception, and also and more importantly to
test the performance of our solution, in section IV we
will present an algorithm that implements an active
exploration behaviour based on the entropy of the BVM
framework, together with results of using this algorithm
in real-time.

Finally, in section V conclusions will be drawn and re-
lated ongoing work will be mentioned, and in section VI
future work based on what is presented in this article will
be discussed.

B. Related work

Fusing computer vision, binaural sensing and vestibu-
lar sensing using a unified framework, to the authors’
knowledge, has never been addressed. Moreover, as far
as is known by the authors, the application of the well-
known probabilistic inference grid model [15] to an ego-
centric, log-spherical spatial configuration as a solution
to problems remotely similar to the ones presented in
this text is also unprecedented.

In our specific application domain, where a 3D met-
ric and egocentric representation is required, common
inference grid configurations which assume regularly
partitioned Euclidean space to build the cell lattice are
not appropriate:

1) Most sensors, vision and audition being notable
examples, are based on a process of energy pro-
jection onto transducers, ideally yielding a pencil
of projection lines that converge at the egocentric
reference origin; consequently, they are naturally
disposed to be directly modelled in polar or spher-
ical coordinates. The only example of the use of a
spherical configuration known to the authors was
presented by Zapata et al. [16].

2) Implementation-wise, regular partitioning in Eu-
clidean space, while still manageable in 2D, ren-
ders temporal performances impractical in 3D
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when fully updating a panoramic grid (i.e. per-
forming both prediction/estimation for all cells
on the grid) with satisfactory size and resolution
(typically grids with much more than a million
cells). There are, in fact, two solutions for this
problem: either non-regular partitioning of space
(e.g. octree compression), or regular partitioning
of log-distance space. Interestingly enough, the
latter also accounts for just-discriminable depth
thresholds found in human visual perception —
an example of an Euclidean solution following
a similar rationale was presented by Dankers,
Barnes, and Zelinsky [17].

An important part of recent work in active vision,
contrary to our solution, either use an explicit repre-
sentation for objects to implement active perception or
multisensory fusion (e.g. [18, 19]) or rely on object
detection/recognition to establish targets for active ob-
ject search (e.g. [20–22]). On the other hand, several
solutions for applications similar to ours (e.g. [23–25])
avoid explicit object representation by resorting to a
bottom-up saliency approach such as defined by Itti,
Koch, and Niebur [26]. The underlying rationale is that
postponing data association processing allows for the
implementation of fast automatic mechanisms of active
exploration that resemble what is believed to occur
within the human brain, as explained in the introductory
section of this paper.

Our solution implements active visuoauditory percep-
tion using an egocentric spatial representation, adding
to it vestibular sensing/proprioception so as to allow
for efficient sensor fusion given a rotational egomotion.
Moreover, the log-partitioning of the spatial represen-
tation intrinsically deals with just-discriminable depth
thresholds, while avoiding the use of complex error
dispersion models. Complementing the possibility of the
extension of our system to include sensory saliency-
fuelled behaviours [13], our solution differs from purely
saliency-based approaches in that it inherently imple-
ments an active exploration behaviour based on the
entropy of the occupancy grid (inspired in research work
such as [27]), so as to promote gaze shifts to regions of
high uncertainty. In summary, our framework elicits an
automatic behaviour of fixating interesting (i.e. salient)
and unexplored regions of space, without the need to
resort to active object search, as in [20–22].

II. BAYESIAN MODELS FOR MULTIMODAL

PERCEPTION

A. Background and definitions

Taking into account the goals stated in the introductory
section, the framework for spatial representation that

log

Figure 2. Egocentric, log-spherical configuration of the Bayesian
Volumetric Map.

will be presented in the rest of this section satisfies the
following criteria:

• It is egocentric and metric in nature.
• It is an inference grid, allowing for a probabilistic

representation of dynamical spatial occupation of
the environment. It therefore encompasses position-
ing, structure and motion of objects, avoiding any
need for any assumptions on the nature of those
objects, or in other words, for data association.

Given these requirements, we chose a log-spherical
coordinate system spatial configuration (see Fig. 2) for
the occupancy grid that we have developed and will
refer to as BVM, thus promoting an egocentric trait in
agreement with biological perception.

The BVM is primarily defined by its range of azimuth
and elevation angles, and by its maximum reach in dis-
tance ρMax, which in turn determines its log-distance base
through b = a

loga(ρMax−ρMin)

N , ∀a ∈ R, where ρMin defines
the egocentric gap, for a given number of partitions N ,
chosen according to application requirements. The BVM
space is therefore effectively defined by

Y ≡ ] logb ρMin; logb ρMax]× ]θMin; θMax]× ]φMin;φMax] (1)

In practice, the BVM is parametrised so as to cover
the full angular range for azimuth and elevation. This
configuration virtually delimits a horopter for sensor
fusion.

Each BVM cell is defined by two limiting log-
distances, logb ρmin and logb ρmax, two limiting azimuth
angles, θmin and θmax, and two limiting elevation angles,
φmin and φmax, through:

Y ⊃ C ≡ ] logb ρmin; logb ρmax]× ]θmin; θmax]× ]φmin;φmax] (2)



4

Pr
og

ra
m



D
es

cr
ip

tio
n



Sp
ec

ifi
ca

tio
n



Relevant variables:

C ∈ Y : indexes a cell on the BVM;

AC : identifier of the antecedents of cell C (stored as with C);

Z1, · · · , ZS ∈ {“No Detection”} ∪ Z: independent measurements taken by S sensors;

OC , O
−1
C : binary values describing the occupancy of cell C,

for current and preceding instants, respectively;

VC : velocity of cell C,

discretised into N + 1 possible cases ∈ V ≡ {v0, · · · , vN}.

Decomposition:

P (C AC OC O
−1
C VC Z1 · · ·ZS) =

P (AC)P (VC |AC)P (C|VC AC)P (O
−1
C |AC)P (OC |O

−1
C )

S∏
i=1

P (Zi|VC OC C)

Parametric forms:

P (AC): uniform;

P (VC |AC): histogram;

P (C|VC AC): Dirac, 1 iff clogb ρ
= alogb ρ

+ vlogb ρ
δt, cθ = aθ + vθδt and cφ = aφ + vφδt

(constant velocity assumption);

P (O
−1
C |AC): probability of preceding state of occupancy given set of antecedents;

P (OC |O
−1
C ): defined through transition matrix T =

[ 1−ε ε
ε 1−ε

]
,

where ε represents the probability of non-constant velocity;

P (Zi|VC OC C): direct measurement model for each sensor i, given by respective sub-BP.

Identification:

None.

Questions:

P (Oc Vc|z1 · · · zS c)→
{
P (Oc|z1 · · · zS c)
P (Vc|z1 · · · zS c)

Figure 3. Bayesian Program for the estimation of Bayesian Volumetric Map current cell state (on the left), and corresponding Bayesian
filter diagram (on the right – it considers only a single measurement Z for simpler reading, with no loss of generality). The respective
filtering equation is given by (3) and (4), using two different formulations.

Estimation (Joint Distribution)︷ ︸︸ ︷
P (VC OC Z1 · · ·ZS C) =

Observation︷ ︸︸ ︷
S∏

i=1

P (Zi|VC OC C)

Prediction︷ ︸︸ ︷∑
AC ,O−1

C

P (AC)P (VC |AC)P (C|VC AC)P (O−1
C |AC)P (OC |O−1

C ) (3)

Estimation︷ ︸︸ ︷
P (VC OC |Z1 · · ·ZS C) =

Observation︷ ︸︸ ︷
S∏

i=1

P (Zi|VC OC C)

Prediction︷ ︸︸ ︷∑
AC ,O−1

C

P (AC)P (VC |AC)P (C|VC AC)P (O−1
C |AC)P (OC |O−1

C )

∑
AC ,O−1

C ,OC ,VC

P (AC)P (VC |AC)P (C|VC AC)P (O−1
C |AC)P (OC |O−1

C )

S∏
i=1

P (Zi|VC OC C)

︸ ︷︷ ︸
Normalisation

(4)

where constant values for log-distance base b, and an-
gular ranges ∆θ = θmax − θmin and ∆φ = φmax − φmin,
chosen according to application resolution requirements,
ensure BVM grid regularity. Finally, each BVM cell is
formally indexed by the coordinates of its far corner,
defined as C = (logb ρmax, θmax, φmax).

The main hypothesis of inference grids is that the state
of each cell is considered independent of the states of the
remaining cells on the grid. This assumption effectively
breaks down the complexity of state estimation. As a
matter of fact, complete estimation of the state of the grid

resumes to applying N times the cell state estimation
process, N being the total number of cells that compose
the grid.

To compute the probability distributions for the current
states of each cell, the Bayesian Program (BP) formal-
ism, consolidated by Bessière et al. [28], will be used
throughout this text.
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B. Multimodal Sensor Fusion Using Log-Spherical
Bayesian Volumetric Maps

1) Using Bayesian filtering for visuoauditory integra-
tion: The independency hypothesis postulated earlier
allows for the independent processing of each cell, and
hence the Bayesian Program should be able to perform
the evaluation of the state of a cell knowing an observa-
tion of a particular sensor.

The Bayesian Program presented in Fig. 3 is based on
the solution presented by Tay et al. [29], the Bayesian
Occupancy Filter (BOF), adapted so as to conform to the
BVM egocentric, three-dimensional and log-spherical
nature. In the spirit of Bayesian programming, we start
by stating and defining the relevant variables:

• C ≡ (logb ρmax, θmax, φmax) ∈ Y is random variable
denoting a log-spherical index which simultane-
ously localises and identifies the reference BVM
cell, as has been defined in section II-A. It is used as
a subscript of most of the random variables defined
in this text, so as to explicitly state their relation to
cells in the grid.

• AC ≡ (logb ρmax, θmax, φmax) ∈ AC ⊂ Y is a
random variable that denotes the hypothetical an-
tecedent cell of reference cell C. The set of allowed
antecedents AC of reference cell C is composed
by the N + 1 cells on the BVM grid from which
an object might have moved from, within the time
interval going from the previous inference step t−1
to the present time t. The number of possible
antecedents of any cell is arbitrary; in the case
of the present work, we considered N + 1 = 7
antecedents: two immediate neighbours in distance,
two immediate neighbours in azimuth, and two
immediate neighbours in elevation, and cell C itself
(which would represent the hypothesis of an object
occupying the reference cell remaining still).

• OC is a binary variable denoting the occupancy
[OC = 1] or emptiness [OC = 0] of cell C;
O−1C denotes the occupancy state of the effective
antecedent of C, AC , in the previous inference step,
which will propagate to the reference cell as the
object occupying a specific AC is moved to C.

• VC denotes the dynamics of the occupancy of cell
C as a vector signalling local motion to this cell
from its antecedents, discretised into N+1 possible
cases for velocities ∈ V ≡ {v0, · · · , vN}, with v0
signalling that the most probable antecedent of AC
is C, i.e. no motion between two consecutive time
instants.

• Z1, · · · , ZS ∈ {“No Detection”} ∪ Z are indepen-
dent measurements taken by S sensors.

The estimation of the joint state of occupancy and
velocity of a cell is answered through Bayesian infer-
ence on the decomposition equation given in Fig. 3.
This inference effectively leads to the Bayesian filtering
formulation as used in the BOF grids.

Using the decomposition equation given in Fig. 3, we
also have a more familiar formulation of the Bayesian
filter of (3), given that

∏S
i=1 P (Zi|VC OC C) does not

depend either on AC or O−1C . Applying marginalisation
and Bayes rule, we obtain the answer to the Bayesian
Program question, the global filtering equation (4).

The process of solving the global filtering equation can
actually be separated into three stages, in practice. The
first stage consists on the prediction of the probabilities
of each occupancy and velocity state for cell [C = c],
∀k ∈ N0, 0 ≤ k ≤ N ,

αc([OC = 1], [VC = vk]) =∑
AC ,O

−1
C

P (AC)P (vk|AC)P (C|vk AC)P (O−1
C |AC)P (oc|O−1

C )

(5a)

αc([OC = 0], [VC = vk]) =∑
AC ,O

−1
C

P (AC)P (vk|AC)P (C|vk AC)P (O−1
C |AC)P (¬oc|O−1

C )

(5b)

with oc and ¬oc used as shorthand notations for [OC = 1]
and [OC = 0], respectively.

The prediction step thus consists on performing the
computations represented by (5) for each cell, essen-
tially by taking into account the velocity probability
P ([VC = vk]|AC) and the occupation probability of
the set of antecedent cells represented by P (O−1C |AC),
therefore propagating occupancy states as a function of
the velocities of each cell.

The second stage of the BVM Bayesian filter es-
timation process is multiplying the results given by
the previous step with the observation from the sensor
model, yielding, ∀k ∈ N0, 0 ≤ k ≤ N ,

βc([OC = 1], [VC = vk]) =

S∏
i=1

(
P (Zi|vk [OC = 1]C)

)
αc([OC = 1], vk)

(6a)

βc([OC = 0], [VC = vk]) =

S∏
i=1

(
P (Zi|vk [OC = 0]C)

)
αc([OC = 0], vk)

(6b)

Performing these computations for each cell [C = c]
gives a non-normalised estimate for velocity and oc-
cupancy for each cell. The marginalisation over oc-
cupancy values gives the likelihood of each velocity,
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∀k ∈ N0, 0 ≤ k ≤ N ,

lc(vk) = βc([OC = 1], [VC = vk]) + βc([OC = 0], [VC = vk]) (7)

The final normalised estimate for the joint state of
occupancy and velocity for cell [C = c] is given by

P (OC [VC = vk]|Z1 · · ·ZS C) = βc(OC ,[VC=vk])∑
VC

lc(VC)
(8)

The related remaining questions of the BP for the
BVM cell states, the estimation of the probability of
occupancy and the estimation of the probability of a
given velocity, are given through marginalisation of the
free variable by

P (OC |Z1 · · ·ZS C) =
∑
VC

P (VC OC |Z1 · · ·ZS C) (9a)

P (VC |Z1 · · ·ZS C) =
∑
OC

P (VC OC |Z1 · · ·ZS C) (9b)

In summary, prediction propagates cell occupancy
probabilities for each velocity and cell in the grid —
P (OC VC |C). During estimation, P (OC VC |C) is up-
dated by taking into account the observations yielded
by the sensors

∏S
i=1 P (Zi|VC OC C) to obtain the final

state estimate P (OC VC |Z1 · · ·ZS C). The result from
the Bayesian filter estimation will then be used for the
prediction step in the next iteration.

2) Using the BVM for sensory combination of vision
and audition with vestibular sensing: Consider the sim-
plest case, where the sensors may only rotate around
the egocentric axis and the whole perceptual system is
not allowed to perform any translation. In this case,
the vestibular sensor models, described ahead, will yield
measurements of angular velocity and position. These
can then be easily used to manipulate the BVM, which
is, by definition, in spherical coordinates.

Therefore, to compensate for this kind of egomotion,
instead of rotating the whole map, the most effective
solution is to perform the equivalent index shift. This
process is described by redefining C: C ∈ Y indexes
a cell in the BVM by its far corner, defined as C =
(logb ρmax, θmax + θinertial, φmax + φinertial).

This process relies on the uncontroversial assumption
that inertial precision on angular measurements is greater
than the chosen resolution parameters for the BVM.

3) Dealing with sensory synchronisation: The BVM
model presented earlier assumes that the state of a cell
C, given by (OC , VC), and the observation by any sensor
i, given by Zi, correspond to the same time instant t.

In accordance with the wide multisensory integration
temporal window theory for human perception reviewed

{ Cl }

X

Y

Z{ Cr }

b

{E }
xr

xl

f

(i, k)

Figure 4. Cyclopean geometry for stereovision — b stands for the
baseline and f is the focal length. The use of cyclopean geometry
(pictured on the left for an assumed frontoparallel configuration)
allows direct use of the egocentric reference frame for depth maps
taken from the disparity maps yielded by the stereovision system (of
which an example is shown on the right).

in [30], the BVM may be used safely to integrate
auditory and vision measurements as soon they become
available; local motion estimation using the BVM en-
forces a periodical state update with constant rate to
ensure temporal consistency. Consequently, the modality
of highest measurement rate is forced to set the update
pace (i.e. by means of measurement buffers) in order
to satisfy the constant update requirement. The velocity
estimates for the local motion states of the BVM are thus
a function of this update rate.

Promotion through vestibular sensing is also perfectly
feasible, since inertial readings are available at a much
faster rate than visuoauditory perception.

C. Bayesian sensor models

Next, the sensor models that are used as observations
for the Bayesian filter of the BVM will be presented.
C as a random variable and P (C), although redundant
in this context, will be used in the following models to
maintain consistency with the Bayesian filter formulation
and also with cited work.

1) Vision sensor model: We have decided to model
these sensors in terms of their contribution to the es-
timation of cell occupancy in a similar fashion to the
solution proposed by Yguel, Aycard, and Laugier [31].
This solution incorporates a complete formal definition
of the physical phenomenon of occlusion (i.e. in the
case of visual occlusion, light reflecting from surfaces
occluded by opaque objects do not reach the vision
sensor’s photoreceptors).

Our motivations suggest a tentative data structure
analogous to neuronal population activity patterns to
represent uncertainty in the form of probability distri-
butions [32]. Thus, a spatially organised 2D grid may
have each cell (corresponding to a virtual photoreceptor
in the cyclopean view — see Fig. 4) associated to a
“population code” extending to additional dimensions,
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yielding a set of probability values encoding a N -
dimensional probability distribution function or pdf.

Given the first occupied cell [C = k] on the line-of-
sight, the likelihood functions yielded by the population
code data structure can be finally formalised as

Pk(Z) = Lk(Z, µρ(k), σρ(k)),

{
µρ(k) = ρ̂(δ̂)

σρ(k) = 1
λ
σmin

, (10)

a discrete probability distribution with mean µρ and
standard deviation σρ, both a function of the cell index
k, which directly relates to the log-distance from the
observer ρ. Values δ̂ and λ represent the disparity reading
and its correspondent confidence rating, respectively;
σmin and the expression for ρ̂(δ̂) are taken from cali-
bration, the former as the estimate of the smallest error
in depth yielded by the stereovision system and the
latter from the intrinsic camera geometry (see camera
calibration description later in this text). The likelihood
function constitutes, in fact, the elementary sensor model
as defined above for each vision sensor, and formally
represents soft evidence, or “Jeffrey’s evidence” in ref-
erence to Jeffrey’s rule [33] concerning the relation
between vision sensor measurements denoted generically
by Z and the corresponding readings δ̂ and λ, described
by the calibrated expected value ρ̂(δ̂) and standard
deviation σρ(λ) for each sensor.

Equation (10) only partially defines the resulting prob-
ability distribution by specifying the random variable
over which it is defined and an expected value plus a
standard deviation/variance — a full definition requires
the choice of a type of distribution that best fits the noisy
pdfs taken from the population code data structure. The
traditional choice, mainly due to the central limit the-
orem, favours normal distributions N (Z, µρ(k), σρ(k)).
Considering what happens in the mammalian brain, this
choice appears to be naturally justified — biological
population codes often yield bell-shaped distributions
around a preferred reading [34, 35]. For more details
on our adaptation of such a distribution, please refer to
[7].

To correctly formalise the Bayesian inference process,
a formal auxiliary definition with respective properties is
needed — for details, please refer to [7]. The Bayesian
Program that summarises this model is presented on
Fig. 5.

2) Audition sensor model: Current trends in robotic
implementations of sound-source localisation models
rely on microphone arrays with more than a couple of
sensors, either by resorting to steerable beamformers,
high-resolution spectral estimation, time difference of
arrival (TDOA) information, or fusion methods (i.e, the
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Relevant variables:

C: cell identifier,

stored as a 3-tuple of cell coordinates (logb ρC , θ, φ);

Z ∈ {“No Detection”} ∪ ZVisDepth : sensor depth measurement

along line-of-sight (θ, φ);

OC : binary value describing the occupancy of cell C;

GC ∈ GC ≡ O
N−1 : state of all cells in the line-of-sight except for C.

Decomposition:

P (Z C OC GC) =

P (C)P (OC |C) · P (GC |OC C)P (Z|GC OC C)︸ ︷︷ ︸
GivesP (Z|OC C) through

∑
GC

.

Parametric forms:

P (C): uniform;

P (OC |C): uniform or prior estimate;

P (GC |OC C): unknown, apart from dependency on number of occupied

cells;

P (Z|GC OC C): probability of a measurement by sensor,

knowing first occupied cell is [C = k] ≡ elementary sensor model Pk(Z).

Identification:

Calibration for Pk(Z)⇒ P (Z|GC OC C).

Question:

P (Z|oc c)

Figure 5. Bayesian Program for vision sensor model of occupancy.

integration of estimates from several distributed arrays).
Generically, it is found that increasing the number of
microphones also increases estimation accuracy. In fact,
there is theoretical (see the Cramer-Rao bound analyses
presented by Yang and Scheuing [36] for TDOA and
Chen et al. [37] for beamforming) and practical (see
Loesch et al. [38]) evidence supporting this notion. Con-
versely, it is also generally accepted that the computa-
tional burden of sound-source localisation increases with
the number of sensors involved; in fact, this provides the
support for the use of fusion methods, and also for one
of the reasons speculated for why humans, like many
animals, have only two ears [39].

The direct audition sensor model used in this work,
first presented in [8, 10], relies on binaural cues alone
to fully localise a sound-source in space. The reason for
its use resides in our biological inspiration mentioned in
section I-A and our desire to use the BVM framework in
future experiments where comparisons to human sensory
systems are to be made in “fair terms” (see future work
referred to in [13]); however, the inclusion within this
framework of any alternative model supporting the use of
more microphones to increase estimation accuracy would
be perfectly acceptable. The model is formulated as the
first question of the Bayesian Program in Fig. 6, where
all relevant variables and distributions and the decompo-
sition of the corresponding joint distribution, according
to Bayes’ rule and dependency assumptions, are defined.
The use of the auxiliary binary random variable SC ,
which signals the presence or absence of a sound-source
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Relevant variables:

C ≡ (logb ρmax, θmax, φmax) ∈ C: cell identifier;

Z ∈ ZBinauralMeasurements: sensor measurement vectors

[τ,∆L(f
1
c ) · · ·∆L(f

m
c )];

τ ≡ ITD and ∆L(f
k
c ) ≡ ILD; fkc denotes each k ∈ N, 1 ≤ k ≤ m

frequency band in m frequency channels).

SC : binary value describing the presence of a sound-source in cell C,

[SC = 1] if a sound-source is present at C, [SC = 0] otherwise;

OC : binary value describing the occupancy of cell C,

[OC = 1] if cell C is occupied by an object, [OC = 0] otherwise;

Decomposition:

P (Z C SC OC) =

P (C)P (OC |C)·

P (SC |OC C)P (τ |SC OC θmax)
m∏
k=1

P (∆L(f
k
c )|τ SC OC C)

︸ ︷︷ ︸
GivesP (Z|OC C) through

∑
SC

Parametric forms:

P (C): uniform;

P (OC |C): uniform or prior estimate;

P (SC |OC C) ≡ P (SC |OC): probability table (see table below);

P (Z|OC C): probability of a measurement [τ,∆L(f
1
c ) · · ·∆L(f

m
c )];

P (τ |SC OC θmax) ≡ P (τ |SC θmax): normal distribution, yielding the

probability of a measurement τ by sensor for cell C, given its azimuth θmax

and presence or absence of a sound-source SC in that cell;

P (∆L(f
k
c )|τ SC OC C) ≡ P (∆L(f

k
c )|τ SC C): normal distribution,

yielding the probability of a measurement ∆L(f
k
c ) by sensor for cell C,

given the presence or absence of a sound-source SC in that cell.

Identification:

Calibration for P (τ |SC OC θmax).

Calibration for P (∆L(f
k
c )|τ SC OC C) ≈ P (∆L(f

k
c )|SC OC C).

Questions:

P (Z|oc c)

max, arg max
C

P ([SC = 1]|z C)

P (SC |OC) [OC = 0] [OC = 1]

[SC = 0] 1 .5
[SC = 1] 0 .5∑
P (sc|OC) 1 1

Figure 6. Bayesian Program for binaural sensor model. At
the bottom is presented the probability table which was used for
P (SC |OC C) ≡ P (SC |OC), empirically chosen so as to reflect the
indisputable fact that there is no sound-source in a cell that is not
occupied (left column), and the safe assumption that when a cell is
known to be occupied there is little way of telling if it is in this
condition due to a sound-source or not (right column).

in cell C, and the corresponding family of probability
distributions P (SC |OC C) ≡ P (SC |OC) promotes the
assignment of probabilities of occupancy close to 1 for
cells for which the binaural cue readings seem to indicate
a presence of a sound-source and close to .5 otherwise
(i.e. the absence of a detected sound-source in a cell
doesn’t mean that the cell is empty). The second question
corresponds to the estimation of the position of cells
most probably occupied by sound-sources, through the
inversion of the direct model through Bayesian inference
on the joint distribution decomposition equation.

The former is used as a sub-BP for the BVM multi-
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Relevant variables:

ξ
t

= (Θ
t
,Ω

t
,A

t
): state variables,

S
t

= (Φ
t
,Υ

t
): sensor variables.

Decomposition:

P (ξ
t
ξ
t−δt

S
t
...S

0
) =

P (S
t|ξt)

.P (Ω
t
).P (A

t
).P (Θ

t|Θt−δtΩt)

.P (ξ
t−δt

S
t−δt

...S
0
)

Parametric forms:

P (S
t|ξt) = P (Φ

t|Ωt).P (Υ
t|F t).P (F

t|ΘtAt)

: sensor model, Gaussians and dirac;

P (Ω
t
), P (A

t
): a priori for state, Gaussians;

P (Θ
t|Θt−δtΩt): state dynamic model, diracs;

P (ξ
t−δt

S
t−δt

...S
0
)

: previous iteration, distribution computed at last time step.

Identification:

Parameters of the Gaussians: σΦ , σΥ , σA and σΩ .

Question:

P (ξ
t|St ...S0

)

Figure 7. Bayesian Program for processing of inertial data.

modal sensor fusion framework described earlier, while
the answer to the latter yields a gaze direction of interest
in terms of auditory features which can be used by
a multimodal attention system, through a maximum a
posteriori (MAP) method.

3) Vestibular sensor model: To process the inertial
data, we follow the Bayesian model of the human
vestibular system proposed by Laurens and Droulez
[40, 41], adapted here to the use of inertial sensors. The
aim is to provide an estimate for the current angular
position and angular velocity of the system, that mimics
the human vestibular perception.

At time t the Bayesian program of Fig. 7 allows the
inference of the probability distribution of the current
state ξt = (Θt,Ωt,At) — where the orientation of the
system in space is encoded using a rotation matrix Θ, the
instantaneous angular velocity is defined as the vector Ω,
and linear acceleration by A — given all the previous
sensory inputs until the present instant, represented by
S0→t = (Φ0→t,Υ0→t) — where Φ denotes Ω with
added Gaussian noise measured by the gyros, and Υ
denotes the gravito-inertial acceleration F with added
Gaussian noise measured by the accelerometers — and
the initial distribution ξ0. Details regarding this model,
the respective implementation issues and preliminary
results have been presented in [11, 12].

III. THE INTEGRATED MULTIMODAL PERCEPTION

EXPERIMENTAL PLATFORM

A. Platform description

To support our research work, we have developed an
artificial multimodal perception system, of which an im-
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Perceptual System

Motor

Commands

(time t+1)

Hardware

Stereo Images

Stereo Audio

Angular Velocity

Lin. Acceleration

(time t)

Robotic Platform
(IMPEP)

Figure 8. Implementation diagram for the BVM-IMPEP multimodal
perception framework.

plementation diagram is presented on Fig. 8, consisting
of a stereovision, binaural and inertial measuring unit
(IMU) setup mounted on a motorised head, with gaze
control capabilities for image stabilisation and perceptual
attention purposes.

The stereovision system is implemented using a pair
of Guppy IEEE 1394 digital cameras from Allied Vi-
sion Technologies (http://www.alliedvisiontec.com), the
binaural setup using two AKG Acoustics C417 linear mi-
crophones (http://www.akg.com/) and an FA-66 Firewire
Audio Capture interface from Edirol (http://www.edirol.
com/), and the miniature inertial sensor, Xsens MTi
(http://www.xsens.com/), provides digital output of 3D
acceleration, 3D rate of turn (rate gyro) and 3D earth-
magnetic field data for the IMU.

Full implementation details can be found in [12].

B. Sensory processing

In the following text, the foundations of the sensory
processing systems depicted on Fig. 9, which feed the
Bayesian sensor models that have been defined in previ-
ous text, will be presented.

1) Vision system: The stereovision algorithm used
yields an estimated disparity map δ̂(k, i) and a corre-
sponding confidence map λ(k, i), and is thus easily con-
verted from its deterministic nature into a probabilistic
implementation simulating the population code-type data
structure, as defined earlier.

2) Auditory system: The Bayesian binaural system
presented herewith is composed of three distinct and
consecutive modules (Fig. 9): the monaural cochlear
unit, which processes the pair of monaural signals
{x1, x2} coming from the binaural audio transducer
system by simulating the human cochlea, so as to
achieve a tonotopic representation (i.e. a frequency band
decomposition) of the left and right audio streams;

Vision Module

Bayesian Vision

Sensor Model

Stereovision

Unit

Auditory Module

Monaural
Cochlear (AIM)
Processor

Binaural
Processor

Bayesian
Audition Sensor

Model

Figure 9. The IMPEP Bayesian sensor systems.

the binaural unit, which correlates these signals and
consequently estimates the binaural cues and segments
each sound-source; and, finally, the Bayesian 3D sound-
source localisation unit, which applies a Bayesian sensor
model so as to perform localisation of sound-sources in
3D space. We have adapted the realtime software by the
Speech and Hearing Group at the University of Shefield
[42] to implement the solution by Faller and Merimaa
[43] as the binaural processor — for more details, please
refer to [8, 10].

3) Inertial sensing system: The calibrated inertial sen-
sors in the IMU provide direct egocentric measurements
of body angular velocity and linear acceleration. The
gyros and the accelerometers provide noise-corrupted
measurements of angular velocity Ωt and the gravito-
inertial acceleration F as input for the sensor model of
Fig. 7.

C. System calibration

Camera calibration was performed using the Camera
Calibration Toolbox by Bouguet [44], therefore allowing
the application of the reprojection equation:

1 0 0 0
0 1 0 0
0 0 0 f
0 0 1

b 0



ul − δ̂

2
vl
δ̂
1

 =


WX
WY
WZ
W

 (11)

where ul and vl represent the horizontal and vertical
coordinates of a point on the left camera, respectively,
and δ̂ is the disparity estimate for that point, all of which
in pixels, f and b are the estimated focal length and
baseline, respectively, both of which in metric distance,
and X , Y and Z are 3D point coordinates respective to
the egocentric/cyclopean referential system {E}.

Using reprojection error measurements given by the
calibration procedure, parameter σmin as defined earlier

http://www.alliedvisiontec.com
http://www.akg.com/
http://www.edirol.com/
http://www.edirol.com/
http://www.xsens.com/
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frontier cell

Next gaze direction

Previous gaze direction

Figure 10. Illustration of the entropy-based active exploration
process using the Bayesian Volumetric Map. Please refer to [9, 12]
for more details.

is taken as being equal to the maximum error exhibited
by the stereovision system.

Calibration of the binaural system involves the
characterisation of the families of normal distribu-
tions P (τ |SC OC θmax) and P (∆L(fkc )|τ SC OC C) ≈
P (∆L(fkc )|SC OC C) of the binaural sensor model de-
fined earlier through descriptive statistical learning of
their central tendency and statistical variability. This
is done following a proceeding similar to commonly
used head-related transfer function (HRTF) calibration
processes, and was described in detail in [10].

Visuoinertial calibration was performed using the In-
erVis toolbox [45], that adds on to the Camera Cali-
bration Toolbox by Bouguet [44]. The toolbox estimates
the rotation quaternion between the Inertial Measurement
Unit and a chosen camera, requiring a set of static
observations of a vertical chequered visual calibration
target and of sensed gravity [46].

IV. ACTIVE EXPLORATION USING BAYESIAN

MODELS FOR MULTIMODAL PERCEPTION

A. Active exploration using the Bayesian Volumetric
Map

Information in the BVM is stored as the probabil-
ity of each cell being in a certain state, defined as
P (VcOc|z c). The state of each cell thus belongs to the
state-space O × V . The joint entropy of the random
variables VC and OC that compose the state of each
BVM cell [C = c] is defined as follows:

H(c) ≡ H(Vc, Oc) = −
∑

oc∈O
vc∈V

P (vc oc|z c) logP (vc oc|z c) (12)

The joint entropy value H(c) is a sample of a continu-
ous joint entropy field H : Y → R, taken at log-spherical

positions [C = c] ∈ Y . Let cα− denote the contiguous
cell to C along the negative direction of the generic log-
spherical axis α, and consider the edge of cells to be of
unit length in log-spherical space, without any loss of
generality. A reasonable first order approximation to the
joint entropy gradient at [C = c] would be

−→
∇H(c) ≈ [H(c)−H(cρ−), H(c)−H(cθ−), H(c)−H(cφ−)]T (13)

with magnitude ‖
−→
∇H(c)‖.

A great advantage of the BVM over Cartesian im-
plementations of occupancy maps is the fact that the
log-spherical configuration avoids the need for time-
consuming ray-casting techniques when computing a
gaze direction for active exploration, since the log-
spherical space is already defined based on directions
(θ, φ). In case there is more than one global joint
entropy gradient maximum, the cell corresponding to the
direction closest to the current heading is chosen, so as to
deal with equiprobability, while simultaneously ensuring
minimum gaze shift rotation effort (see Fig. 10). The
full description of the active exploration heuristics was
presented in [9, 12].

B. Results

The realtime implementation of all the processes of
the framework was subjected to performance testing for
each individual module — please refer to [12] for further
details. To avoid Bayesian update deadlocks due to 0 or
1-probabilities, a simple error model analogous to what
is proposed in [31] was implemented, both for occupancy
and for velocities. Addtionally, log-probabilities are used
to increase both the execution performance and the
numerical stability of the system.

The full active exploration system runs at about 6 to
10 Hz. This is ensured by forcing the main BVM thread
to pause for each time-step when no visual measurement
is available (i.e. during 40 ms for N = 10,∆φ =
2o). This guarantees that BVM time-steps are regularly
spaced, which is a very important requirement for correct
implementation of prediction/dynamics, and also ensures
that processing and memory resources are freed and
unlocked regularly.

In Fig. 11 a qualitative comparison is made between
the outcome of using each sensory modality individually,
and also with the result of multimodal fusion, using a
single speaker scenario, showcasing the advantages of
visuoauditory integration in the effective use of both
the spatial precision of visual sensing, and the temporal
precision and panoramic capabilities of auditory sensing.
The BVM renderings were produced from screenshots
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(a) Left camera snapshot of a male speaker, at −41o azimuth relatively to the Z axis, which defines the frontal heading respective to the
IMPEP “neck”.

(b) BVM results for binaural processing only. Interpretation, from left to right: 1) sound coming from speaker triggers
an estimate for occupancy from the binaural sensor model, and a consecutive exploratory gaze shift at approximately
1.6 seconds; 2) At approximately 10 seconds, noise coming from the background introduce a false positive, that is never
again removed from the map (i.e. no sound does not mean no object, only no audible sound-source).

(c) BVM results for stereovision processing only. Notice
the clean cut-out of speaker silhouette, as comparing to
results in (b). On the other hand, active exploration using
vision sensing alone took approximately 15 seconds longer
to start scanning the speaker’s position in space, while using
binaural processing the speaker was fixated a couple of
seconds into the experiment.

(d) BVM results for visuoauditory fusion. In this case, the
advantages of both binaural (immediacy from panoramic
scope) and stereovision (greater spatial resolution and the
ability to clean empty regions in space) influence the final
outcome of this particular instantiation of the BVM, taken
at 1.5 seconds.

Figure 11. Online results for the real-time prototype for multimodal perception of 3D structure and motion using the BVM — three
reenactments (binaural sensing only, stereovision sensing only and visuoauditory sensing) of a single speaker scenario. A scene consisting of
a male speaker talking in a cluttered lab is observed by the IMPEP active perception system and processed online by the BVM Bayesian filter,
using the active exploration heuristics described in the main text, in order to scan the surrounding environment. The heading arrow together
with an oriented 3D sketch of the IMPEP perception system depicted in each map denote the current gaze orientation. All results depict
frontal views, with Z pointing outward. The parameters for the BVM are as follows: N = 10, ρMin = 1000 mm and ρMax = 2500 mm,
θ ∈ [−180o, 180o], with ∆θ = 1o, and φ ∈ [−90o, 90o], with ∆φ = 2o, corresponding to 10 × 360 × 90 = 324, 000 cells, approximately
delimiting the so-called “personal space” (the zone immediately surrounding the observer’s head, generally within arm’s reach and slightly
beyond, within 2 m range [6]).
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Figure 12. Temporal evolution of average information gain (i.e. average Kullback-Liebler divergence for the full set of cells which were
updated, either due to observations or propagation from prediction) and corresponding exploration span for the auditory-only, visual-only
and visuoauditory versions of the single speaker scenario (see Fig. 11), for a 30 second period since the start of each experiment.

of an online OpenGL-based viewer running throughout
the experiments. Fig. 12 presents a study based on
information gain and exploration span, yielding a quan-
titative comparison of these advantages and capabilities,
and demonstrating the superior results of visuoauditory
fusion as compared to using each sensory modality
separately. In [12], results were presented concerning the
effectiveness of active exploration when having to deal
with the ambiguity and uncertainty caused by multiple
sensory targets and complex noise in a two-speaker
scenario scenario. In order to provide a better view of
the BVM configuration, the supplemental MPEG file
presents a higher resolution rendering of a reenactment
of this scenario, processed offline from a saved instanti-
ation of the BVM occupancy grid.

The advantages of the log-spherical configuration were
made apparent in these experiments, when comparing
to other solutions in the literature: (a) an efficiency
advantage: as mentioned in the introductory section,
fewer cells are used to represent the environment —
for example, to achieve the resolution equivalent to
approximately the distance obtained half-way through
the log-scale using a regular Euclidean partition for
the examples in Figs. 11 and the supplemental video,
i.e. 40 mm-side cells and removing the egocentric gap,

around 1, 937, 500 cells would be needed, while, using
a similar rationale, around 1, 215, 000 cells would be
needed for a solution such as the one presented by
[17], roughly constituting at least a 3-fold reduction in
total cell count; (b) a robustness advantage: the fact
that sensor readings are directly referred to in spherical
coordinates and consequently no ray-tracing is needed
leads to inherent antialiasing, therefore avoiding the
Moiré effects which are present in other grid-based
solutions in the literature, as is reported by Yguel et al.
[31].

Moreover, the benefits of using an egocentric spherical
configuration have also been made clear: sensory fusion
is seamlessly performed, avoiding the consequences of
transformations between referentials and respective com-
plex registration and integration processes proposed in
related work, such as [20–22].

V. CONCLUSIONS

In this text we introduced Bayesian models for vi-
suoauditory perception and inertial sensing emulating
vestibular perception which form the basis of the prob-
abilistic framework for multimodal sensor fusion — the
Bayesian Volumetric Map. These models build upon a
common spatial configuration that is naturally fitting for
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the integration of readings from multiple sensors. We
also presented the robotic platform that supports the
use of these computational models for implementing an
entropy-based exploratory behaviour for multimodal ac-
tive perception. In the future, the computational models
described in this text will allow the construction of a
simultaneously flexible and powerful robotic implemen-
tation of multisensory active perception to be used in
real-world applications.

Regarding its future use in applications such as
human-machine interaction or mobile robot navigation,
the following conclusions may be drawn:

• The results presented in the previous section show
that active exploration algorithm successfully drives
the IMPEP-BVM framework to explore areas of the
environment mapped with high uncertainty in real-
time, with an intelligent heuristic that minimises the
effects of local minima by attending to the closest
regions of high entropy first.

• Moreover, since the human saccade-generation sys-
tem promotes fixation periods (i.e. time intervals
between gaze shifts) of a few hundred milliseconds
on average [47, 48], the overall rates of 6 to 10 Hz
achieved with our CUDA implementation, in our
opinion, back up the claim that our system does, in
fact, achieve satisfactory real-time performance.

• Effective use of visual spatial accuracy and audi-
tory panoramic capabilities and temporal accuracy
by our system constitutes a powerful solution for
attention allocation in realistic settings, even in the
presence of ambiguity and uncertainty caused by
multiple sensory targets and complex noise.

• Although not explicitly providing for object rep-
resentation, many of the scene properties that are
already represented by the Bayesian filter allow
for clustering and tracking of neighbouring cells
sharing similar states, which in turn provides a
fast processing prior/cue generator for an additional
object detection and recognition module. An active
object search could then be implemented, as in
related work such as [20–22].

The BVM and its egocentric log-spherical configu-
ration carry with it, however, in its current state, a few
important limitations. In decreasing order of importance,
these would be the following:

1) The non-regular tesselation of space might intro-
duce perceptual distortions due to motion-based
prediction when a moving object becomes oc-
cluded: a big object moving towards the observer
will appear to shrink or, conversely, a small object
moving away from the observer will appear to

inflate. These perceptual illusions will of course
disappear as soon as the object returns to the
observer’s line-of-sight.

2) If an object happens to get outside of the robotic
observer’s field-of-view, either due to a gaze shift
or to object motion, the effect of the BVM repre-
senting a persistent memory might result in “ghost
occupancies” and consequent cluttering of the spa-
tial map. This did not visibly happen during the
experiments described in section IV-B; however,
it is a definite concern, and will be addressed in
future work (see section VI).

3) If this system is to be used by an autonomous
mobile robot to perform allocentric mapping, then
some care must be taken when dealing with
the non-trivial integration of reconstructions taken
from different points of view. This is, however,
beyond the scope of our current research.

We are currently developing a complex artificial active
perception system that follows human-like bottom-up
driven behaviours using vision, audition and vestibular
sensing, building upon the work presented in this text.
More specifically, we have devised a hierarchical modu-
lar probabilistic framework that allows the combination
of active perception behaviours, adding to the active
exploration behaviour described in this text automatic
orientation based on sensory saliency. This research work
has demonstrated in practice the usefulness rendered
by the extensibility, adaptivity and scalability of the
proposed framework – for more details, please refer to
[13].

Further details on the development and application
of these models can be found at http://paloma.isr.uc.pt/
~jfilipe/BayesianMultimodalPerception.

VI. FUTURE WORK

Long-term improvements to the BVM-IMPEP frame-
work would include sensor models specifically for local
motion, in contrast to the occupancy-only-based sensor
models presented in this paper. These models could
be built upon concepts such as optical flow processing
for vision (which could be enhanced by visuoinertial
integration), the Doppler effect for audition, etc. – and
perceptual grouping solutions, through clustering pro-
cesses similar to what was presented by Tay et al.
[29], but in our case using prior distributions based
on multimodal perceptual integration processes, some
of which are currently being studied in psychophysical
studies performed by our research group, to be concluded
soon.

Another important addition would be the introduction
of a decay factor to the BVM – in other words a “forget-

http://paloma.isr.uc.pt/~jfilipe/BayesianMultimodalPerception
http://paloma.isr.uc.pt/~jfilipe/BayesianMultimodalPerception
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fulness” factor – thus avoiding the cluttering limitation
of the framework, pointed out in section V.
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