
HAL Id: hal-00747099
https://hal.science/hal-00747099v1

Submitted on 30 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing M2M communication with cloud-based
context management

Bachir Chihani, Emmanuel Bertin, Noel Crespi

To cite this version:
Bachir Chihani, Emmanuel Bertin, Noel Crespi. Enhancing M2M communication with cloud-based
context management. NGMAST ’12 : 6th International Conference on Next Generation Mobile Ap-
plications, Services and Technologies, Sep 2012, Paris, France. pp.36-41. �hal-00747099�

https://hal.science/hal-00747099v1
https://hal.archives-ouvertes.fr

Enhancing M2M communication with cloud-based

context management
Bachir Chihani

#*
, Emmanuel Bertin

#*
, Noël Crespi

*

#
Orange Labs

42 rue des Coutures, 14066 Caen, FRANCE

{bachir.chihani, emmanuel.bertin}@orange.com
*
Institut Telecom, Telecom SudParis, CNRS 5157

 9, rue Charles Fourier, 91011 Evry, FRANCE

noel.crespi@it-sudparis.eu

Abstract— Contextual information are used to describe situations

of entities (users and devices) and their interactions. Applications

need such information in order to adapt their behaviour in

response to changes in the entities context. In certain scenarios

and in particular machine to machine, the integration of a large

number of components makes the management of the generated

contextual information a very complex task. There absence of

scalable and easily programmable solution for an efficient

context management in complex and distributed environment is

a show stopper. In this article, we propose a scalable cloud-based

framework for context management able to handle contextual

information in large distributed environments. This framework

has been implemented and evaluated; it provides applications

with a XML-based programming language to allow them

customizing subscriptions to context changes and defining how

context data.

Keywords— Context, Cloud Computing, XML, M2M.

I. INTRODUCTION

Context-aware applications share common functionalities

(context acquisition, storage, processing, distribution and

usage) that can be implemented in different components. In

the literature, these functionalities are usually distributed into

three types of entities. First, the sensors, also called context

providers, are in charge of contextual information acquisition

(e.g. location, activity or status of the monitored entities) [1]

[2]. Second, context consumers are applications responsible of

using context data to adapt their behaviour in response to

specific changes in their environment [3]. Third, context

management functionalities (storage, processing and

distribution) are usually performed by a central context broker

that is also in charge of connecting providers to consumers [4].

However, in certain scenarios, like machine to machine use

cases, the context broker becomes quickly a bottleneck and

the delay time, as well as memory consumption, generated

from managing contextual information grows exponentially.

Context processing and reasoning consume most of the

resources as detailed in [5]. Thus the context broker needs to

scale to be able to perform its management functionalities. A

cloud implementation of the context broker is a promising

solution to guarantee scalability, automatic and on demand

resource provisioning. Such a cloud platform will provide

Reasoning as a Service for pre-processing published

contextual information. It will also provide an efficient

subscription/notification paradigm to context exchanges that

will limit the need for applications to continuously request

context and reason on it locally. Such approach will enable

low capacity devices (such as in Internet of Things [6]) to

adapt their behaviour responding to changes in situations, and

also to be able to modify how the adaptation is performed.

A flexible language is needed for subscribing to specific

context changes and for describing application specific

context processing operations that need to be implemented by

the Context Broker. This language should provide custom

filtering definition capabilities so that context consumers will

not be overwhelmed with so many context events each time

context data are published by sensors.

In this work, we propose a cloud-based context

management platform providing Reasoning as a Service

(RaaS) for processing context. An XML-based language is

used by applications to define how contextual information

have to be processed at the cloud platform and to define their

callback addresses on which to receive notification resulting

the context processing. As a case study, we consider a M2M

(machine to machine) scenario from logistic domain to derive

real requirements for evaluating our cloud-based context

management platform.

The rest of the paper is organized as follows. Section II

presents our context management framework: its design

considerations, architecture and context processing. Section

III presents benefits of the framework. Section IV presents a

M2M case study implementation where our framework is used.

Section V presents background works. Section VI concludes

the paper.

II. CLOUD-BASED CONTEXT MANAGEMENT FRAMEWORK

Cloud computing [7] has emerged as a new computing

paradigm allowing the delivery of resources (platforms,

infrastructures and softwares) as a service instead of products

as in traditional paradigms. It performs an efficient sharing of

centralized resources and computation power among users

connected through any kind of devices (e.g. computers,

smartphones). With cloud computing, web applications can

easily scale gradually and provision needed resources on

demand (e.g. after temporary traffic spikes). In this section we

present a context management framework for cloud

environment.

A. Design considerations

We propose a generic framework that relies on Cloud and

XML technologies to provide a flexible solution to context

management complexity and automated context-based

processing and reasoning. This cloud platform hosts context

reasoning and enables applications to customize, through a

flexible XML-based language, their context-based adaptation

rules at design and runtime.

Contextual information are heterogeneous by nature and

depending on the application they may not be processed in the

same way. Some contextual information like localization of

transportation truck or temperatures of transported products

need to be monitored in real time to facilitate intervention in

case of emergency (e.g. temperature exceeded a threshold).

Other contextual information are used as timers that should

trigger some actions when expired, for instance when usage

time of an engine reach its limit then the corresponding

maintenance process should be triggered. Some other

contextual information are stored to be checked when needed,

for instance they might be used as conditions in a decision tree

for executing appropriate actions in a given situation. The

language defining context processing should be able to

express the different ways how context can be processed.

The component responsible for processing context is the

bottleneck of the whole framework as it will receive huge

amount of information from different sources, process them

and send out notifications. Thus it should be designed in an

efficient way to face peaks in information amount.

B. Framework architecture

Figure 1 presents our cloud-based framework for managing

contextual information at a large scale. The architecture

expands the main components of an earlier context

management framework, presented in [4], into smaller

components implementing basic functionalities (e.g. sending

notifications) and elastic enough to scale on demand.

Providers (CxP) are the components responsible of wrapping

source of context and publishing it to the ecosystem.

Consumers (CxC) are implemented by context-aware

applications that request context to adapt its behavior to

changes in the user situation (set of contextual information).

The proxy server (PS) is the cloud gateway, it receives context

updates and publications from CxP and route them to

reasoning engine. Also, it receives from context-aware

applications a description file of their adaptation rule that will

be hosted by the platform. Reasoning Engines (RE) are

responsible of instantiating these description files in order to

implement corresponding context-reasoning process. This

reasoning results in a set of events to be sent to the

corresponding application in order to adapt its behavior in

response. Notification Servers (NS) support asynchronous

protocols (e.g. Comet) to callback and notify CxC about new

published context or with events generated by a reasoning

engine after processing context. The callback happens on the

reference defined by the application in its description file.

All communication messages are handled with standardized

protocols: HTTP for synchronous communication; Comet for

asynchronous communication and event notifications. The

cloud components (PS, RE and NS) are implemented as

separate RESTful web services that may scale efficiently.

Fig. 1: Architecture of the cloud-based context management platform

Following figure depicts the sequence diagram of the

exchanged information between the different components.

Reasoning engines have to register with a proxy server in

order to be solicited later for implementing reasoning

processes. Application developers upload to the proxy the

description file of their application context reasoning process.

The proxy server then chooses a reasoning engine to host and

instantiate the reasoning process. A simple Load balancing

mechanism based on Round-Robin is used by gateways to

choose a registered reasoning engine that will process the new

published context. Context-aware applications subscribe with

the notification server. When a context is published by the

context provider to the proxy server, the later forward it to the

corresponding reasoning engine to process it and may trigger

an event to consumers through the notification server. At any

time, developers can upload a new version of the description

file of their application reasoning process and thus adapting its

context-awareness to meet new requirements.

Fig. 2: Sequence diagram of exchanged information between different

components of the platform

C. Context processing

XML-based programming languages [8] leverage markup

language representations and pipeline transformations for

supporting flexible customization, separation of concerns, and

process automation. In our framework, context processing is

performed at the cloud side and described in a XML language

called CPDL (Context Processing Definition Language).

Context processing consists of an abstraction step that aims to

abstract raw contextual information into higher valued

knowledge and an aggregation step that defines a situation

based on a collection of values of context data. The

abstraction is implemented as a finite state machine where

each state is high level information derived from a raw context

data. Transitions between states are performed after receiving

new published context data. Conditions can be added to

transition in order to limit the cases where the finite state

machine can transit from a state to another. The aggregation

step consists of an IF-THEN rule where the conditions can be

on a finite state machine or on raw context data. The

corresponding action can be for instance sending a notification

back to the application on a given call-back address or

triggering another Abstract-Aggregate cycle by sending an

internal event to one of corresponding finite state machines.

<!DOCTYPE Definition [

<!ELEMENT Definition (FiniteStateMachine | Rule)*>

<!ELEMENT FiniteStateMachine (State*, Start-State, End-

State)>

<!ATTLIST FiniteStateMachine Id CDATA #REQUIRED

Name CDATA #REQUIRED>

<!ELEMENT State (Transition)*>

<!ATTLIST State Name CDATA #REQUIRED >

<!ELEMENT Transition (Condition | Event)*>

<!ATTLIST Transition Dest CDATA #REQUIRED >

<!ELEMENT Rule (Condition | Event)*>

<!ATTLIST Rule Id CDATA #REQUIRED Name CDATA

#REQUIRED >

<!ELEMENT Condition EMPTY >

<!ATTLIST Condition Type CDATA #REQUIRED Key

CDATA #REQUIRED Operator CDATA #REQUIRED

Value CDATA #REQUIRED >

<!ELEMENT Event EMPTY >

<!ATTLIST Event Type CDATA #REQUIRED To CDATA

#REQUIRED Message CDATA #IMPLIED >

]>

Fig. 3: Context Processing Definition Language (CPDL)

Figure 3 depicts the DTD [9] (Document Type Definition)

file that describes the context composition language. XML

description files of a reasoning process have to complain with

this DTD in order to be implemented by the reasoning engine.

III. BENEFITS TO USER, DEVELOPER AND PLATFORM SIDE

From user’s perspective, the platform enables smart and

lightweight applications to be able to adapt their behaviour to

user context changes. Such applications reduce the effort

needed by user in the interaction with him as they

continuously monitor its situation and are aware of his need at

a given moment. An example of such applications is a

context-aware call management application that monitors user

situation (e.g. his availability on a given communication

channel) to adapt the handling of his communications (e.g.

change the communication channel from SMS text message to

voice).

On the other side, application developers will be able to

concentrate their effort on building their application business

logic while ignoring the complexity resulting from the

management of contextual information as this will be hosted

at the platform side. Also, as context management can be

specified with XML files, then it becomes possible for

developers to modify the initial reasoning approach and

extend it to new contextual information at run time and in a

transparent way while the user is using the application without

having to modify its code.

The platform provides several enhancement regarding

existing approaches. First, it enables an easy deployment of

innovative context-aware applications and a powerful support

to their upgrading. Second, the reasoning engine can be

multiplied by deploying the platform in a cloud environment

to support scalability of context-aware applications. Also,

notifications due to context changes are consumed and filtered

locally before being propagated to end applications which

reduce efficiently the number of messages exchanged between

the platform and context consumers.

The solution reduces but do not eliminate all complexities

related to building context-aware applications. As application

logic is explicitly separated from context management.

Developers still has the task of describing how context should

processed by the platform.

IV. CASE STUDY: M2M COMMUNICATION

M2M [10], also called embedded mobile, communications

enable collecting crucial information from many connected

objects via wireless network (e.g. short-range radio, 3G/4G

network) to a backend server for aggregation and processing.

It is widely used in many domains [11], like energy, health,

security, transportations, remote maintenance, or HCI [12]

(human-computer interaction).

In logistics, exchanging contextual information (e.g. objects

geospatial information, agents’ health condition) between

operational agents, in field equipments with company back

office is very crucial. The monitoring of context changes

enables real time process execution supervision and

exceptions handling. As process execution may not comply

with predefined plans, for instance traffic jams may delay a

delivery plan. Back office agents have to be alerted in case of

emergency in order to be able to respond immediately (e.g.

change plan or abort delivery).

Next, we present our implementation for enabling efficient

M2M communication in a transportation scenario.

A. Case study implementation

As a case study, we implemented a solution based on the

previously presented framework for a M2M scenario where a

shipment truck has to deliver a product from a location (e.g.

Paris) to another (e.g. Caen). During this travel, contextual

information of the truck are sent to the cloud platform (servers

responsible for managing context in the cloud domain). Also,

presence information of the back office agent are sent from

the internal presence server (here we used Microsoft Lync

Server) to the cloud domain hosting the context management.

Context-awareness is implemented in the public domain

thanks to the context composition language. It aims to send a

voice message to the back office agent on its smartphone

(where an Android supervision application is installed) if the

temperature of the fridge exceeded a certain threshold and the

agent is not available in front of the supervision interface (his

presence status is offline).

Fig. 4: Test environment configuration

The testbed environment is illustrated in figure 4. The GPS

coordinates of the route between Paris and Caen was

generated with CloudMade
1
 Routing API, and played by a

location provider java program. Temperatures of the truck

fridge are simulated and published to the platform.

Figure 5 depicts the supervision interface that is Swing-

based GUI (Graphical User Interface). It is a context

consumer application that listen to changes in location of the

supervised truck and temperature of its fridge, then display

them in a suitable interface to help back office agent to track

in real time delivery situation.

1
 http://www.cloudmade.com/

Fig. 5: Supervision GUI

B. Performance evaluation

For performance evaluation of the cloud-based context

management we used the following environment: a server

running a Microsoft Windows Server 2003 SP2 with

following hardware characteristics (Vender: Intel, Model:

Xeon, CPU: 2.8GHZ, memory: 2 GB). On this server is

installed a Jetty web server to run proxy server and reasoning

engine as web applications on top of the RESTlet
2
 framework.

Also, on this server is running CometD
3
 server to play the role

of the notification server, to send context updates to

subscribed clients. For persistence, contextual information is

stored on an object database DB4O
4
.

A context provider and consumer were developed as simple

java program to publish context and receive updates. This

program sends context publication messages to the context

management platform. It runs on Microsoft Windows XP SP3

installed on Dell D630 laptop with the following

characteristics (Vender: Intel, Model: Core 2 Duo, CPU:

2.2GHZ, memory: 2 GB).

Figure 6 depicts the response time of the context

management platform correspondingly to the number of the

received context updates. The aim is to model response time

as a function that takes number of parallel requests as

parameter. This model will help measuring the reactivity of

our framework and estimating future response time.

2
 http://www.restlet.org/

3
 http://www.cometd.org/

4
 http://www.db4o.com/

Figure 6: load performance

The variation of response time can be approximate with the

following linear:

ResponseTime(RequestNumber) = � + � * RequestNumber

Where the function parameters � and � can be

approximately computed as follow:

� = average (�ResponseTimei+1,i / �RequestNumberi+1,i)

� = average (ResponseTimei – � * RequestNumberi)

After calculation we found �= 162.097766 and �=

0.35454545. Response time increases slowly with the number

of parallel request as the � ratio is less than 1.

Performance test results show the platform ability to notify

context information with a good response time (only 1 second

for approximately 2000 parallel context updates).

V. BACKGROUND AND DISCUSSION

A. Related work

In [13], the authors proposed a new approach for M2M

communication that extends business processes execution by

integrating mobile devices. Through a cloud-based solution,

this integration enable in field handling of operational

exceptions in industries like transport and logistics. As M2M

telecommunication world do not use same technology and

protocols as enterprise domain, a proprietary component was

used as gateway to provide a flexible end to end

communication and for translating network protocols (e.g. SIP

to SOAP and vice versa) between these two domains. A back

end system was used to implement business logic and

exceptions handling. However, the proposed solution is not

cloud-based as it is hosted by the client. Also, there were no

explicit separation of concerns between handling contextual

information and application logic.

In [14], the authors described the redesign of Java EE

technologies commonly used in enterprise domain and their

implementations to support telecommunication domain

requirements like scalability for facing heavy loads and

asynchronous nature of telecommunication systems. The

result is a scalable, asynchronous, event-driven non-blocking

platform for service composition. In this platform, no worker

thread is dedicated to a composite application. Instead, the

execution of composite applications is divided into small tasks

processed by a pool of different workers. Tasks requesting

long operations like I/O are put into a waiting list before being

processed again, this waiting time is used by the

corresponding thread worker to handle another task. The

solution is not limited to context management and can be used

in many other situations. However, specification of a

composite application cannot be modified easily at runtime as

this involves the modification to the pool of workers in charge

of executing the application steps.

In [15], the authors propose a cache method for contextual

information in a cloud environment. The work is motivated by

the strong temporal nature of context data due to their limited

validity duration. The caching will allow the centralization of

context data into a context broker memory and considerably

improve the context-provisioning performance. The conducted

work evaluated many replacement strategies to be used when

the cache system is full while there is new information to be

cached, namely: remove least used (LU) first, oldest first (OF)

or soonest expiring (SE) first. After evaluating different

approach, the work suggest the use of a bipartite replacement

strategy based on dividing cache in two segments one for

short validity duration context managed with OF and the other

of long validity duration managed with SE. The framework

aims only to provide context caching for enhancing context

management performance and response time to context

requests.

In [16], authors propose cloud architecture for provisioning

contextual information. The architecture is based on the

provider-broker-consumer model, where providers are

responsible of getting context data from its source and

publishing it to be available to others. Consumers take the

published context to adapt the behavior of an application to

the current situation described by a set of context data.

Brokers are used to loosely couple between providers and

consumers: when a consumer looks for context it ask the

broker that will look up where it can be found, it contacts then

the corresponding provider. The brokers are the components

who can be duplicated in a cloud to scale the architecture to a

large context-centric ecosystem. However, the framework

does not involve context-aware application developers in

context processing and their specific requirements cannot be

considered.

B. Discussion

Only few works conducted earlier aimed to provide

context-management in a cloud environment. Some of them

were focusing in providing efficient and customized

infrastructure for handling contextual information (mainly

location) in a machine to machine communication and their

integration with enterprise business processes. Others

provided more generic and scalable framework for

provisioning context in distributed environments, their aim

was mainly the distribution of context among different parties.

Our platform enables ease of integration of new

computation components and connected objects at design and

runtime and ease of application development and maintenance.

It provides the ability to change applications reasoning

process by only having to upload new versions of

corresponding descriptive file. Also, this file is writing in an

expressive language based on XML that make it human

readable and easy to interpret. Real-time performance is

provided through the implementation of a scalable platform

based on web service technologies.

However, the proposed context processing language could

be more comprehensive, as it allows only monitoring context

in a real-time and building decision trees on context but does

not provide a way for building context-based timers that when

expire should trigger an action. The flexibility of our cloud

platform could be also enhanced, as the provisioning of

reasoning engines is not automated, but need to be launched

manually.

VI. CONCLUSIONS

In this work we presented a generic framework for context

management based on Internet technologies: XML and Cloud

computing.

Our contribution is the conception of a generic yet powerful

cloud-based framework enabling the segregation of context

reasoning and application logic. The reasoning algorithm can

be hosted by the framework in order to filter context events

and notify end application only when a situation of interest

occurs. A flexible XML-based language is used for describing

the reasoning and adaptation to context changes; it has to be

uploaded (at design and/or runtime) to the framework for

instantiating reasoning process for the corresponding

application, and it can be modified at any time.

However, inference rules may become complex especially

if too many contextual information is involved in the

reasoning which makes its specification in XML files a

tedious work for application developers. This can be

addressed by building a specific graphical IDE (Integrated

Development Environment) to support developers during

application development and automate some tasks (e.g.

generation of XML specification from a graphical

representation of the reasoning).

Moreover, security aspects are currently not addressed. In a

future work, we plan to implement distributed security

mechanisms that match the specificities of cloud-based

context management. We plan also to extend the proposed

context processing language to provide support for defining

context-based timers and investigate further the possibility of

adapting the generation of XML description files based on

feedback acquired from the application environment. This will

enable an automated maintenance of context processing and

an advanced separation of concerns of context management

from application business logic.

REFERENCES

[1] T. Soikkeli, J. Karikoski, H. Hammainen, “Diversity and End User

Context in Smartphone Usage Sessions,” 5th International Conference

on Next Generation Mobile Applications, Services and Technologies

(NGMAST'11), Cardiff, Wales, UK 2011.

[2] B. Chihani, E. Bertin, F. Jeanne, N. Crespi, “Context-Aware Systems:

A Case Study,” Proceedings of International Conference on Digital

Information and Communication Technology and its Applications

(DICTAP'11), Dijon, France 2011.

[3] F. Toutain, A. Bouabdallah, R. Zemek, C. Daloz, Interpersonal

context-aware communication services, IEEE Communications

Magazine, Volume: 49, Issue: 1, January 2011.

[4] B. Chihani, E. Bertin, N. Crespi, “A Comprehensive Framework for

Context-Aware Communications Systems,” ICIN, Berlin, Germany

2011.

[5] J. Zhu, H. K. Pung, M. Oliya, and W. C. Wong, “A Context

Realization Framework for Ubiquitous Applications with Runtime

Support,” IEEE Communications Magazine, Vol. 49, No. 9, September

2011.

[6] H. Kopetz, “Internet of Things,” Real-Time Systems Journal, Springer,

DOI: 10.1007/978-1-4419-8237-7_13, 2011.

[7] T. Sridhar, “Cloud Computing - A Primer,” The Internet Protocol

Journal, Volume 12, No.3, September 2009.

[8] C. Reichel, R. Oberhauser, “XML-based programming language

modeling: An approach to software engineering,” in IASTED Conf. on

Software Engineering and Applications, IASTED/ACTA Press, pp.

424-429, 2004.

[9] Doctypedecl, “Extensible Markup Language (XML) 1.1,” W3C

Recommendation, 2004.

[10] S. Talwar, K. Johnsson, N. Himayat, K.D. Johnson, “M2M: From

mobile to embedded internet,” IEEE Communications Magazine,

Volume: 49, Issue: 4, April 2011.

[11] L. Atzoria, A. Ierab, G. Morabito, “The Internet of Things: A survey,”

Computer Networks (ELSEVIER), Volume 54, Issue 15, 28 October

2010.

[12] P. Holleis, A. Schmidt, “Embedded Interaction: Interacting with the

Internet of Things,” IEEE Internet Computing, Volume: 14, Issue: 2,

March-April 2010.

[13] K. Vandikas, N. Liebau, M. Döhring, L. Mokrushin, I. Fikouras,

“M2M Service Enablement for the enterprise,” In proceedings of 15th

International Conference on Intelligence in Next Generation Networks

(ICIN), Germany (Berlin), 2011.

[14] K. Vandikas, R. Quinet, R. Levenshteyn, J. Niemoller, Scalable service

composition execution by means of an asynchronous paradigm, In

proceeding of 15th International Conference on Intelligence in Next

Generation Networks (ICIN), Germany (Berlin), 2011.

[15] S. L. Kiani, A. Anjum, N. Antonopoulos, K. Munir, and R.

McClatchey, “Towards context caching in the clouds,” International

Workshop on Intelligent Techniques and Architectures for Autonomic

Clouds (ITAAC’11), Australia (Melbourne), 2011.

[16] S.L. Kiani, A. Anjum, N. Bessis, R. Hill, M. Knappmeyer, “Context

Parsing, Processing and Distribution in Clouds,” In proceedings of 3rd

International Conference on Intelligent Networking and Collaborative

Systems (INCoS), Japan (Fukuoka), 2011.

