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Abstract

Here, we use the semigroup theory to establish the existence, unique-
ness and blow-up for a classical solution of a semilinear parabolic problem
with localized nonlinear term— a locally Lipschitz continuous function
of the value of the solution at a point of a 1-dimensional domain. Our
method, which uses Sobolev spaces and fractional power of operators, is
in contrast with the classical ones (Green functions) which supply similar
results in 1-dimensional settings.

1. Introduction

Let x0 be a fixed point in I = (0, 1) and denote its closure by I. We study the
semilinear parabolic initial-boundary value problem with a localized nonlinear
term

ut(x, t)− 1
k(x) (p(x)ux(x, t))x = f(u(x0, t)), (x, t) ∈ I × (0,∞),

u(0, t) = 0 = u(1, t), t > 0,
u(x, 0) = u0(x), x ∈ I,

 (1)

where k ∈ L∞(I), p ∈ L∞(I), u0 ∈ H2(I) ∩ H1
0 (I) and f is locally Lipschitz

continuous. A solution u of (1) is said to blow up at the point x = b in
finite time tb if there exists a sequence (xn, tn) such that (xn, tn) → (b, tb) and
lim
n→∞

u(xn, tn) = ∞. The set consisting of all blow-up points of u is called
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the blow-up set of u. Our study is exclusively concerned with the question
of existence and uniqueness of the blow-up solution of problem (1) and the
blow-up point of such solution.

J. M. Chadam, A. Peirce and H. M. Yin [1] in 1992 studied the blow-up
property of solutions to the problem

ut −△u = f(u(x0, t)), (x, t) ∈ Ω× (0, T )
u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T )

u(x, 0) = u0(x), x ∈ Ω,

where T is a positive number, Ω is a bounded domain in Rn with smooth
boundary ∂Ω while x0 is a fixed interior point of Ω. They showed that under
some conditions the solution blows up in finite time and the blow-up set is the
whole region. In 2000, C. Y. Chan and J. Yang [2] studied the same question
for the degenerate semilinear parabolic initial-boundary value problem

xqut − uxx = f(u(x0, t)), (x, t) ∈ I × (0, T ),
u(0, t) = 0 = u(1, t), t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ I,

where q is any nonnegative real number, f and u0 are given functions. By using
Green function method, they proved that with suitable conditions, u blows up
in finite time, and the blow-up set is the entire interval I.

Our objective is to show existence, uniqueness and blow-up for a classical
solution of problem (1) by using semigroup theory. Throughout this work, we
assume the following:

(H1) k ∈ L∞(I) and ∃ km, kM ∈ (0,+∞) such that km < k(x) < kM a.e.
x ∈ I,

(H2) p ∈ L∞(I) and ∃ pm, pM ∈ (0,+∞) such that pm < p(x) < pM a.e.
x ∈ I,

(H3) ∀M ∈ (0,+∞) ∃ LM ∈ (0,+∞) such that if for each s, s′ ∈ R+ with
|s| , |s′| ≤ M, then |f(s)− f(s′)| ≤ LM |s− s′| .

(H4) u0 ∈ H2(I) ∩H1
0 (I).

In order to obtain existence and uniqueness of a solution of problem (1),
we will consider its formally equivalent formulation in terms of a nonlinear
evolution equation in the Hilbert space L2(I) :

du(t)

dt
−Au(t) = F (u) for t > 0,

u(0) = u0,

 (2)
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where A is the linear unbounded operator from D(A), the domain of A, to
L2(I) with

D(A) =
{
v ∈ H1

0 (I) | ∃! w ∈ L2(I) s.t.∫
I

k(x)w(x)φ(x) dx = −
∫
I

p(x)Dxv(x)Dxφ(x) dx, ∀φ ∈ H1
0 (I)

}
,

and Av(x) = w(x) for all v ∈ D(A) and where F is defined by

u ∈ D(A) 7−→ F (u) = f(u(x0, t)) ∈ L2(I).

It will be shown before showing proposition 3.1.6 that the definition of F is
meaningful.

2. Main results

Our results comprise the following two theorems. The first one involves exis-
tence and uniqueness of a solution u of problem (2) (in the sense of semigroup
theory) whereas the last one deals with the blow-up time of u.

Theorem 2.1 There exists a finite positive constant T such that the evolu-
tion problem (2) has a unique solution u ∈ C([0, T ], D(A)) ∩ C1([0, T ], L2(I))
defined by

u(t) = S(t)u0 +

t∫
0

S(t− τ)F (u(τ))dτ

where S(t) is an analytic semigroup generated by A.

Theorem 2.2 If [0, Tmax) is the finite maximal time interval in which a
continuous solution u of problem (2) exists, then |u(x0, t)| is unbounded as t
tends to Tmax.

3. The proof of main results

Hereafter we use an inner product and a norm, equivalent to the usual one, on
L2(I) by

⟨v, w⟩ =
∫
I

k(x)v(x)w(x) dx, and |v|L2(I) =

(∫
I

k(x) |v(x)|2 dx

)1/2

.

If Dxv denotes the distributional derivative with respect to x of the distribution
v ∈ D′(I), we recall that

H1(I) =
{
v ∈ L2(I)

∣∣Dxv ∈ L2(I)
}
.
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The Hilbert space H1(I) here is equipped with the norm (equivalent to the
usual one):

|v|2H1(I) = |v|2L2(I) +

∫
I

p(x) |Dxv(x)|2 dx

whereas its closed subspace H1
0 (I) =

{
v ∈ H1(I)

∣∣ v(0) = 0 = v(1)
}
is equipped

with

|v|2H1
0 (I)

=

∫
I

p(x) |Dxv(x)|2 dx;

the norm induced by |·|H1(I) .

3.1 The proof of Theorem 2.1

To get existence and uniqueness of a solution of problem (2), we need the
following propositions referred to [4].

Proposition 3.1.1 If A is self-adjoint and generates a C0 uniformly bounded
semigroup S(t) and g is Hölder continuous of exponent α ∈ (0, 1]. Then the
evolution equation:

du(t)

dt
= Au(t) + g(t) with u(0) = u0 ∈ D(A)

has a unique solution u such that

u ∈ C1([0,∞), L2(I)) ∩ C([0,∞), D(A))

which can be expressed as

u(t) = S(t)u0 +

∫ t

0

S(t− τ)g(τ)dτ.

Observe that the operator A of problem (2) is given by

Av(x) =
1

k(x)
Dx(p(x)Dxv(x)).

To apply proposition 3.1.1 to such an operator, we show first that

Proposition 3.1.2 The operator A of problem (2) is m-dissipative and
self-adjoint in L2(I).

Proof. An m-dissipative property of A in L2(I) is an immediate consequence
of these two conditions:

1. ⟨Av, v⟩ ≤ 0 for all v ∈ D(A), and
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2. for any λ > 0, R(I − λA) = L2(I), where R(I − λA) and I denote the
range of I − λA and the identity operator on L2(I) respectively.

Condition 1. follows directly from definition of A. To obtain condition 2.,
letting g ∈ L2(I) and λ > 0, we need to give an existence of v ∈ H1

0 (I) with
the property:

1

λ

∫
I

k(x)v(x)φ(x) dx+

∫
I

p(x)Dxv(x)Dxφ(x) dx =
1

λ

∫
I

k(x)g(x)φ(x) dx

for each φ ∈ H1
0 (I). Such an existence is guaranteed by Lax-Milgram theorem,

and thus, A is m-dissipative.
In order to prove that A is a self-adjoint operator in L2(I), since A is m-

dissipative in L2(I), it suffices to prove that A is symmetric, that is, ⟨Av, φ⟩ =
⟨v,Aφ⟩ for all v and φ in D(A). Indeed, definitions of D(A), Av and Aφ yield

⟨Av, φ⟩ = −
∫
I

p(x)Dxv(x)Dxφ(x)dx = ⟨v,Aφ⟩ .

�
To solve problem (2), it is convenient to introduce the square root of −A,

(−A)
1
2 . An elementary way to define (−A)

1
2 is by considering the eigenvalues

and eigenfunctions of −A. The operator (λI −A)−1 is a bounded well-defined
operator on L2(I) with values in H1

0 (I) so that Rellich theorem (the embedding
of H1

0 (I) into L2(I) is compact) implies that (λI −A)−1 is a compact operator
on L2(I).

The following proposition is referred from [3].

Proposition 3.1.3 (The spectral theory of self-adjoint compact op-
erator) There exists a sequence (λn, ϕn) ⊂ (0,+∞)×H1

0 (I) such that

1. Aϕn = −λnϕn.

2.
∫
I
k(x)ϕn(x)ϕm(x)dx = δnm.

3.
∫
I
p(x)Dxϕn(x)Dxϕm(x)dx = λnδnm.

4. v(x) =
∑
n∈N

⟨v, ϕn⟩ϕn(x) for all v ∈ L2(I).

5. |v|2L2(I) =
∑
n∈N

⟨v, ϕn⟩2

6. D(A) =

{
v ∈ L2(I)

∣∣∣∣ ∑
n∈N

λ2
n ⟨v, ϕn⟩2 < +∞

}
and Av = −

∑
n∈N

λn ⟨v, ϕn⟩ϕn

for each v ∈ D(A).
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7. S(t)v =
∑
n∈N

e−λnt ⟨v, ϕn⟩ϕn for all (v, t) ∈ L2(I)× [0,∞).

Now, we can define domain of (−A)
1
2 by

D((−A)
1
2 ) =

{
v ∈ L2(I)

∣∣∣∣∣ ∑
n∈N

λn ⟨v, ϕn⟩2 < +∞

}

and the unbounded self-adjoint operator (−A)
1
2 in L2(I) by

(−A)
1
2 v =

∑
n∈N

λ
1
2
n ⟨v, ϕn⟩ϕn

for all v ∈ D((−A)
1
2 ). Moreover, we obtain the following propositions.

Proposition 3.1.4 For the operator A of problem (2),

1. D((−A)
1
2 ) = H1

0 (I) and
∣∣∣(−A)

1
2 v

∣∣∣
L2(I)

= |v|H1
0 (I)

.

2. If v ∈ D((−A)
1
2 ), then S(t)v ∈ D((−A)

1
2 ) and∣∣∣(−A)

1
2S(t)v

∣∣∣
L2(I)

=
∣∣∣S(t)(−A)

1
2 v

∣∣∣
L2(I)

≤
∣∣∣(−A)

1
2 v

∣∣∣
L2(I)

.

Proof. Let us prove result 1. first.
If v =

∑
n∈N

⟨v, ϕn⟩ϕn for ϕn ∈ H1
0 (I), we have in the distributional sense:

Dxv =
∑
n∈N

⟨v, ϕn⟩Dxϕn

so that
∑
n∈N

λn ⟨v, ϕn⟩2 =
∫
I
p(x) |Dxv(x)|2 dx = |v|2H1

0 (I)
< +∞. Conversely, if

v ∈ D((−A)
1
2 ), the sequence (VN ), where

VN =
N∑

n=1

⟨v, ϕn⟩ϕn,

is Cauchy in H1
0 (I) because if N < M, then

|VN − VM |2H1
0 (I)

=

∫
I

p(x)

∣∣∣∣∣
M∑

n=N+1

⟨v, ϕn⟩Dxϕn(x)

∣∣∣∣∣
2

dx

=
M∑

n=N+1

⟨v, ϕn⟩2
∫
I

p(x) |Dxϕn(x)|2 dx

=
M∑

n=N+1

λn ⟨v, ϕn⟩2 .
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Hence it converges to some V in H1
0 (I) (H

1
0 (I) is a Hilbert space) and to v in

L2(I) so that v = V ∈ H1
0 (I). The remaining equality has already been proven.

For result 2., because
∑
n∈N

λne
−2λnt ⟨v, ϕn⟩2 ≤

∑
n∈N

λn ⟨v, ϕn⟩2 for all t ≥

0, proposition 3.1.3 yields: if v ∈ D((−A)
1
2 ), then S(t)v ∈ D((−A)

1
2 ) and

(−A)
1
2S(t)v = S(t)(−A)

1
2 v for t ≥ 0. �

Proposition 3.1.5 There exists a C0 > 0 such that

∣∣∣(−A)
1
2S(t)v

∣∣∣
L2(I)

= |S(t)v|H1
0 (I)

≤ C0

t1/2
|v|L2(I)

for all (v, t) ∈ L2(I)× (0,+∞).

Proof. It is not difficult to see that
∣∣∣(−A)

1
2S(t)v

∣∣∣
L2(I)

= |S(t)v|H1
0 (I)

for

any v ∈ L2(I). Let v ∈ L2(I). Since the function s ∈ R+ 7−→ se−2s ∈ R+ is
bounded, we have that there is a C0 > 0 such that

t
∑
n∈N

λne
−2λnt ⟨v, ϕn⟩2 ≤ C0

∑
n∈N

⟨v, ϕn⟩2 = C0 |v|2L2(I) .

Therefore, the definition of (−A)
1
2 yields that S(t)v ∈ D((−A)

1
2 ) and that the

estimate involved in proposition 3.1.5 is true. �
Note that the previous result implies that S(t)v ∈ D((−A)

1
2 ) for all t > 0

and all v ∈ L2(I), which, a priori, is not obvious for a standard semigroup T (t)
on L2(I): usually T (t)v belongs to L2(I) only but due to the self-adjointness of
A, the semigroup S(t) is analytic (holomorphic) and consequently S(t)v ∈ D(A)
for all t > 0 and all v ∈ L2(I).

Presently, we are in a position to solve the evolution problem (2). Firstly,
we define a mapping F by:

v ∈ H1
0 (I) 7−→ F (v) = f(v(x0)) ∈ L2(I). (3)

Note that this definition is meaningful because v ∈ H1
0 (I) implies that v is

continuous on I so that v(x0) has a meaning and F (v) is a constant on I and
therefore belongs to L2(I).

Proposition 3.1.6 The mapping F defined by (3) is locally Lipschitz from

D((−A)
1
2 ) (= H1

0 (I)) to L2(I).

Proof. Let v, w ∈ H1
0 (I) (↩→ C(I)) such that |v|C(I) , |w|C(I) ≤ M with M
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being a positive constant. Then (H3) implies:

|F (v)− F (w)|2L2(I) ≤ kM |f(v(x0))− f(w(x0))|2

≤ kML2
M |v(x0)− w(x0)|2

≤ kML2
M |v − w|2C(I)

≤ kML2
MC2

s |v − w|2H1
0 (I)

,

where Cs is the constant involved in the Sobolev embedding H1
0 (I) ↩→ C(I). �

Next, due to proposition 3.1.4, we introduce a concept of mild solution for
the evolution problem (2).

Definition A function u is said to be a mild solution of problem (2) if there
exists u ∈ C([0,∞),H1

0 (I)) such that

u(t) = S(t)u0 +

∫ t

0

S(t− τ)F (u(τ))dτ, ∀t ∈ [0,∞),

u0 being assumed to belong to H1
0 (I).

We modify the proof of Theorem 2.5.1 of [5] to obtain the following result.

Proposition 3.1.7 There exists a T > 0 such that problem (2) has a unique
mild solution. Moreover, let u(t), ũ(t) be mild solutions corresponding to u0

and ũ0, respectively. Then, for all t ∈ [0, T ], the following estimate holds:

|u(t)− ũ(t)|H1
0 (I)

≤ |u0 − ũ0|H1
0 (I)

e2C0Csk
1
2
MLMT

1
2 .

Proof. Let M = |u0|H1
0 (I)

+ 1 and LM be the Lipschitz constant of f. Let T

be a positive constant such that T < 1
4kMC2

0C
2
sL

2
M
. We define a mapping Φ by:

v ∈ E 7→ Φ(v) = S(t)u0 +

∫ t

0

S(t− τ)F (v(τ))dτ

where

E =
{
v ∈ C([0, T ],H1

0 (I)) such that |v(t)|H1
0 (I)

≤ M for all t ∈ [0, T ]
}
,

equipped with the norm:

|v|E = sup
t∈[0,T ]

|v(t)|H1
0 (I)

.
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We note that E is a closed convex subset of a Banach space C([0, T ],H1
0 (I)).

We would like to prove that Φ is a contraction in E. Propositions 3.1.4, 3.1.5
and 3.1.6 imply:

|Φ(v)|E = sup
t∈[0,T ]

∣∣∣∣S(t)u0 +

∫ t

0

S(t− τ)F (v(τ))dτ

∣∣∣∣
H1

0 (I)

≤ |u0|H1
0 (I)

+ sup
t∈[0,T ]

∫ t

0

|S(t− τ)F (v(τ))|H1
0 (I)

dτ

≤ |u0|H1
0 (I)

+ sup
t∈[0,T ]

∫ t

0

C0

(t− τ)
1
2

(
|f(0)|L2(I) + k

1
2

MLMCs |v|H1
0 (I)

)
dτ

≤ |u0|H1
0 (I)

+
(
C0 |f(0)|L2(I) + C0k

1
2

MLMCsM
)

sup
t∈[0,T ]

∫ t

0

dτ

(t− τ)
1
2

≤ |u0|H1
0 (I)

+ 2C0

(
|f(0)|L2(I) + k

1
2

MLMCsM
)
T

1
2 .

If T is chosen in such a way that

T < min

 1

4kMC2
0C

2
sL

2
M

,
1

4C2
0

(
|f(0)|L2(I) + k

1
2

MLMCsM
)2

 ,

then Φ(v) is in E for any v ∈ E. Moreover, for any v1, v2 ∈ E

|Φ(v1)− Φ(v2)|E = sup
t∈[0,T ]

∣∣∣∣∫ t

0

S(t− τ) (F (v1(τ))− F (v2(τ))) dτ

∣∣∣∣
H1

0 (I)

≤ C0 sup
t∈[0,T ]

∫ t

0

1

(t− τ)
1
2

|(F (v1(τ))− F (v2(τ)))|L2(I) dτ

≤ C0k
1
2

MLMCs sup
t∈[0,T ]

∫ t

0

1

(t− τ)
1
2

dτ |v1 − v2|E

≤ 2C0k
1
2

MLMCsT
1
2 |v1 − v2|E .

That is, Φ is a contraction in E. Thus, Φ has a fixed point that is the mild
solution to problem (2) in E. To show that the uniqueness also holds in
C([0, T ],H1

0 (I)), let u1, u2 ∈ C([0, T ],H1
0 (I)) be two solutions of problem (2)

and let u = u1 − u2. Then

u(t) =

∫ t

0

S(t− τ) (F (u1(τ))− F (u2(τ))) dτ.
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Propositions 3.1.4, 3.1.5 and 3.1.6 imply:

|u(t)|H1
0 (I)

=

∣∣∣∣∫ t

0

S(t− τ) (F (u1(τ))− F (u2(τ))) dτ

∣∣∣∣
H1

0 (I)

≤ C0Csk
1
2

MLM

∫ t

0

1

(t− τ)
1
2

|u1(τ)− u2(τ)|H1
0 (I)

dτ.

By Gronwall inequality, we immediately conclude that |u(t)|H1
0 (I)

= 0, that is,

the uniqueness in C([0, T ],H1
0 (I)) is proven. As before, we have

u(t)− ũ(t) = S(t)(u0 − ũ0) +

∫ t

0

S(t− τ) (F (u(τ))− F (ũ(τ))) dτ.

Therefore,

|u(t)− ũ(t)|H1
0 (I)

≤ |u0 − ũ0|H1
0 (I)

+ C0Csk
1
2

MLM

∫ t

0

1

(t− τ)
1
2

|u(τ)− ũ(τ)|H1
0 (I)

dτ.

Gronwall inequality implies:

|u(t)− ũ(t)|H1
0 (I)

≤ |u0 − ũ0|H1
0 (I)

e
C0Csk

1
2
MLM

∫ t
0

1

(t−τ)
1
2

dτ

≤ |u0 − ũ0|H1
0 (I)

e2C0Csk
1
2
MLMT

1
2 .

Hence, this proposition is proven. �
By modifying the proof of Corollary 2.5.1 of [5] we establish the following

result.

Proposition 3.1.8 The mild solution u is Hölder continuous of exponent
α (= 1

2 ) in t from [0, T ] toward H1
0 (I) for any u0 ∈ D(A)(= H2(I) ∩H1

0 (I)).

Proof. Let u0 ∈ D(A). For any h > 0. Let ũ(t) = u(t+h). Then, we see that
ũ is a mild solution of problem (2) with initial data u0 = u(h). Then,

|u(t+ h)− u(t)|H1
0 (I)

= |ũ(t)− u(t)|H1
0 (I)

≤ |u(h)− u0|H1
0 (I)

e2C0Csk
1
2
MLM t

1
2 .
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On the other hand,

|u(h)− u0|H1
0 (I)

≤ |S(h)u0 − u0|H1
0 (I)

+

∫ h

0

|S(h− τ)F (u(τ))|H1
0 (I)

dτ

≤

∣∣∣∣∣
∫ h

0

S(τ)Au0dτ

∣∣∣∣∣
H1

0 (I)

+

∫ h

0

C0

(h− τ)
1
2

|F (u(τ))|H1
0 (I)

dτ

≤
∫ h

0

|S(τ)Au0|H1
0 (I)

dτ

+

∫ h

0

C0

(h− τ)
1
2

(
|F (u0)|H1

0 (I)
+ k

1
2

MLMCs |u(τ)− u0|H1
0 (I)

)
dτ

≤ 2C0

(
|Au0|L2(I) + |F (u0)|H1

0 (I)

)
h

1
2

+C0k
1
2

MLMCs

∫ h

0

|u(τ)− u0|H1
0 (I)

(h− τ)
1
2

dτ.

By Gronwall inequality, we have

|u(h)− u0|H1
0 (I)

≤ 2C0

(
|Au0|L2(I) + |F (u0)|H1

0 (I)

)
h

1
2 e2C0k

1
2
MLMCsh

1
2 .

Thus, for any t1, t2 ∈ [0, T ] such that t1 + h = t2

|u(t1)− u(t2)|H1
0 (I)

≤ 2C0

(
|Au0|L2(I) + |F (u0)|H1

0 (I)

)
e4C0Csk

1
2
MLMT

1
2 |t1 − t2|

1
2 .

Hence u is Holder continuous of exponent α = 1
2 in t. �

Now we are in a position to prove theorem 2.1.

Proof of Theorem 2.1. Since F is locally Lipschitz and u is Hölder contin-
uous of exponent α = 1

2 in t, F is also Hölder continuous of exponent α = 1
2 in

t. Hence, the result is a consequence of proposition 3.1.1. �

3.2 The proof of Theorem 2.2

Let us modify the proof of theorem 2.5.5 of [5] to obtain the following result.

Proposition 3.2.1 Let [0, Tmax) be the maximal time interval in which the
mild solution u of the evolution problem (2) exists. If Tmax is finite, then the
solution u of problem (2) blows up in finite time, that is,

lim
t→Tmax

|u(t)|H1
0 (I)

= +∞.

11



Proof. We will use the contraction argument to prove proposition 3.2.1.
Suppose that there is a finite positive constant M and a sequence (tn) such
that

|u(tn)|H1
0 (I)

≤ M as tn → Tmax.

Consider the following problem:

dv(t)

dt
= Av(t) + F (v) and v(0) = u(tn).

By proposition 3.1.7, the above problem has a unique local mild solution in
[0, δ] with δ depending on M. We choose n large enough so that tn+ δ > Tmax.
Let

ũ(t) =

{
u(t), for 0 ≤ t ≤ tn,
v(t− tn), for tn ≤ t ≤ tn + δ.

We next would like to show that ũ(t) is a mild solution of problem (2) in
[0, tn + δ], i.e., ũ(t) satisfies the integral equation

ũ(t) = S(t)u0 +

∫ t

0

S(t− τ)F (ũ(τ))dτ for 0 ≤ t ≤ tn + δ. (4)

From

u(t) = S(t)u0 +

∫ t

0

S(t− τ)F (u(τ))dτ for 0 ≤ t ≤ tn,

and

v(t) = S(t)u(tn) +

∫ t

0

S(t− τ)F (v(τ))dτ for 0 ≤ t ≤ δ,

it is clear that for t ∈ [0, tn], ũ(t) satisfies (4). For t ∈ [0, δ],

ũ(t+ tn) = v(t)

= S(t+ tn)u0 +

∫ tn

0

S(t+ tn − τ)F (u(τ))dτ +

∫ t

0

S(t− τ)F (v(τ))dτ

= S(t+ tn)u0 +

∫ tn

0

S(t+ tn − τ)F (u(τ))dτ

+

∫ t+tn

tn

S(t+ tn − τ)F (v(τ − tn))dτ

= S(t+ tn)u0 +

∫ tn

0

S(t+ tn − τ)F (ũ(τ))dτ

+

∫ t+tn

tn

S(t+ tn − τ)F (ũ(τ))dτ

= S(t+ tn)u0 +

∫ t+tn

0

S(t+ tn − τ)F (ũ(τ))dτ.

12



Hence, ũ is a mild solution of problem (2) in [0, tn+δ] with tn+δ > Tmax. This
contradicts the definition of Tmax. Therefore, the proof of proposition 3.2.1 is
complete. �

We next prove Theorem 2.2

Proof of Theorem 2.2. Suppose that there is a positive constant M such
that |u(x0, t)| ≤ M as t → Tmax. Since

u(t) = S(t)u0 +

∫ t

0

S(t− τ)F (u(τ))dτ

= S(t)u0 +

∫ t

0

f(u(x0, τ))S(t− τ)1dτ

where 1 is a function in L2(I) such that 1(x) = 1 ∀x ∈ I. Then, from proposi-
tion 3.1.4, we have

|u(t)|H1
0 (I)

≤ |u0|H1
0 (I)

+ (|f(0)|+MLM )

∫ t

0

1

(t− τ)
1
2

|1|L2(I) dτ

= |u0|H1
0 (I)

+ 2 (|f(0)|+MLM ) |1|L2(I) t
1
2 .

Thus, as t → Tmax, |u(t)|H1
0 (I)

is bounded. This contradicts proposition 3.2.1.

Hence, theorem 2.2 is proven. �

Conclusion

In this paper, we prove existence, uniqueness of a blow-up solution of prob-
lem (1) via semigroup theory. It is in contrast with the Green’s function
method since we are dealing with functions in Sobolev space and fractional
operator. The advantage of this method is that the same result can be ex-
tended in higher dimension. We also point out that the assumption (H3) on f
guarantees a blow-up if Tmax is finite. Further assumptions of f is needed in
order to show that Tmax is finite which we do not discuss here.

AcknowledgementsAuthors would like to thank the Staff Development Project
of the Higher Education Commission and the National Center for Genetic En-
gineering and Biotechnology for financial support during the preparation of
this paper.

References
[1] J.M. Chadam, A. Peirce and H.M. Yin, The blowup property of solutions

to some diffusion equations with localized nonlinear reactions, J. Math.
Anal. Appl. 169(2) (1992) 313-328.

13



[2] C.Y. Chan and J. Yang, Complete blow-up for degenerate semilinear
parabolic equations, J. Comp. and Appl. Math. 113 (2000) 353-364.

[3] L.C. Evans, ”Partial Differential Equations”, American Mathematical So-
ciety, 1998.

[4] J.A. Goldstein, ”Semigroups of Linear Operators and Applications”,
Clarendon Press, 1989.

[5] S. Zheng, ”Nonlinear Evolution Equations”, Chapman & Hall/CRC mono-
graphs and surveys in pure and applied mathematics, 2004.

————————

14


