Somsak Orankitjaroen 
  
Nuttawat Sontichai 
  
Christian Licht 
email: licht@lmgc.univ-montp2.fr
  
Amnuay Kananthai 
  
Remark on the Homogenization of a Microfibered Linearly Elastic Material

Keywords: homogenization, variational convergence, capacitary problems

We consider the homogenization of a linear elliptic boundary value problem of elasticity. The isotropic elastic material is reinforced by a periodic distribution of very thin parallel fibers in which the Lamé coefficients are assumed to have high values. Bellieud and Gruais proved that the macroscopic behavior is the one of a generalized continuum medium involving an additional state variable accounting for the microstructure. Here we propose a proof of this result by studying the variational convergence of the energy functional.

Introduction

We intend to study the macroscopic behavior of a cylindrical micro-fibered structure made of a linearly isotropic elastic matrix surrounding a periodic distribution of very thin linearly isotropic elastic fibers of very high stiffness. As usual, we make no difference between the real physical space and R 3 whose an orthonormal basis is denoted by {e α } and, for all ξ = (ξ 1 , ξ 2 , ξ 3 ) of R 3 , ξ stands for (ξ 1 , ξ 2 ). Let ω a bounded domain of R 2 , containing the origin, with a Lipschitz continuous boundary ∂ω and L a positive number so that Ω := ω × (0, L) is a reference configuration of the fibered structure which can be described as follows (see Figure 1). For each ε > 0, (Y i ε ) ∈ I ε , where Y i ε := (εi 1 , εi 2 )+(-ε/2, ε/2) 2 and I ε := i ∈ Z 2 | Y i ε ⊂ ω , denotes a periodic distribution of cells. Let (D i rε ) i∈I ε the family of disk of R 2 centered at xi ε := (εi 1 , εi 2 ) of radius r ε ε, and T i ε := D i r ε × (0, L). The set T ε := ∪ i∈Iε T i ε of thin parallel cylinders is the domain occupied by the fibers.

The Lamé coefficients λ ε and µ ε of the structure are such that

λ ε (x) = λ 0 > 0, if x ∈ Ω \ T ε λ ε1 , if x ∈ T ε , µ ε (x) = µ 0 > 0, if x ∈ Ω \ T ε µ ε1 , if x ∈ T ε .
The structure is clamped on the part Γ 0 := ω × {0, L} of the boundary ∂Ω of Ω, subjected to body forces of density f and to surface forces of density g on Γ 1 := ∂Ω \ Γ 0 . The problem of finding the equilibrium configuration of the structure reads as

         -div σ ε = f in Ω, σ ε := λ ε tr e(u ε )I + 2µ ε e(u ε ), e(u ε ) = (∇u) s := 1 2 (∇u ε + ∇u T ε ), u ε = 0 on Γ 0 , σ ε n = g on Γ 1 .
(

) 1 
where u ε , σ ε denote the displacement and stress fields and n is the unit outward normal.

It is well-known that if λ ε1 , µ ε1 > 0, f ∈ L 2 (Ω, R 3 ), g ∈ L 2 (Γ 1 , R 3
), then the problem, which can also be written

(P ε ) min F ε (w) -L(w) | w ∈ H 1 Γ 0 (Ω, R 3 ) , ( 2 
)
where

F ε (w) := Ω W ε (e(w)) dx, L(w) := Ω f • w dx - Γ1 g • w ds,
and W ε (e) := 1 2 λ ε tr 2 e + µ ε |e| 2 , ∀e ∈ S 3 the space of symmetric 3 × 3 matrices,

H 1 Γ0 (Ω, R 3 ) = { v ∈ H 1 (Ω, R 3 ) | v = 0 on Γ 0 }
has a unique solution ūε .

To determine the macroscopic (or efficient) behavior of the micro-fibered structure, we aim to study the asymptotic behavior of ūε when ε goes to zero. Let

k ε := µ ε1 |T ε | |Ω| , l ε := λ ε1 µ ε1 ,
and assume that, as ε → 0,

r ε → 0, r ε ε → 0, λ ε1 → +∞, µ ε1 → +∞, k ε → k ∈ [0, +∞], r 2 ε k ε → κ ∈ [0, +∞], l ε → l ∈ [0, +∞), (ε 2 | ln r ε |) -1 → γ ∈ [0, +∞).
(3) Let 1 T ε the characteristic function of T ε and M b (Ω, R 3 ) the space of bounded R 3 -valued measures in Ω, it was proven in [START_REF] Bellieud | Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non local effects. Memory effects[END_REF] that, as ε tends to zero, ūε weakly converges in H 1 (Ω, R 3 ) toward ū and vε := |Ω| |Tε| ūε 1 Tε weakly* converges in M b (Ω, R 3 ) toward an element v of L 2 (Ω, R 3 ) solving

(P hom ) min Φ(u, v) -L(u) | (u, v) ∈ L 2 (Ω, R 3 ) 2 , with Φ(u, v) =                                      Ω W 0 (e(u)) dx + µ 0 πγ Ω (v -u) T    χ+1 χ 0 0 0 χ+1 χ 0 0 0 1    • (v -u) dx + 1 2 3l + 2 2(l + 1) k Ω ∂v 3 ∂x 3 2 dx + 1 2 3l + 2 2(l + 1) κ 4 Ω ∂ 2 v 1 ∂x 2 3 2 + ∂ 2 v 2 ∂x 2 3 2 dx, if (u, v) ∈ D, +∞, otherwise,
and

W 0 (e(u)) := 1 2 λ 0 tr 2 e(u) + µ 0 |e(u)| 2 , χ := λ 0 + 3µ 0 λ 0 + µ 0 , D := H 1 Γ0 (Ω, R 3 ) × v ∈ L 2 (ω, H 2 0 (0, L; R 3 )) ∂v 1 ∂x 3 = ∂v 2 ∂x 3 = 0 on Γ 0 .
Thus, the macroscopic behavior of the micro-fibered structure is the one of a so-called generalized elastic continuum medium involving an additional state variable and its first two derivatives. This additional state variable accounts for the microstructure in the extent where it describes the asymptotic behavior of a suitable scaling of the displacement field in the fibers. Our main concern is to understand this result more deeply and in a more general setting e.g., a different cross-section of the fibers, a more general behavior of the matrix or the fibers. Nevertheless, here, we confine to give another proof of the result of [START_REF] Bellieud | Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non local effects. Memory effects[END_REF] by directly studying the variational convergence (as in the scalar case [START_REF] Orankitjaroen | Mathematical modeling of fiber reinforced structures by homogenization[END_REF]) of F ε and shall divide our proof into three steps:

1. a compactness property for each sequence (u ε ) such that F ε (u ε ) is bounded, 2. an upper bound equality for the sequence (F ε (u ε )),

3. a lower bound inequality for the sequence (F ε (u ε )).

A Different Approach

Actually, the result of [START_REF] Bellieud | Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non local effects. Memory effects[END_REF] is a standard consequence [START_REF] Attouch | Variational Analysis in Sobolev and BV Spaces[END_REF] of the following three propositions:

Proposition 1. (Compactness property) Let (u ε ) be a sequence such that sup ε F ε (u ε ) is finite. Then (u ε ) is strongly relatively compact in L 2 (Ω, R 3 ) and (v ε ) is bounded in L 1 (Ω, R 3 ) and, up to a subsequence, (v ε ) weakly* converges in M b (Ω, R 3 ) to an element v of L 2 (Ω, R 3 ). Proposition 2. (Upper bound equality) For all (u, v) in L 2 (Ω, R 3 ) 2 with Φ(u, v) < +∞, there exists a sequence (u ε ) such that u ε → u in L 2 (Ω, R 3 ), v ε * v in M b (Ω, R 3 ) and lim ε→0 F ε (u ε ) = Φ(u, v). Proposition 3. (Lower bound inequality) For all u in L 2 (Ω, R 3
) and for all sequence

(u ε ) such that u ε → u in L 2 (Ω, R 3 ), v ε * v in M b (Ω, R 3 
), one has:

lim inf ε→0 F ε (u ε ) ≥ Φ(u, v).
The convergence symbols →, and * are used for the strong convergence, the weak convergence and the weak* convergence, respectively. The proof of these propositions are presented in the following subsections, where, as a common practice, C denote various constants which may vary from line to line.

Proof of Proposition 1

A proof of this proposition can be found in [START_REF] Bellieud | Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non local effects. Memory effects[END_REF].

Proof of Proposition 2

We split F ε into three parts:

F 1 ε (w) := Ω\(B ε ∪T ε ) W ε (e(w)) dx, F 2 ε (w) := Bε W ε (e(w)) dx, F 3 ε (w) := Tε W ε (e(w)) dx,
where

B ε := (D R ε \ D r ε ) × (0, L), D r ε := ∪ i∈I ε D i r ε , D R ε := ∪ i∈I ε D i R ε , D i R ε is the disk of R 2 centered at xi ε of radius R ε such that r ε R ε ε.
We point out that our proof is in the same spirit as that of [START_REF] Orankitjaroen | Mathematical modeling of fiber reinforced structures by homogenization[END_REF], where the main ingredient stems from [START_REF] Bellieud | Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non local effects. Memory effects[END_REF] and essentially confine to the convergence of F 2 ε . We first assume u and v to be smooth on Ω and construct an L 2 -approximation u ε of u by:

u ε = 3 α=1 u α (e α -θ α ε ) + wεα θ α ε . ( 4 
)
Here, for each α ∈ {1, 2, 3}, the vector field θ α ε is first defined on the closure of

ω ε := ∪ i∈Iε Y i ε as a (-ε/2, ε/2) 2 -periodic element of H 1 (Ω, R 3 ) which does not depend on x 3 and satisfies θ α ε = e α on D r ε , θ α ε = 0 on ω ε \ D R ε . Next θ α ε is assumed to vanish on ω \ ω ε and wε (x) = w ε (x) + V ε (x) (5) 
where

w ε (x, x 3 ) = i∈I ε 1 |D i r ε | D i r ε v(ŷ, x 3 ) dŷ 1 Y i ε (x),
and V ε stems from w ε in such a way that F 3 ε (u ε ) converges. The true expressions of V ε can be found in [START_REF] Bellieud | Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non local effects. Memory effects[END_REF] (formula (5.16) and (5.52) with ψ and ϕ in place of v and u).

As R ε ε implies lim ε→0 |B ε ∪ T ε | = 0, we have lim ε→0 F 1 ε (u ε ) = Ω W 0 (e(u)) dx.
To find the limit of F 2 ε (u ε ), we introduce

z ε := 3 α=1 (v -u) α e(θ α ε ), (6) 
and compute the linearized strain of u ε from ( 4):

e(u ε ) = z ε + e(u) + 3 α=1 [( wεα -v α ) e(θ α ε ) + (θ α ε ⊗ ∇( wε -u) α ) s ] .
We claim that a good choice of θ α ε yields

lim ε→0 B ε W 0 (e(u ε )) dx - B ε W 0 (z ε ) dx = 0.
Note that W 0 , being convex and positively homogeneous of degree 2, satisfies (see [START_REF] Dacorogna | Direct Methods in the Calculus of Variations[END_REF]):

∀ ξ, η ∈ S 3 , |W 0 (ξ) -W 0 (η)| ≤ C|ξ -η|(|ξ| + |η|) (7)
so that Cauchy-Schwarz inequality implies

B ε W 0 (e(u ε )) -W 0 (z ε ) dx ≤ C B ε |e(u ε ) -z ε | 2 dx 1/2 B ε |e(u ε )| 2 dx + B ε |z ε | 2 dx 1/2 .
Because u and v are smooth, we have

|∇ wε | ≤ C on B ε , | wε -v| ≤ CR ε on B ε , consequently, B ε |z ε | 2 dx ≤ Cε -2 3 α=1 D(r ε ,R ε ) |e(θ α ε )| 2 dx with D(r ε , R ε ) = D(0, R ε ) \ D(0, r ε ), where for all R > 0, D(0, R) := {x ∈ R 2 | |x| < R} and B ε |e(u ε ) -z ε | 2 dx ≤ CR 2 ε ε -2 1 + 3 α=1 R 2 ε D(0,R ε ) |θ α ε | 2 dx + D(0,R ε ) |e(θ α ε )| 2 dx ≤ CR 2 ε ε -2 1 + 3 α=1 D(0,R ε ) |e(θ α ε | 2 dx
by due account of the Korn inequality in D(0, R ε ). Therefore,

Bε W 0 (e(u ε )) dx - Bε W 0 (z ε ) dx ≤ CR ε ε -1 1 + 3 α=1 D(0,R ε ) |e(θ α ε )| 2 dx 1/2 • ε -1 3 α=1 D(0,R ε ) |e(θ α ε )| 2 dx 1/2
, thus, assuming that θ α ε satisfies

D(0,R ε ) |e(θ α ε )| 2 dx ≤ C | ln r ε | , ∀α = {1, 2, 3}, (8) 
it suffices to study the asymptotic behavior of Bε W 0 (z ε ) dx . Let us denote the bilinear form associated with the quadratic form W 0 by w 0 : w 0 (e, e ) = 1 2 λ 0 (tr e)(tr e ) + µ 0 e • e , ∀e, e ∈ S 3 .

Note that

B ε W 0 (z ε ) dx = 3 α,β=1 B ε (v -u) α (v -u) β w 0 e(θ α ε ), e(θ β ε ) dx = ε -2 3 α,β=1 D(r ε ,R ε ) w 0 (e(θ α ε ), e(θ β ε ) dx L 0 i∈I ε |Y i ε |(v -u) α (x i ε , x 3 )(v -u) β (x i ε , x 3 ) dx 3 + O(ε).
Here, it clearly appears that in order to get the lowest upper bound for F 2 ε , θ α ε has to be the unique solution of the capacitary problem

(P cap, α ε ) min      D(rε,Rε) W ε (e(ϕ)) dx ϕ ∈ H 1 ((-ε, ε) 2 , R 3 ), ϕ(x) = e α on D(0, r ε ) = { |x| < r ε }, ϕ(x) = 0 on (-ε, ε) 2 \ D(0, R ε ).      It is shown in [4] (see Appendix) that i) inequality (8) is true, ii) ∃w cap 0 ∈ S 3 such that lim ε→0 ε -2 D(r ε ,R ε ) w 0 (e(θ α ε ), e(θ β ε ) dx = (w cap 0 ) αβ ∀α, β ∈ {1, 2, 3}.          (9) Therefore, lim ε→0 Bε W 0 (z ε ) dx = Ω w cap 0 (v -u) • (v -u) dx,
with (see Appendix)

w cap 0 = πγµ 0   χ+1 χ 0 0 0 χ+1 χ 0 0 0 1   .
We complete the proof of the convergence of F 1 ε (u ε ) and F 2 ε (u ε ) for any (u, v) such that Φ(u, v) < ∞ by approximation and diagonalization arguments. Eventually, as mentioned earlier, V ε is chosen in such a way that a tedious computation shows that F 3 ε (u ε ) has the expected limit.

Proof of Proposition 3

We assume here that lim inf

ε F ε (u ε ) < +∞. Compactness property yields that (u, v) belongs to L 2 (Ω, R 3 ) 2 .
We begin with the term

F 2 ε (u ε ). Let (u η , v η ) be Lipschitz on Ω with the property lim η→0 u η -u L 2 (Ω,R 3 ) + v η -v L 2 (Ω,R 3 ) = 0. Next we define an approximation (v η - u η ) ε := i∈Iε (v η -u η )(x i ε , x 3 )1 Y i ε of (v η -u η )
, and associate z ηε to (u η , v η ) by ( 6). Let zηε :=

3 α=1 (v η -u η ) εα e(θ α ε ). Because of local Lipschitz property (7) of W 0 and (u, v) ∈ L 2 (Ω, R 3 ) 2 , Cauchy-Schwarz inequality implies lim ε→0 B ε W 0 (z ηε ) dx - B ε W 0 (z ηε ) dx = 0.
The proof of upper bound equality shows

lim ε→0 Bε W 0 (z ηε ) dx = Ω w cap 0 (v η -u η ) • (v η -u η ) dx.
Therefore, W 0 , being convex and 2-positively homogeneous, the subdifferential inequality gives:

lim inf ε→0 B ε W 0 (e(u ε )) dx ≥ lim inf ε→0 B ε W 0 (z ηε ) dx + lim inf ε→0 B ε W 0 (z ηε ) • (e(u ε ) -zηε ) dx = - Ω w cap 0 (v η -u η ) • (v η -u η ) dx + lim inf ε→0 B ε W 0 (z ηε ) • e(u ε ) dx (10) Letting D i (r ε , R ε ) := D i Rε \ D i rε , we have: Bε W 0 (z ηε )•e(u ε ) dx = i∈Iε 3 α=1 L 0 (v η -u η ) α (x i ε , x 3 ) D i (rε,Rε) W 0 (e(θ α ε )) • e(u ε ) dx dx 3 .
If ν denotes the outer normal along to both ∂D i rε and ∂D i R ε . The very definition of θ α ε as a solution of (P cap,α ε ) and Green formula imply:

D i (r ε ,R ε ) W 0 (e(θ α ε )) • e(u ε ) dx = - ∂D i r ε W 0 (e(θ α ε ))ν • u ε dl + ∂D i Rε W 0 (e(θ α ε ))ν • u ε dl = - ∂D i r ε W 0 (e(θ α ε ))ν • (u ε -ūε ) dl + ∂D i R ε W 0 (e(θ α ε ))ν • (u ε -ūε ) dl + ∂D i rε W 0 (e(θ α ε ))ν • ( ūε -ūε ) dl = - ∂D i r ε W 0 (e(θ α ε ))ν • (u ε -ūε ) dl + ∂D i R ε W 0 (e(θ α ε ))ν • (u ε -ūε ) dl + 2 3 β=1 ( ūε -ūε ) i β D(rε,Rε) w 0 (e(θ α ε ), e(θ β ε )) dx, where ( ūε ) i (x 3 ) = 1 |∂D i r ε | ∂D i r ε u ε (x, x 3 ) dl, ūε (x) = i∈Iε ( ūε ) i (x 3 )1 Y i ε (x), (ū ε ) i (x 3 ) = 1 |∂D i R ε | ∂D i R ε u ε (x, x 3 ) dl, ūε (x) = i∈I ε (ū ε ) i (x 3 )1 Y i ε (x), u ε (•, x 3 ) being, by Fubini's theorem, well defined in H 1 (ω, R 3 ) for a.e. x 3 ∈ (0, L).
Actually, the standard estimates

L 0 ∂D i r ε |u ε -ūi ε | dl dx 3 ≤ r ε T i ε |∇u ε | 2 dx 1/2 , L 0 ∂D i Rε |u ε -ūi ε | dl dx 3 ≤ R ε D i Rε ×(0,L) |∇u ε | 2 dx 1/2
and the estimates (see Appendix)

|W 0 (e(θ α ε ))ν| L ∞ (∂D(0,rε)) ≤ C r ε | ln r ε | , |W 0 (e(θ α ε ))ν| L ∞ (∂D(0,Rε)) ≤ C R ε | ln r ε | for α = 1, 2, 3 imply that i∈I ε 3 α=1 L 0 (v η -u η ) α (x i ε , x 3 ) ∂D i r ε W 0 (e(θ α ε ))ν • (u ε -ūε ) dl dx 3 ≤ C | ln r ε | i∈I ε T i ε |∇u ε | 2 dx 1/2 ≤ Cε ε 2 | ln r ε | Ω |∇u ε | 2 dx 1/2 ≤ Cε and i∈I ε 3 α=1 L 0 (v η -u η ) α (x i ε , x 3 ) ∂D i Rε W 0 (e(θ α ε ))ν • (u ε -ūε ) dl dx 3 ≤ C | ln r ε | i∈I ε T i ε |∇u ε | 2 dx 1/2 ≤ Cε ε 2 | ln r ε | Ω |∇u ε | 2 dx 1/2 ≤ Cε. Thus, lim ε→0 Bε W 0 (z ηε ) • e(u ε ) dx = 2 i∈I ε 3 α,β=1 L 0 (v η -u η ) α (x i ε , x 3 ) D(r ε ,R ε ) w 0 (e(θ α ε ), e(θ β ε )) dx ( ūε -ūε ) i β (x 3 ) dx 3 = 2 Ω w cap 0 (v η -u η ) • (v -u) dx,
by due account of (9) and of the weak convergence in L 2 (Ω, R 3 ) of ( ū, ū) toward (v, u) (see [START_REF] Bellieud | Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non local effects. Memory effects[END_REF] P.68). Hence, letting η tends to zero, yields

lim inf ε→0 F 2 ε (u ε ) ≥ Ω w cap 0 (v -u) • (v -u) dx.
Because |B ε ∪T ε | tends to zero, a classical semi-continuity argument taking into account the convexity of W 0 yields

lim inf ε→0 F 1 ε (u ε ) ≥ Ω W 0 (e(u)) dx.
For the third term F 3 ε (u ε ), we may extend the strategy of [START_REF] Pideri | A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium[END_REF] to all cases of relative behaviors of the parameters by due account of the function V ε introduced by [START_REF] Bellieud | Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non local effects. Memory effects[END_REF].

Concluding Remarks

Here was presented another proof of a result of [START_REF] Bellieud | Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non local effects. Memory effects[END_REF] concerning the homogenization of a cylindrical fibered structure. Instead of passing to the limit on a formulation of the problem in terms of variational equality through appropriate sequence of oscillating test fields, we study the variational convergence of the energy functional. Hence, the ingredients in the construction of the appropriate oscillating test fields are clearly justified as providing the "best" upper bound. Thus, it seems possible to consider a more general cross section for the fibers (say r ε ∆ with ∂∆ smooth enough) and a more general quadratic bulk energy density W M for the matrix in the extent where the solutions θ α ε of the involved capacitary problems min

     (-ε,ε) 2 W M (e(ϕ)) dx ϕ ∈ H 1 ((-ε, ε) 2 , R 3 ), ϕ(x) = e α on r ε ∆, ϕ(x) = 0 on (-ε, ε) 2 \ D(0, R ε ).      are such that i) ∃w cap M ∈ S 3 such that (w cap M ) αβ = lim ε→0 ε -2 (-ε,ε) 2 w M (e(θ α ε ), e(θ β ε )) dx, ii) lim ε→0 εi+r ε ∂∆ W M (e(θ α ε ))•(u ε -ūε ) dl = lim ε→0 ∂D i Rε W M (e(θ α ε ))•(u ε -ūε ) dl = 0.

A The Vector Capacitary Problem

Taking advantage of the cylindrical geometry, Bellieud and Gruais [START_REF] Bellieud | Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non local effects. Memory effects[END_REF] showed that θ α ε and σ α ε := W 0 (e(θ α ε )) are such that θ 1 ε (x 1 , x 2 ) = θ 2 ε (x 2 , x 1 ), θ 1 ε3 = θ 2 ε3 = 0, Thus, for each α, β = 1, 2, 3, i) 

θ 3 ε = ln(R ε /r) ln(R ε /r ε ) e 3 in D(r ε , R ε ), r = |x|, (θ 1 ε1 + iθ 1 ε2 )(x) = A 2µ 0 χ(ln z + ln z) + z 2 r 2 ε + R 2 ε - z z - 2z z χ(r 2 ε + R 2 ε ) + 2χ(r 2 ε ln R ε -R 2 ε ln r ε ) R 2 ε -r 2 ε + r 2 ε R 2 ε (r 2 ε + R 2 ε )z 2 + R 2 ε R 2 ε -r 2 ε , with χ := λ 0 + 3µ 0 λ 0 + µ 0 , A := µ 0 R 2 ε -r 2 ε χ(r 2 ε +R 2 ε ) -χ ln R ε
|σ α ε ν| L ∞ (∂D(0,rε)) ≤ C r ε | ln r ε | , |σ α ε ν| L ∞ (∂D(0,Rε)) ≤ C R ε | ln r ε | , ii) D(0,R ε ) |e(θ α ε )| 2 dx ≤ C D(0,R ε ) W 0 (e(θ α ε )) dx ≤ C 2 ∂D(0,R ε ) (σ α ε ν) α dl ≤ C | ln r ε | , iii) (w cap 0 ) αβ := lim
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r ε , z the complex number x 1 + ix 2 , and σ 1 ε ν = µ 0
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