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Abstract

We consider the homogenization of a linear elliptic boundary value problem of
elasticity. The isotropic elastic material is reinforced by a periodic distribution of
very thin parallel fibers in which the Lamé coefficients are assumed to have high
values. Bellieud and Gruais proved that the macroscopic behavior is the one of a
generalized continuum medium involving an additional state variable accounting for
the microstructure. Here we propose a proof of this result by studying the variational
convergence of the energy functional.

Keywords: homogenization, variational convergence, capacitary problems.

1 Introduction

We intend to study the macroscopic behavior of a cylindrical micro-fibered structure made
of a linearly isotropic elastic matrix surrounding a periodic distribution of very thin linearly
isotropic elastic fibers of very high stiffness. As usual, we make no difference between the
real physical space and R3 whose an orthonormal basis is denoted by {eα} and, for all
ξ = (ξ1, ξ2, ξ3) of R3, ξ̂ stands for (ξ1, ξ2). Let ω a bounded domain of R2, containing
the origin, with a Lipschitz continuous boundary ∂ω and L a positive number so that
Ω := ω× (0, L) is a reference configuration of the fibered structure which can be described
as follows (see Figure 1).

6

?

L

Ω

@
@

@
@@I

ω

6

-

x2

x1&%
'$

&%
'$

rε

&%
'$

D
i

rε

Y
i

ε

6

?

ε

x1 x2

x3

T
i

ε

Figure 1: The fibered structure

For each ε > 0, (Y i
ε ) ∈ Iε, where Y i

ε := (εi1, εi2)+(−ε/2, ε/2)2 and Iε :=
{
i ∈ Z2 | Y i

ε ⊂ ω
}
,

denotes a periodic distribution of cells. Let (Di
rε

)i∈Iε the family of disk of R2 centered at



x̂i
ε := (εi1, εi2) of radius rε ¿ ε, and T i

ε := Di
rε
× (0, L). The set Tε := ∪i∈IεT

i
ε of thin

parallel cylinders is the domain occupied by the fibers.
The Lamé coefficients λε and µε of the structure are such that

λε(x) =

{
λ0 > 0, if x ∈ Ω \ Tε

λε1, if x ∈ Tε

, µε(x) =

{
µ0 > 0, if x ∈ Ω \ Tε

µε1, if x ∈ Tε.

The structure is clamped on the part Γ0 := ω×{0, L} of the boundary ∂Ω of Ω, subjected
to body forces of density f and to surface forces of density g on Γ1 := ∂Ω \ Γ0.

The problem of finding the equilibrium configuration of the structure reads as





−div σε = f in Ω,

σε := λε tr e(uε)I + 2µεe(uε), e(uε) = (∇u)s := 1
2 (∇uε +∇uT

ε ),
uε = 0 on Γ0,

σεn = g on Γ1.

(1)

where uε, σε denote the displacement and stress fields and n is the unit outward normal.
It is well-known that if λε1, µε1 > 0, f ∈ L2(Ω,R3), g ∈ L2(Γ1,R3), then the problem,
which can also be written

(Pε) min
{
Fε(w)− L(w) | w ∈ H1

Γ0
(Ω,R3)

}
, (2)

where

Fε(w) :=
∫

Ω

Wε(e(w)) dx, L(w) :=
∫

Ω

f · w dx−
∫

Γ1

g · w ds,

and

Wε(e) :=
1
2
λε tr2 e + µε|e|2, ∀e ∈ S3 the space of symmetric 3× 3 matrices,

H1
Γ0

(Ω,R3) = { v ∈ H1(Ω,R3) | v = 0 on Γ0 }

has a unique solution ūε.
To determine the macroscopic (or efficient) behavior of the micro-fibered structure, we

aim to study the asymptotic behavior of ūε when ε goes to zero. Let

kε := µε1
|Tε|
|Ω| , lε :=

λε1

µε1
,

and assume that, as ε → 0,

rε → 0,
rε

ε
→ 0, λε1 → +∞, µε1 → +∞,

kε → k ∈ [0, +∞], r2
εkε → κ ∈ [0, +∞], lε → l ∈ [0, +∞),

(ε2| ln rε|)−1 → γ ∈ [0, +∞).

(3)

Let 1Tε the characteristic function of Tε and Mb(Ω,R3) the space of bounded R3-valued
measures in Ω, it was proven in [4] that, as ε tends to zero, ūε weakly converges in
H1(Ω,R3) toward ū and v̄ε := |Ω|

|Tε| ūε1Tε weakly* converges in Mb(Ω,R3) toward an ele-
ment v̄ of L2(Ω,R3) solving

(Phom) min
{
Φ(u, v)− L(u) | (u, v) ∈ L2(Ω,R3)2

}
,
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with

Φ(u, v) =





∫

Ω

W0(e(u)) dx

+ µ0πγ

∫

Ω

(v − u)T




χ+1
χ 0 0
0 χ+1

χ 0
0 0 1


 · (v − u) dx

+
1
2

3l + 2
2(l + 1)

k

∫

Ω

∣∣∣∣
∂v3

∂x3

∣∣∣∣
2

dx

+
1
2

3l + 2
2(l + 1)

κ

4

∫

Ω

∣∣∣∣
∂2v1

∂x2
3

∣∣∣∣
2

+
∣∣∣∣
∂2v2

∂x2
3

∣∣∣∣
2

dx,

if (u, v) ∈ D,

+∞, otherwise,

and

W0(e(u)) :=
1
2
λ0 tr2 e(u) + µ0|e(u)|2, χ :=

λ0 + 3µ0

λ0 + µ0
,

D := H1
Γ0

(Ω,R3)×
{

v ∈ L2(ω,H2
0 (0, L;R3))

∣∣∣∣
∂v1

∂x3
=

∂v2

∂x3
= 0 on Γ0

}
.

Thus, the macroscopic behavior of the micro-fibered structure is the one of a so-called
generalized elastic continuum medium involving an additional state variable and its first
two derivatives. This additional state variable accounts for the microstructure in the
extent where it describes the asymptotic behavior of a suitable scaling of the displacement
field in the fibers. Our main concern is to understand this result more deeply and in a
more general setting e.g., a different cross-section of the fibers, a more general behavior of
the matrix or the fibers. Nevertheless, here, we confine to give another proof of the result
of [4] by directly studying the variational convergence (as in the scalar case [5]) of Fε and
shall divide our proof into three steps:

1. a compactness property for each sequence (uε) such that Fε(uε) is bounded,

2. an upper bound equality for the sequence (Fε(uε)),

3. a lower bound inequality for the sequence (Fε(uε)).

2 A Different Approach

Actually, the result of [4] is a standard consequence [3] of the following three propositions:

Proposition 1. (Compactness property) Let (uε) be a sequence such that supε Fε(uε)
is finite. Then (uε) is strongly relatively compact in L2(Ω,R3) and (vε) is bounded in
L1(Ω,R3) and, up to a subsequence, (vε) weakly* converges in Mb(Ω,R3) to an element
v of L2(Ω,R3).

Proposition 2. (Upper bound equality) For all (u, v) in L2(Ω,R3)2 with Φ(u, v) <

+∞, there exists a sequence (uε) such that uε → u in L2(Ω,R3), vε
∗
⇀ v in Mb(Ω,R3)

and
lim
ε→0

Fε(uε) = Φ(u, v).

Proposition 3. (Lower bound inequality) For all u in L2(Ω,R3) and for all sequence
(uε) such that uε → u in L2(Ω,R3), vε

∗
⇀ v in Mb(Ω,R3), one has:

lim inf
ε→0

Fε(uε) ≥ Φ(u, v).

The convergence symbols →, ⇀ and ∗
⇀ are used for the strong convergence, the weak

convergence and the weak* convergence, respectively. The proof of these propositions are
presented in the following subsections, where, as a common practice, C denote various
constants which may vary from line to line.
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2.1 Proof of Proposition 1

A proof of this proposition can be found in [4].

2.2 Proof of Proposition 2

We split Fε into three parts:

F 1
ε (w) :=

∫

Ω\(Bε∪Tε)

Wε(e(w)) dx,

F 2
ε (w) :=

∫

Bε

Wε(e(w)) dx, F 3
ε (w) :=

∫

Tε

Wε(e(w)) dx,

where Bε := (DRε \Drε)× (0, L), Drε := ∪i∈IεD
i
rε

, DRε := ∪i∈IεD
i
Rε

, Di
Rε

is the disk of
R2 centered at x̂i

ε of radius Rε such that rε ¿ Rε ¿ ε. We point out that our proof is
in the same spirit as that of [5], where the main ingredient stems from [4] and essentially
confine to the convergence of F 2

ε . We first assume u and v to be smooth on Ω and construct
an L2-approximation uε of u by:

uε =
3∑

α=1

(
uα(eα − θα

ε ) + w̄εαθα
ε

)
. (4)

Here, for each α ∈ {1, 2, 3}, the vector field θα
ε is first defined on the closure of ωε :=

∪i∈IεY
i
ε as a (−ε/2, ε/2)2-periodic element of H1(Ω,R3) which does not depend on x3 and

satisfies θα
ε = eα on Drε , θα

ε = 0 on ωε \DRε . Next θα
ε is assumed to vanish on ω \ωε and

w̄ε(x) = wε(x) + Vε(x) (5)

where

wε(x̂, x3) =
∑

i∈Iε

(
1

|Di
rε
|
∫

Di
rε

v(ŷ, x3) dŷ

)
1Y i

ε
(x̂),

and Vε stems from wε in such a way that F 3
ε (uε) converges. The true expressions of Vε

can be found in [4] (formula (5.16) and (5.52) with ψ and ϕ in place of v and u).
As Rε ¿ ε implies limε→0 |Bε ∪ Tε| = 0, we have

lim
ε→0

F 1
ε (uε) =

∫

Ω

W0(e(u)) dx.

To find the limit of F 2
ε (uε), we introduce

zε :=
3∑

α=1

(v − u)α e(θα
ε ), (6)

and compute the linearized strain of uε from (4):

e(uε) = zε + e(u) +
3∑

α=1

[(w̄εα − vα) e(θα
ε ) + (θα

ε ⊗∇(w̄ε − u)α)s] .

We claim that a good choice of θα
ε yields

lim
ε→0

(∫

Bε

W0(e(uε)) dx−
∫

Bε

W0(zε) dx

)
= 0.

Note that W0, being convex and positively homogeneous of degree 2, satisfies (see [1]):

∀ ξ, η ∈ S3, |W0(ξ)−W0(η)| ≤ C|ξ − η|(|ξ|+ |η|) (7)
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so that Cauchy-Schwarz inequality implies
∣∣∣∣
∫

Bε

W0(e(uε))−W0(zε) dx

∣∣∣∣

≤ C

(∫

Bε

|e(uε)− zε|2 dx

)1/2 (∫

Bε

|e(uε)|2 dx +
∫

Bε

|zε|2 dx

)1/2

.

Because u and v are smooth, we have

|∇w̄ε| ≤ C on Bε, |w̄ε − v| ≤ CRε on Bε,

consequently, ∫

Bε

|zε|2 dx ≤ Cε−2
3∑

α=1

∫

D(rε,Rε)

|e(θα
ε )|2 dx̂

with D(rε, Rε) = D(0, Rε) \D(0, rε), where for all R > 0, D(0, R) := {x̂ ∈ R2 | |x̂| < R}
and

∫

Bε

|e(uε)− zε|2 dx

≤ CR2
εε
−2

(
1 +

3∑
α=1

R2
ε

∫

D(0,Rε)

|θα
ε |2 dx̂ +

∫

D(0,Rε)

|e(θα
ε )|2 dx̂

)

≤ CR2
εε
−2

(
1 +

3∑
α=1

∫

D(0,Rε)

|e(θα
ε |2 dx̂

)

by due account of the Korn inequality in D(0, Rε). Therefore,
∣∣∣
∫

Bε

W0(e(uε)) dx−
∫

Bε

W0(zε) dx
∣∣∣

≤ CRεε
−1

(
1 +

3∑
α=1

∫

D(0,Rε)

|e(θα
ε )|2 dx̂

)1/2

· ε−1
( 3∑

α=1

∫

D(0,Rε)

|e(θα
ε )|2 dx̂

)1/2

,

thus, assuming that θα
ε satisfies
∫

D(0,Rε)

|e(θα
ε )|2 dx̂ ≤ C

| ln rε| , ∀α = {1, 2, 3}, (8)

it suffices to study the asymptotic behavior of
∫

Bε
W0(zε) dx . Let us denote the bilinear

form associated with the quadratic form W0 by w0:

w0(e, e′) =
1
2
λ0(tr e)(tr e′) + µ0e · e′, ∀e, e′ ∈ S3.

Note that
∫

Bε

W0(zε) dx =
3∑

α,β=1

∫

Bε

(v − u)α(v − u)βw0

(
e(θα

ε ), e(θβ
ε )

)
dx

= ε−2
3∑

α,β=1

(∫

D(rε,Rε)

w0

(
(e(θα

ε ), e(θβ
ε )

)
dx̂

∫ L

0

∑

i∈Iε

|Y i
ε |(v − u)α(x̂i

ε, x3)(v − u)β(x̂i
ε, x3) dx3

)
+ O(ε).

Here, it clearly appears that in order to get the lowest upper bound for F 2
ε , θα

ε has to
be the unique solution of the capacitary problem

(Pcap, α
ε ) min





∫

D(rε,Rε)

Wε(e(ϕ)) dx̂

∣∣∣∣∣∣∣

ϕ ∈ H1((−ε, ε)2,R3),
ϕ(x̂) = eα on D(0, rε) = { |x̂| < rε },
ϕ(x̂) = 0 on (−ε, ε)2 \D(0, Rε).




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It is shown in [4] (see Appendix) that

i) inequality (8) is true,

ii) ∃wcap
0 ∈ S3 such that

lim
ε→0

ε−2

∫

D(rε,Rε)

w0

(
(e(θα

ε ), e(θβ
ε )

)
dx̂ = (wcap

0 )αβ ∀α, β ∈ {1, 2, 3}.





(9)

Therefore,

lim
ε→0

∫

Bε

W0(zε) dx =
∫

Ω

wcap
0 (v − u) · (v − u) dx,

with (see Appendix)

wcap
0 = πγµ0




χ+1
χ 0 0
0 χ+1

χ 0
0 0 1


 .

We complete the proof of the convergence of F 1
ε (uε) and F 2

ε (uε) for any (u, v) such that
Φ(u, v) < ∞ by approximation and diagonalization arguments. Eventually, as mentioned
earlier, Vε is chosen in such a way that a tedious computation shows that F 3

ε (uε) has the
expected limit.

2.3 Proof of Proposition 3

We assume here that lim infε Fε(uε) < +∞. Compactness property yields that (u, v)
belongs to L2(Ω,R3)2.

We begin with the term F 2
ε (uε). Let (uη, vη) be Lipschitz on Ω with the property

limη→0 ‖uη − u‖L2(Ω,R3) + ‖vη − v‖L2(Ω,R3) = 0. Next we define an approximation (vη −
uη)ε :=

∑
i∈Iε

(vη − uη)(x̂i
ε, x3)1Y i

ε
of (vη − uη), and associate zηε to (uη, vη) by (6).

Let z̃ηε :=
∑3

α=1(vη − uη)εαe(θα
ε ). Because of local Lipschitz property (7) of W0 and

(u, v) ∈ L2(Ω,R3)2, Cauchy-Schwarz inequality implies

lim
ε→0

(∫

Bε

W0(z̃ηε) dx−
∫

Bε

W0(zηε) dx
)

= 0.

The proof of upper bound equality shows

lim
ε→0

∫

Bε

W0(zηε) dx =
∫

Ω

wcap
0 (vη − uη) · (vη − uη) dx.

Therefore, W0, being convex and 2-positively homogeneous, the subdifferential inequality
gives:

lim inf
ε→0

∫

Bε

W0(e(uε)) dx

≥ lim inf
ε→0

∫

Bε

W0(z̃ηε) dx + lim inf
ε→0

∫

Bε

W ′
0(z̃ηε) · (e(uε)− z̃ηε) dx

= −
∫

Ω

wcap
0 (vη − uη) · (vη − uη) dx + lim inf

ε→0

∫

Bε

W ′
0(z̃ηε) · e(uε) dx

(10)

Letting Di(rε, Rε) := Di
Rε
\Di

rε
, we have:

∫

Bε

W ′
0(z̃ηε)·e(uε) dx =

∑

i∈Iε

3∑
α=1

∫ L

0

(vη−uη)α(x̂i
ε, x3)

(∫

Di(rε,Rε)

W ′
0(e(θ

α
ε )) · e(uε) dx̂

)
dx3.

If ν denotes the outer normal along to both ∂Di
rε

and ∂Di
Rε

. The very definition of θα
ε as

6



a solution of (Pcap,α
ε ) and Green formula imply:

∫

Di(rε,Rε)

W ′
0(e(θ

α
ε )) · e(uε) dx̂

= −
∫

∂Di
rε

W ′
0(e(θ

α
ε ))ν · uε dl +

∫

∂Di
Rε

W ′
0(e(θ

α
ε ))ν · uε dl

= −
∫

∂Di
rε

W ′
0(e(θ

α
ε ))ν · (uε − ¯̄uε) dl +

∫

∂Di
Rε

W ′
0(e(θ

α
ε ))ν · (uε − ūε) dl

+
∫

∂Di
rε

W ′
0(e(θ

α
ε ))ν · (¯̄uε − ūε) dl

= −
∫

∂Di
rε

W ′
0(e(θ

α
ε ))ν · (uε − ¯̄uε) dl +

∫

∂Di
Rε

W ′
0(e(θ

α
ε ))ν · (uε − ūε) dl

+ 2
3∑

β=1

(¯̄uε − ūε)i
β

∫

D(rε,Rε)

w0(e(θα
ε ), e(θβ

ε )) dx̂,

where

(¯̄uε)i(x3) =
1

|∂Di
rε
|
∫

∂Di
rε

uε(x̂, x3) dl, ¯̄uε(x) =
∑

i∈Iε

(¯̄uε)i(x3)1Y i
ε
(x̂),

(ūε)i(x3) =
1

|∂Di
Rε
|
∫

∂Di
Rε

uε(x̂, x3) dl, ūε(x) =
∑

i∈Iε

(ūε)i(x3)1Y i
ε
(x̂),

uε(·, x3) being, by Fubini’s theorem, well defined in H1(ω,R3) for a.e. x3 ∈ (0, L).
Actually, the standard estimates

∫ L

0

∫

∂Di
rε

|uε − ¯̄ui
ε| dl dx3 ≤ rε

{∫

T i
ε

|∇uε|2 dx

}1/2

,

∫ L

0

∫

∂Di
Rε

|uε − ūi
ε| dl dx3 ≤ Rε

{∫

Di
Rε
×(0,L)

|∇uε|2 dx

}1/2

and the estimates (see Appendix)

|W ′
0(e(θ

α
ε ))ν|L∞(∂D(0,rε)) ≤

C

rε| ln rε| , |W ′
0(e(θ

α
ε ))ν|L∞(∂D(0,Rε)) ≤

C

Rε| ln rε|

for α = 1, 2, 3 imply that

∣∣∣∣∣
∑

i∈Iε

3∑
α=1

∫ L

0

(vη − uη)α(x̂i
ε, x3)

(∫

∂Di
rε

W ′
0(e(θ

α
ε ))ν · (uε − ¯̄uε) dl

)
dx3

∣∣∣∣∣

≤ C

| ln rε|
∑

i∈Iε

{∫

T i
ε

|∇uε|2 dx

}1/2

≤ Cε

ε2| ln rε|
{∫

Ω

|∇uε|2 dx

}1/2

≤ Cε

and

∣∣∣∣∣
∑

i∈Iε

3∑
α=1

∫ L

0

(vη − uη)α(x̂i
ε, x3)

(∫

∂Di
Rε

W ′
0(e(θ

α
ε ))ν · (uε − ūε) dl

)
dx3

∣∣∣∣∣

≤ C

| ln rε|
∑

i∈Iε

{∫

T i
ε

|∇uε|2 dx

}1/2

≤ Cε

ε2| ln rε|
{∫

Ω

|∇uε|2 dx

}1/2

≤ Cε.
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Thus,

lim
ε→0

∫

Bε

W ′
0(z̃ηε) · e(uε) dx

= 2
∑

i∈Iε

3∑

α,β=1

∫ L

0

(vη − uη)α(x̂i
ε, x3)

(∫

D(rε,Rε)

w0(e(θα
ε ), e(θβ

ε )) dx̂

)
(¯̄uε − ūε)i

β(x3) dx3

= 2
∫

Ω

wcap
0 (vη − uη) · (v − u) dx,

by due account of (9) and of the weak convergence in L2(Ω,R3) of (¯̄u, ū) toward (v, u)
(see [4] P.68). Hence, letting η tends to zero, yields

lim inf
ε→0

F 2
ε (uε) ≥

∫

Ω

wcap
0 (v − u) · (v − u) dx.

Because |Bε∪Tε| tends to zero, a classical semi-continuity argument taking into account
the convexity of W0 yields

lim inf
ε→0

F 1
ε (uε) ≥

∫

Ω

W0(e(u)) dx.

For the third term F 3
ε (uε), we may extend the strategy of [2] to all cases of relative

behaviors of the parameters by due account of the function Vε introduced by [4].

3 Concluding Remarks

Here was presented another proof of a result of [4] concerning the homogenization of a
cylindrical fibered structure. Instead of passing to the limit on a formulation of the problem
in terms of variational equality through appropriate sequence of oscillating test fields, we
study the variational convergence of the energy functional. Hence, the ingredients in the
construction of the appropriate oscillating test fields are clearly justified as providing the
“best” upper bound. Thus, it seems possible to consider a more general cross section for
the fibers (say rε∆ with ∂∆ smooth enough) and a more general quadratic bulk energy
density WM for the matrix in the extent where the solutions θα

ε of the involved capacitary
problems

min





∫

(−ε,ε)2
WM (e(ϕ)) dx̂

∣∣∣∣∣∣∣

ϕ ∈ H1((−ε, ε)2,R3),
ϕ(x̂) = eα on rε∆,

ϕ(x̂) = 0 on (−ε, ε)2 \D(0, Rε).





are such that

i) ∃wcap
M ∈ S3 such that (wcap

M )αβ = limε→0 ε−2
∫
(−ε,ε)2

wM (e(θα
ε ), e(θβ

ε )) dx̂,

ii) limε→0

∫
εi+rε∂∆

W ′
M (e(θα

ε ))·(uε− ¯̄uε) dl = limε→0

∫
∂Di

Rε

W ′
M (e(θα

ε ))·(uε−ūε) dl = 0.

A The Vector Capacitary Problem

Taking advantage of the cylindrical geometry, Bellieud and Gruais [4] showed that θα
ε and

σα
ε := W ′

0(e(θ
α
ε )) are such that

θ1
ε(x1, x2) = θ2

ε(x2, x1), θ1
ε3 = θ2

ε3 = 0,

θ3
ε =

ln(Rε/r)
ln(Rε/rε)

e3 in D(rε, Rε), r = |x̂|,

(θ1
ε1 + iθ1

ε2)(x̂) =
A

2µ0

(
χ(ln z + ln z) +

z2

r2
ε + R2

ε

− z

z̄
− 2zz̄

χ(r2
ε + R2

ε)

+
2χ(r2

ε ln Rε −R2
ε ln rε)

R2
ε − r2

ε

+
r2
εR2

ε

(r2
ε + R2

ε)z̄2

)
+

R2
ε

R2
ε − r2

ε

,
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with

χ :=
λ0 + 3µ0

λ0 + µ0
, A :=

µ0

R2
ε−r2

ε

χ(r2
ε+R2

ε) − χ ln Rε

rε

, z the complex number x1 + ix2,

and

σ1
εν =

µ0(χ + 1)(1 + o(1))
χrε| ln rε| e1 on ∂D(0, rε),

σ1
εν =

µ0(1 + o(1))
χRε| ln rε|

[
4(1 +

1
χ

cos2 θ − (1 + χ +
2
χ

))
]

e1 + 2(1 +
1
χ

) sin 2θe2 on ∂D(0, Rε),

σ3
εν =

−µ

r ln Rε/rε
e3 on the circle of radius r.

Thus, for each α, β = 1, 2, 3,

i)

|σα
ε ν|L∞(∂D(0,rε)) ≤

C

rε| ln rε| , |σα
ε ν|L∞(∂D(0,Rε)) ≤

C

Rε| ln rε| ,

ii)
∫

D(0,Rε)

|e(θα
ε )|2 dx̂ ≤ C

∫

D(0,Rε)

W0(e(θα
ε )) dx̂ ≤ C

2

∫

∂D(0,Rε)

(σα
ε ν)α dl ≤ C

| ln rε| ,

iii)

(wcap
0 )αβ := lim

ε→0
ε−2

∫

D(rε,Rε)

w0

(
(e(θα

ε ), e(θβ
ε )

)
dx̂

= lim
ε→0

ε−2

2

∫

∂D(0,rε)

(σα
ε ν)β dl,

satisfies

wcap
0 = πγµ0




χ+1
χ 0 0
0 χ+1

χ 0
0 0 1


 .
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