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CLT for Crossings of random trigonometric

Polynomials.

Jean-Marc Azäıs ∗ José R. León †

March 7, 2013

Abstract

We establish a central limit theorem for the number of roots of the
equation XN (t) = u when XN (t) is a Gaussian trigonometric poly-
nomial of degree N . The case u = 0 was studied by Granville and
Wigman. We show that for some size of the considered interval, the
asymptotic behavior is different depending on whether u vanishes or
not. Our mains tools are: a) a chaining argument with the stationary
Gaussain process with covariance sin t

t , b) the use of Wiener chaos de-
composition that explains some singularities that appear in the limit
when u 6= 0.

AMS Subject Classification: 60G15.
Keywords: Crossings of random trigonometric polynomials; Rice formula;
Chaos expansion.

1 Introduction

Let us consider the random trigonometric polynomial:

XN (t) =
1√
N

N∑
n=1

(an sinnt+ bn cosnt), (1)

where the coefficients an and bn are independent standard Gaussian random
variables and N is some integer.

The number of zeroes of such a process on the interval [0, 2π) has been
studied in the paper by Granville and Wigman [5] where a central limit
theorem, as N → +∞ is proved for the first time using the method of
Malevich [8].
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The aim of this paper is twofold: firstly we extend their result to the
number of crossings of every level and secondly we propose a simpler proof.
The key point consist in proving that after a convenient scaling the process
XN (t) converges in a certain sense to the stationary process X(t) with co-
variance r(t) = sin t

t . The central limit theorem for the crossings of process
XN (t) is then a consequence of the central limit theorem for the crossings
in large time for X(t).

The above idea is outlined in Granville and Wigman [5] but the authors
could not implement this procedure. Let us quoted their words: “While com-
puting the asymptotic of the variance of the crossings of process XN (t), we
determined that the covariance function rXN

of XN has a scaling limit r(t),
which proved useful for the purpose of computing the asympotics. Rather
than scaling rXN

, one might consider scaling XN . We realize, that the above
should mean, that the distribution of the zeros of XN is intimately related
to the distribution of the number of the zeros on (roughly) [0, N ] of a certain
Gaussian stationary process X(t), defined on the real line R, with covari-
ance function r....Unfortunately, this approach seems to be difficult to make
rigorous, due to the different scales of the processes involved”.

Our method can roughly be described as follows. In the first time in
Section 3 we defined the two process XN (or rather its normalization YN ,
see its definition in the next section) and X in the same probability space.
This fact allows us to compute the covariance between these two processes.
Afterwards we get a representation of the crossings of both processes in the
Wiener’s Chaos. These representations and the Mehler formula for non-
linear functions of four dimensional Gaussian vectors, permit us to compute
the L2 distance between the crossings of YN and the crossings of X. The
central limit theorem for the crossings of X can be obtained easily by a mod-
ification of the method of m-dependence approximation, developed firstly by
Malevich [8] and Berman [3] and improved by Cuzick [4]. The hypothesis in
this last work are more in accord with ours. Finally the closeness in L2 (in
quadratic mean) of the two numbers of crossings : those of X(t) and those
of the m-dependent approximation gives us the central limit theorem for the
crossings of XN .

The organization of the paper is the following: in Section 2 we present
basic calculations; Section 3 is devoted to the presentation of the Wiener
chaos decomposition and to the study of the variance. Section 4 states the
central limit theorem. Additional proofs are given in Section 5 and 6. A
table of notation is given in Section 7.
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2 Basic results and notation

rXN
(τ) will be the covariance of the process XN (t) given by

rXN
(τ) := E[XN (0)XN (τ)] =

1

N

N∑
n=1

cosnτ =
1

N
cos(

(N + 1)τ

2
)
sin(Nτ2 )

sin τ
2

.

(2)
We define the process

YN (t) = XN (t/N),

with covariance
rYN (τ) = rXN

(τ/N).

We have

r′YN (τ) =
1

2N sin τ
2N

cos
(2N + 1

2N
τ
)
− sin τ

4N2 sin2 τ
2N

, (3)

r′′XN
(τ) = −

sin τ
2

2N sin2 τ
2N

[sin
(N + 1)τ

2N
sin

τ

2N
+ cos

(N + 1)τ

2N
cos

τ

2N
] (4)

r′′YN (τ) =
1

N2
r′′YN (

τ

N
)

=
cos τ

2N cos (2N+1)
2N τ − 2 (2N+1)

2 sin τ
2N sin (2N+1)

2N τ − cos τ

4N2 sin2 τ
2N

−
(2N sin τ

2N cos(2N+1
2N τ)− sin τ) cos τ

2N

4N3 sin3 τ
2N

. (5)

The convergence of Riemann sums to the integral implies simply that

rYN (τ)→ r(τ) := sin(τ)/τ, (6)

r′YN (τ)→ r′(τ) = cos(τ)/τ − τ−2 sin(τ), (7)

r′′YN (τ) =
1

N2
r′′N (

τ

N
)→ r′′(τ) = −sin(τ)

τ
− 2

cos(τ)

τ2
+ 2

sin(τ)

τ3
. (8)

And these convergences are uniform in every compact interval that does not
contains zero. We will need also the following upper-bounds that are easy
When τ ∈ [0, Nπ]:

|rYN (τ)| ≤ π/τ ; |r′YN (τ)| ≤ π

2τ
+
π2

4τ2
; |r′′YN (τ)| ≤ (const)

(
τ−1+τ−2+τ−3

)
.

(9)
We now compute the ingredients of the Rice formula [2]

EX2
N (t) = 1, and E(X ′N (t))2 =

1

N

N∑
n=1

n2 =
(N + 1)(2N + 1)

6
.
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Denoting by NXN

[0,2π)(u) the numbers of crossings of the level u of XN on the

interval [0, 2π), the Rice formula gives

E[NXN

[0,2π)(u)] = 2π.
√

E(X ′N (t))2
√

2/π
e−

u2

2

√
2π

=
2√
3

√
(N + 1)(2N + 1)

2
e−

u2

2 .

Hence

lim
N→∞

E[NXN

[0,2π)(u)]

N
=

2√
3
e−

u2

2 .

When not specified, all the limits are taken when N →∞.

3 Spectral representation and Wiener Chaos

This section has as main goal to build both processes X(t) and YN (t) in the
same probability space. This chaining argument is one of our main tools.
It makes it possible to show that the two processes are close in L2 distance
and by consequence the same result holds true for the crossings of both
processes.

We have

X(t) =

∫ 1

0
cos(tλ) dB1(λ) +

∫ 1

0
sin(tλ) dB2(λ), (10)

where B1 and B2 are two independent Brownian motion. Using the same
Brownian motions we can write

YN (t) =

∫ 1

0

N∑
n=1

cos(
nt

N
) 1I[n−1

N
, n
N
)(λ)dB1(λ)+

∫ 1

0

N∑
n=1

sin(
nt

N
) 1I[n−1

N
, n
N
)(λ)dB2(λ).

It is easy to check, using isometry properties of stochastic integrals that
YN (t) has the desired covariance.

By defining the functions

γ1N (t, λ) =
N∑
n=1

cos(
nt

N
)1[n−1

N
, n
N
)(λ) and γ2N (t, λ) =

N∑
n=1

sin(
nt

N
)1[n−1

N
, n
N
)(λ),

we can write

YN (t) =

∫ 1

0
γ1N (t, λ)dB1(λ) +

∫ 1

0
γ2N (t, λ)dB2(λ). (11)

In the sequel we are going to express the representation (10) and (11)
in an isonormal process framework. Let define H2 the Hilbert vector space
defined as

{h = (h1, h2) :

∫
R
h21(λ)dλ+

∫
R
h22(λ)dλ <∞},
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with scalar product

< h,g >=

∫
R
h1(λ)g1(λ)dλ+

∫
R
h2(λ)g2(λ)dλ.

The transformation

h→W (h) :=

∫
R
h1(λ)dB1(λ) +

∫
R
h2(λ)dB2(λ),

defines an isometry between H2 and a Gaussian subspace of L2(Ω,A, P )
where A is the σ−field generated by B1(λ) and B2(λ).

Thus W (h)h∈H2 is the isonormal process associated to H2. By using the
representations (10) and (11), readily we get

X(t) = W ( 1I[0,1](·, ·)(cos t·, sin t·)),
YN (t) = W ( 1I[0,1](·, ·)(γ1N (·, t), γ2N (·, t))),

X̃ ′(t) :=
X ′(t)√

1/3
= W (

1I[0,1]√
1/3

(·, ·)(− sin t·, cos t·)),

Ỹ ′N (t) :=
Y ′N (t)√
−r′′YN (0)

= W (
1I[0,1]√
−r′′YN (0)

(·, ·)((γ1N (·, t))′, (γ2N (·, t))′).

We are in disposition of introduce the Wiener’s chaos which is our second
main tool. For a general reference about this topic see [9]. Let Hk be the
Hermite’s polynomial of degree k defined by

Hk(x) = (−1)ke
x2

2
dk

dxk
(e−

x2

2 ).

It is normalized such that for Y a standard Gaussian random variable we
have E(Hk(Y )Hm(Y )) = δk,mk!. Consider {ei}i∈N an ortonormal basis for
H2. Let Λ be the set the sequences a = (a1, a2, . . .) ai ∈ N such that all the
terms except a finite number vanish. For a ∈ Λ we set a! =

∏∞
i=1 ai! and

|a| =
∑∞

i=1 ai. For any multiindex a ∈ Λ we define

Φa =
1√
a!

∞∏
i=1

Hai(W (ei)).

For each n ≥ 1, we will denote by Hn the closed subspace of L2(Ω,A, P )
spanned by the random variables {Φa, a ∈ Λ, |a| = n}. The space Hn is
the nth Wiener chaos associated with B1(λ) and B2(λ). If H0 denotes the
space of constants we have the ortogonal decomposition

L2(Ω,A, P ) =
∞⊕
n=0

Hn.
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For any Hermite’s polynomial Hq, it holds

Hq(W (h)) =Iq(h) :=

∫ +∞

0
. . .

∫ +∞

0
h1(λ1) . . . h

1(λq)dB1(λ1) . . . dB1(λq)

+

∫ +∞

0
. . .

∫ +∞

0
h2(λ1) . . . h

2(λq)dB2(λ1) . . . dB2(λq),

with h = (h1, h2). For instance as YN (t) = W ( 1I[0,1](·, ·)(γ1N (·, t), γ2N (·, t))),
we obtain

H2(YN (t)) =

∫ 1

0

∫ 1

0
γ1N (λ1, t)γ

1
1,N (λ2, t)dB1(λ1)dB1(λ2)

+

∫ 1

0

∫ 1

0
γ2N (λ1, t)γ

2
N (λ2, t)dB2(λ1)dB2(λ2).

We now write the Wiener Chaos expansion for the number of crossings.
As the absolute value function belongs to L2(R, ϕ(x)dx), where ϕ is the
standard Gaussian density, we have |x| =

∑∞
k=0 a2kH2k(x) with

a2k = 2
(−1)k+1

√
2π2kk!(2k − 1)

.

It is shorter to study first XN (t) on [0, π] (resp. YN (t) and X(t) on [0, Nπ]),
the generalization to [0, 2π] (resp. to [0, 2Nπ]) will be done in Section 4.
The result of Kratz & León [6] or Th 10.10 in [2] imply

1√
Nπ

(NX
[0,πN ](u)− ENX

[0,πN ](u))

=
√

1/3ϕ(u)

∞∑
q=1

[ q
2
]∑

k=0

Hq−2k(u)

(q − 2k)!

a2k√
Nπ

∫ πN

0
Hq−2k(X(s))H2k(X̃

′(s)) ds,

(12)

where [x] is the integer part. We introduce the notation

fq(u, x1, x2) = ϕ(u)

[ q
2
]∑

k=0

Hq−2k(u)

(q − 2k)!
a2kHq−2k(x1)H2k(x2). (13)

For each s the random variable

fq(u,X(s), X̃ ′(s)) = ϕ(u)

[ q
2
]∑

k=0

Hq−2k(u)

(q − 2k)!
a2k

×Hq−2k(W ( 1I[0,1](·, ·)(cos s·, sin s·)))H2k(W (
1I[0,1]√

1/3
(·, ·)(− sin s·, cos s·)))
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belongs the q-th chaos as a consequence of linearity and the property of mul-
tiplication of two functionals belonging to different chaos, cf. [9] Proposition
1.1.3. Furthermore also by linearity the same is true for

Iq
(
[0, t]

)
=

√
1/3√
t

∫ t

0
fq(u,X(s), X̃ ′(s))ds. (14)

So that
1√
Nπ

(NX
[0,πN ](u)− ENX

[0,πN ](u)) =

∞∑
q=1

Iq
(
[0, πN ]

)
,

gives the decomposition in the Wiener chaos. The same type of expansion
is also true for NYN

[0,πN ](u)

1√
N

(
NYN

[0,πN ](u)− ENYN
[0,πN ](u)

)
=
∞∑
q=1

Iq,N
(
[0, πN ]

)
, (15)

where

Iq,N
(
[0, πN ]

)
=

√
−r′′YN (0)
√
πN

∫ πN

0
fq(u, YN (s), Ỹ ′N (s))ds. (16)

Our first goal is to compute the limit variance of (15). Our main tool
will be the Arcones inequality. We define the norm

||fq||2 := Ef2q (u, Z1, Z2),

where (Z1, Z2) is a bidimensional standard Gaussian vector. We have

||fq||2 = ϕ2(u)

[ q
2
]∑

k=0

H2
q−2k(u)

(q − 2k)!
a22k(2k)! ≤ (const)

[ q
2
]∑

k=0

a22k(2k)! ≤ (const),

where (const) is some constant that does not depend on q. Now we must
introduce the Arcone’s coefficient of dependence [1]

ψN (τ) = sup
(∣∣rYN (τ)

∣∣, ∣∣ r′YN (τ)√
−r′′YN (0)

∣∣, ∣∣r′′YN (τ)

r′′YN (0)

∣∣).
The Arcones inequality says that if ψN (s′ − s) < 1, it holds∣∣E[fq(u, YN (s), Ỹ ′N (s))fq(u, YN (s′), Ỹ ′N (s′))]

∣∣ ≤ ψqN (s′ − s)||fq||2.

We will use also the following Lemma the proof of which is given in
Section 5
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Lemma 1 For every a > 0, there exists a constant Ka such that

sup
N

Var
(
NYN

[0,a](u)
)
≤ Ka <∞. (17)

Choose some ρ < 1 , using the inequality (9), we can choose a big enough
such that for τ > a we have ψN (τ) < K

τ ≤ ρ.
Then we partition [0, Nπ] into L = [Nπa ] intervals J1, . . . , JL of length

larger than a, and we set for short

N` = NYN
J`

(u).

We have

Var(NYN
[0,Nπ](u)) = Var(N1+· · ·+NL) =

∑
`,`′,|`−`′|≤1

Cov (N`, N
′
`)+

∑
`,`′,|`−`′|>1

Cov (N`, N
′
`).

The first sum is easily shown to be O(N) by applying Lemma 1 and the
Cauchy-Schwarz inequality.

Let us look at a term of the second sum. Using the expansion (15) we
set

N` − E(N`)√
πN

=
∞∑
q=1

Iq,N (J`),

where Iq,N (J`) =

√
−r′′YN (0)
√
πN

∫
J`

fq(u, YN (s), Ỹ ′N (s))ds. Let us consider the

terms corresponding to q > 1. The Arcones inequality implies that∣∣Cov (Iq,N (J`), Iq,N (J`′))
∣∣ ≤ ∫

J`×J`′

1

Nπ
(−r′′YN (0))(K/τ)qCdsdt

≤ (const)

∫
J`×J`′

ρq−2τ−2dsdt, (18)

where τ = s − t. Summing over all pairs on intervals and over q ≥ 2 it is
easy to check that this sum is bounded.

It remains to study the case q = 1. Since H1(x) = x

I1,N (J`) = (Nπ)−1/2
√
−r′′YN (0)uφ(u)

∫
J`

YN (s)ds.

So that∣∣ ∑
`,`′,|`−`′|>1

Cov (I1,N (J`), I1,N (J`′))
∣∣ ≤ (const)

∣∣ 1

N

∫ πN

0

∫ πN

0
rYN (s−s′)dsds′

∣∣,

8



which is bounded because of the following result

1

N

∫ πN

0

∫ πN

0
rYN (s− s′)dsds′ = 2

N

∫ πN

0
(πN − τ)rYN (τ)dτ

= 2

N∑
n=1

∫ πN

0
(π − τ

N
)

1

N
cosn

τ

N
dτ

= 2

N∑
n=1

1− cosnπ

n2

= 4

N∑
j=0

1

(2j + 1)2

→ 4
∞∑
j=0

1

(2j + 1)2
= 4

π2

8
=
π2

2
. (19)

Define σ2q := lim
N→∞

Var
(
Iq([0, πN ])

)
<∞.

Proposition 2 For q > 1 we have

Var
(
Iq,N ([0, πN ])

)
→ σ2q as N → +∞.

For q = 1

Var
(
I1,N ([0, πN ])

)
→ 1

3
u2φ2(u)π.

In the case u 6= 0 this limit is different from

lim
N→∞

Var
(
I1([0, πN ])

)
=

2

3
u2φ2(u)π.

Remark 1 This different behavior, depending in which chaos we are, is
explicit thanks to the Wiener chaos decomposition.

Proof: Firstly we consider the case q > 2 :

E
(
I2q,N ([0, Nπ]

)
= −r′′YN (0)ϕ2(u)

[ q
2
]∑

k1=0

[ q
2
]∑

k2=0

Hq−2k1(u)

(q − 2k1)!
a2k1

Hq−2k2(u)

(q − 2k2)!
a2k2

1

Nπ

∫ Nπ

0

∫ Nπ

0
E[Hq−2k(YN (s))H2k(

Y ′N (s′)√
−r′′YN (0)

)Hq−2k(YN (s′))H2k(
Y ′N (s)√
−r′′YN (0)

)] ds′ds

= −r′′YN (0)ϕ2(u)

[ q
2
]∑

k1=0

[ q
2
]∑

k2=0

Hq−2k1(u)

(q − 2k1)!
a2k1

Hq−2k2(u)

(q − 2k2)!
a2k2

2

∫ πN

0
(1− s

Nπ
)E[Hq−2k1(YN (0))H2k1(

Y ′N (0)√
−r′′YN (0)

)Hq−2k2(YN (s))H2k2(
Y ′N (s)√
−r′′YN (0)

)] ds.

9



We now use the generalized Mehler formula (Lemma 10.7 page 270 of [2]).

Lemma 3 Let (X1, X2, X3, X4) be a centered Gaussian vector with variance
matrix

Σ =


1 0 ρ13 ρ14
0 1 ρ23 ρ24
ρ13 ρ23 1 0
ρ14 ρ24 0 1


Then, if r1 + r2 = r3 + r4,

E
(
Hr1(X1)Hr2(X2)Hr3(X3)Hr4(X4)

)
=

∑
(d1,d2,d3,d4)∈J

r1!r2!r3!r4!

d1!d2!d3!d4!
ρd113ρ

d2
14ρ

d3
23ρ

d4
24,

where J is the set of di’s satisfying : di ≥ 0;

d1 + d2 = r1 ; d3 + d4 = r2 ; d1 + d3 = r3 ; d2 + d4 = r4. (20)

If r1 + r2 6= r3 + r4 the expectation is equal to zero.

Using this lemma, there exist a finite set Jq and constants Cq,k1,k2 such
that

E[Hq−2k1(YN (0))H2k1(Ỹ ′N (0))Hq−2k2(YN (τ))H2k2(Ỹ ′N (τ))]

=
∑
Jq

Cq,k1,k2 |rYN (τ)|2q−(2k1+2k1)−h1 |
r′YN ( τN )√
−r′′YN (0)

|2h1 |
r′′YN (τ)√
−r′′YN (0)

|2k1+2k2−h1

:= G̃q,k1,k2,N (τ). (21)

This clearly proves that

E[Hq−2k1(YN (0))H2k1(Ỹ ′N (0))Hq−2k2(YN (τ))H2k2(Ỹ ′N (τ))]

→ E[Hq−2k1(X(0))H2k1(X̃ ′(0))Hq−2k2(X(τ))H2k2(X̃ ′(τ))]

and Formula (18) gives a domination proving the convergence of the integral
and the fact that σ2q is finite.

Let us look to the case q = 1

E
(
I21,N ([0, Nπ]

)
= −r′′YN (0)ϕ2(u)(ua0)

2 1

Nπ

∫ Nπ

0

∫ Nπ

0
E(YN (s)YN (s′))ds′ds

→ 1/3ϕ2(u)
2u2

π2
π2/2 =

1

3
u2φ2(u), (22)

using (19).
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On the other hand we have

E
(
I21 ([0, Nπ]

)
=

1

3
ϕ2(u)(ua0)

2 1

Nπ

∫ Nπ

0

∫ Nπ

0

sin(s− s′)
s− s′

ds′ds

=
1

3
ϕ2(u)

2u2

π2
2

∫ Nπ

0
(π − τ/N)

sin(τ)

τ
dτ → 2

3
u2φ2(u). (23)

4 Central limit Theorem with a chaining argu-
ment

In this section we first establish a central limit theorem, Theorem 4 for the
crossings of the process X(t) in the second step, we show that it implies
our main result : Theorem 5, central limit theorem for the crossings of the
XN (t).

The covariance r(t) of the limit process X(t) is not a summable in the
sense that ∫ +∞

0
|r(t)|dt = +∞,

but it satisfies ∫ N

0
r(t)dt converges as N →∞,

for q > 1 ∫ +∞

0
|r(t)|q dt < +∞.

The following theorem is a direct adaptation of the theorems Theorem 1 in
[7] or of Theorem 10.11 of [2]. Its proof is given in Section 6 for completeness.

Theorem 4 As t→ +∞,

1√
t

(
NX

[0,t](u)− E(NX
[0,t](u))

)
⇒ N(0,

2

3
u2φ2(u) +

∞∑
q=2

σ2q (u)),

where ⇒ is the convergence in distribution.

The main idea is to use this result to extend it to the crossings of YN (t).
Our main result is the following:

Theorem 5 As N → +∞,

1.
1√
Nπ

(
NYN

[0,Nπ](u)− E(NYN
[0,Nπ](u))

)
⇒ N(0,

1

3
u2φ2(u) +

∞∑
q=2

σ2q (u)),

11



2.
1√

2Nπ

(
NYN

[0,2Nπ](u)− E(NYN
[0,2Nπ](u))

)
⇒ N(0,

2

3
u2φ2(u) +

∞∑
q=2

σ2q (u)),

Remark 2 We point out that in the case u = 0 the two limit variances are
the same and this is the result of Granville and Wigman [5], but in the other
cases this is a new result. The chaos method permits an easy interpretation
of the difference between these two behaviors.

Proof: Let us introduce the cross correlation:

ρN (s, t) = E(X(s)YN (t)) =
N∑
n=1

∫ n
N

n−1
N

cos(sλ− t n
N

) dλ

=
N∑
n=1

∫ 1
N

0
cos((s− t) n

N
− sv) dv = <{

∫ 1
N

0
e−isvdv

N∑
n=1

ei(s−t)
n
N }

=
sin s

N
s
N

1

N

N∑
n=1

cos(s− t) n
N

+
1− cos s

N
s2

2N2

s

2N2

N∑
n=1

sin(s− t) n
N
,

where < is the real part. So we can write

ρN (s, t) =
sin(s/N)

s/N
rYN (t− s) +

1− cos(s/N)

s2/(2N2)

s

2N

1

N

N∑
n=1

sin(s− t) n
N
.

The two functions sin(z)
z and 1−cos(z)

z2/2
are bounded, with bounded derivatives

and sin(z)
z tend to 1 as z tends to 0. We have also

| 1
N

N∑
n=1

sin(s− t) n
N
| = | 2

s− t
sin (s−t)

2
2N
s−t

sin(N+1
2N (s− t))

sin (s−t)
2N

| ≤ (const)|s− t|−1,

whenever |s− t| < πN .
We have already proved that rYN (s− t) = 1

N

∑N
n=1 cos

(
(s− t) nN

)
, con-

verges to r(s − t) uniformly on every compact that does not contains zero.
The same result is true for the first two derivatives that converge respec-
tively to the corresponding derivative of r(s−t). In addition for large values
of |s − t| these functions are bounded by K|s − t|−1 and for each fixed s,
s

2N2

∑N
n=1 sin(s− t) nN → 0. Using the derivation rules it is easy to see that

this is enough to have

ρN (s, t)→ r(s− t)
∂ρN (s, t)

∂s
= E(X ′(s)YN (t))→ r′(s− t)

∂ρN (s, t)

∂t
= E(X(s)Y ′N (t))→ −r′(s− t)

∂2ρN (s, t)

∂s∂t
= E(X ′(s)Y ′N (t))→ −r′′(s− t),

12



again the convergence being uniform on every compact that does not con-
tains zero. In additions these function are bounded by (const)(s− t)−1.

Before beginning the proofs, we present two results that were established
in Peccati & Tudor [10] (Theorem 1 and Proposition 2) and we state as a
theorem for later reference.

We will denote as ζq,r a generic element of the q-th chaos depending of
a parameter r that tends to infinity. For instance in our cases we will have
ζq,t = Iq([0, t]) and ζq,N = Iq,N ([0, πN ]) respectively.

Theorem 6 (i) Assume that for every q1 ≤ q2, . . . ≤ qm, it holds that
lim
t→∞

E[ζqi,t]
2 = σ2ii and that for i 6= j lim

t→∞
E[ζqi,tζqj ,t] = 0.

Then, if Dm is the diagonal matrix with entries σ2ii, Theorem 1 of [10]
says that the random vector

(ζq1,t, . . . , ζqm,t)⇒ N(0, Dm),

if and only if each ζqi,t converges in distribution towards N(0, σ2ii) when
t→∞.

(ii) Considering now d functionals of the q-th chaos {ζ lq,r}dl=1, Proposition
2 of [10] says that

(ζ1q,r, ζ
2
q,r, . . . , ζ

d
q,r)⇒ N(0, C)

if an only if ζiq,t ⇒ N(0, cii) and E[ζiq,tζ
j
q,t] → cij when t → ∞, where

cij is the entry i, j of the matrix C.

We are now ready to prove the following lemma

Lemma 7 For q ≥ 2

lim
N→∞

E
[
Iq,N ([0, Nπ])− Iq([0, Nπ])

]2
= 0.

Proof:

E
[
Iq,N ([0, Nπ])− Iq([0, Nπ])

]2
= E

[
Iq,N ([0, Nπ])

]2
+ E

[
Iq([0, Nπ])

]2
− 2E

[
Iq,N ([0, Nπ])Iq([0, Nπ])

]
.

We have already shown that the first two terms tend to σ2q (u). It only
remains to prove that the third also does. But, since the cross correlation
ρN (s, t) shares all the properties of rYN (s− t), the same proof as in Section
3 shows that the limit is again σ2q (u).

We now finish the proof of Theorem 5.
Proof of 1. The case of I1,N ([0, Nπ]) is easy to handle since it is already a

13



Gaussian variable and that its limit variance is easy to compute using (19).
By Lemma 7, for q ≥ 2, Iq,N ([0, Nπ]) inherits the asymptotic Gaussian
behavior of Iq([0, Nπ]) .

By using (i) of Theorem 6, this is enough to obtain the normality of the
sum.
Proof of 2. We have already proved that

χN (1) :=
1√
Nπ

(
NYN

[0,Nπ](u)−E(NYN
[0,Nπ](u))

)
⇒ N(0,

1

3
u2φ2(u) +

∞∑
q=2

σ2q (u)),

the same result holds by stationarity for the sequence

χN (2) :=
1√
Nπ

(
NYN

[Nπ,2Nπ](u)− E(NYN
[Nπ,2Nπ](u))

)
,

and given that

1√
2Nπ

(
NYN

[0,2Nπ](u)− E(NYN
[0,2Nπ](u))

)
=

1√
2

(χN (1) + χN (2)).

It only remains to show that the limit of the vector (χN (1), χN (2)) is jointly
Gaussian and that the variance of the sum converges to the corresponding
one. Defining

Iq,N ([πN, 2πN ]) =

√
−r′′YN (0)
√
πN

∫ 2πN

πN
fq(u, YN (s), Ỹ ′N (s)ds,

we can write the sum above as

1√
2

(χN (1) + χN (2)) =
1√
2

(
∞∑
q=1

Iq,N ([0, πN ]) +
∞∑
q=1

Iq,N ([πN, 2πN ])),

and given that the limit variance is finite we have

1√
2

(χN (1) + χN (2)) =
1√
2

(

Q∑
q=1

Iq,N ([0, πN ]) +

Q∑
q=1

Iq,N ([πN, 2πN ])) + oP(1),

where oP(1) denotes a term that tends to zero in probability when Q→∞
uniformly in N . Let us consider first the term corresponding to the first
chaos (q = 1). We have

E := E
(
I1,N ([0, Nπ])I1,N ([Nπ, 2Nπ])

)
= −r′′YN (0)ϕ2(u)(ua0)

2 1

Nπ

∫ Nπ

0

∫ 2Nπ

Nπ
E(YN (s)YN (s′))ds′ds

= −r′′YN (0)ϕ2(u)(ua0)
2 1

Nπ

∫ Nπ

0

∫ 2Nπ

Nπ
rYN (s′ − s)ds′ds,

14



making the change of variable s′ − s = τ we get

= −r′′YN (0)ϕ2(u)(ua0)
2 1

Nπ
(

∫ πN

0
τrYN (τ)dτ+

∫ 2πN

πN
(2πN−τ)rYN (τ)dτ).

Since rYN is periodic with period 2πN :

E = −r′′YN (0)ϕ2(u)(ua0)
2 1

Nπ
(

∫ πN

0
τrYN (τ)dτ −

∫ 0

−πN
τrYN (τ)dτ)

= −r′′YN (0)ϕ2(u)(ua0)
2 2

Nπ

∫ πN

0
τrYN (τ)dτ → 1

3
ϕ2(u)u2,

using the same computation as for getting (19).

This implies that 1
2E
(
I1,N ([0, Nπ]) + I1,N ([Nπ, 2Nπ])

)2 → 2
3ϕ

2(u)u2.
Since the two random variables I1,N ([0, Nπ]) and I1,N ([Nπ, 2Nπ]) are jointly
Gaussian this implies the convergence of 1√

2
(χN (1)+χN (2)) in distribution.

Let us consider the term in the other chaos (q ≥ 2).

E
(
Iq,N ([0, Nπ])Iq,N ([Nπ, 2Nπ])

)
= −r′′YN (0)ϕ2(u)

[ q
2
]∑

k1=0

[ q
2
]∑

k2=0

Hq−2k1(u)

(q − 2k1)!
a2k1

Hq−2k2(u)

(q − 2k2)!
a2k2

1

πN

∫ πN

0

∫ 2πN

πN
Gq,k1,k2,N (s−s′)dsds′,

where we have put

Gq,k1,k2,N (s−s′) = E[Hq−2k1(YN (0))H2k1(Ỹ ′N (0))Hq−2k2(YN (s−s′))H2k2(Ỹ ′N (s−s′))].

A change of variables and Fubini’s Theorem give

1

πN

∫ πN

0

∫ 2πN

πN
Gq,k1,k2,N (s− s′)dsds′

=
1

Nπ
(

∫ πN

0
τGq,k1,k2,N (τ)dτ −

∫ 2πN

πN
(2πN − τ)Gq,k1,k2,N (τ)dτ)

=
1

Nπ
(

∫ πN

0
τGq,k1,k2,N (τ)dτ +

∫ πN

0
τGq,k1,k2,N (−τ)dτ),

where this last equality is a consequence of periodicity and the change of
variable τ = v + 2πN in the second integral. In this form we get

| 1

πN

∫ πN

0

∫ πN

πN
Gq,k1,k2,N (s− s′)dsds′| ≤ 2

Nπ

∫ πN

0
τG̃q,k1,k2,N (τ)dτ.
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G̃q,k1,k2,N (τ) has been defined in (21) and we also recall that this function
is even. Moreover, it is plain that over any compact interval [0, a] it holds

lim
N→∞

2

Nπ

∫ a

0
τG̃q,k1,k2,N (τ)dτ = 0,

for the integral over [a, πN ] we use the bound (9) and Arcones’ inequality.
Thereby

lim
N→∞

| 2

Nπ

∫ πN

0
τGq,k1,k2,N (τ)dτ | = 0.

By using (ii) of Theorem 6, we get for q ≥ 2

(Iq,N ([0, Nπ]), Iq,N ([Nπ, 2Nπ]))⇒ N(0, σ2qI),

where I is the identity matrix in R2.
Defining

Iq,N ([0, 2Nπ]) =
1√
2

(Iq,N ([0, Nπ]) + Iq,N ([Nπ, 2Nπ]),

it holds for each q that Iq,N ([0, 2Nπ])⇒ N(0, σ2q ), this asymptotic normality
holds true also for q = 1. The theorem now follows applying again (i) of
Theorem 6 and the expansion (12).

5 Proof of Lemma 1

It suffices to prove that NYN
[0,a](u) has a second moment which is bounded

uniformly in N . Let UYN[0,a](u) be the number of up-crossings of the level

u by YN (t) in the interval [0, a] i.e. the number of instants t such that
YN (t) = u;Y ′N (t) > 0. The Rolle theorem implies

NYN
[0,a](u) ≤ 2UYN[0,a](u) + 1.

So it suffices to give a bound for the second moment of the number up-
crossings. Writing U for UYN[0,a](u) for short, we have

E(U2) = E(U(U − 1)) + E(U).

We have already proven that the last term gives a finite contribution after
normalization. For studying the first one we define the function θN (t) by

rYN (τ) = 1 +
r′′YN (0)

2
τ2 + θN (τ).
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and we use the order two Rice formula and relation (4.14) of [2] to get

E(U(U − 1)) = 2

∫ a

0
(a− τ)E[|Y ′N (0)Y ′N (τ)| |YN (0) = YN (τ) = u]pYN (0),YN (τ)(u, u)dτ

≤ (const)a

∫ a

0

θ′N (τ)

τ2
dτ.

By a Taylor-Lagange expansion we obtain

r′YN (τ) = r′YN (0) +
1

6N5

N∑
n=1

n4τ3 cos(θ(n,N)),

with θ(n,N) ≤ τ/N . We obtain that |θ′N (τ)| ≤ (const)τ3, the constant
being uniform in N . This gives the result.

6 Proof of Theorem 4

Let Dm be a diagonal matrix with diagonal terms dii = lim
t→∞

Var(Iqi([0, t])),

where Iq([0, t]) has been defined in (14). Theorem 6 part (i), says that the
random vector

(Iq1([0, t]), . . . , Iqm([0, t]))⇒ N(0, Dm), when t→∞

if an only if each Iqi([0, t]) converges in distribution towards N(0, dii). We
will prove this last assertion.

Let us begin with the term corresponding to the first chaos (q = 1).

I1([0, t]) =
√

1/3ϕ(u)u a0
1√
t

∫ t

0
X(s)ds =

√
1/3

e−
u2

2 u

π

1√
t

∫ t

0
X(s)ds,

the random variable I1([0, t]) is Gaussian and we have already proven that
its variance converge thus we get

I1([0, t]) ⇒ N
(

0,
e−u

2
u2

3π2
2

∫ ∞
0

sin τ

τ
dτ
)

= N
(

0, e−u
2 u2

3

)
= N

(
0,

2

3
u2φ2(u)π

)
, (24)

when t→∞.
For the other chaos (q > 1) we can adapt the proof of the cited references,

[2] and [7], those proofs are inspired in the seminal work of Malevich [8] see
also [3] and [4]. Furthermore the hypothesis of this last work consist in
demanding the convergence of integrals of the covariances, thus they are
similar to those used in our work.
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The process X(t) has f(λ) = 1
2 1I[−1,1](λ) as spectral density, if we sym-

metrize the spectrum. Let β be an even function with
∫∞
−∞ |λ|

j |β(λ)|dλ <
∞ , j = 1, 2 and such that its Fourier Transform has support in [−1, 1]. By
defining βε = 1

εβ( ·ε) and putting fε(λ) = f ∗ βε(λ) the following process

Xε(t) =

∫ ∞
0

cos(tλ)
√
fε(λ)dB1(λ) +

∫ ∞
0

sin(tλ)
√
fε(λ)dB2(λ), (25)

satisfies

rε(τ) := E
[
Xε(τ)Xε(0)

]
=

∫ ∞
0

cos(τλ)fε(λ)dλ

=
1

2

∫ ∞
−∞

cos(tλ)fε(λ)dλ =
1

2
r(τ)β̂(ετ). (26)

Thus Xε is a Gaussian 1
ε -dependent process, this process has variance one

if β̂(0) = 2, which is always possible. Moreover,

r′ε(τ) =
1

2
(r′(τ)β̂(ετ) + r(τ)εβ̂′(ετ))

and

r′′ε (τ) =
1

2
(r′′(τ)β̂(ετ) + 2r′(τ)εβ̂′(ετ) + r(τ)ε2β̂′′(ετ)).

These functions have bounded support and converge to r, r′ and r′′ respec-
tively, functions that belong to L2(R). Recalling the set of indexes Jq of
Lemma 3, we get by using Dominate Convergence Theorem

lim
ε→0

∑
Jq

∫ 1
ε

0

∣∣∣rε(τ)
∣∣∣2q−(2k1+2k1)−h1∣∣∣ r′ε(τ)√

−r′′ε (0)

∣∣∣2h1∣∣∣r′′ε (τ)

r′′ε (0)

∣∣∣2k1+2k2−h1
dτ

=
∑
Jq

∫ ∞
0

∣∣∣r(τ)
∣∣∣2q−(2k1+2k1)−h1∣∣∣ r′(τ)√

−r′′(0)

∣∣∣2h1 |r′′(τ)

r′′(0)

∣∣∣2k1+2k2−h1
dτ.

The same result holds dropping the absolute value in the integrant. Let us
define

Iq,ε([0, t]) =
√
−r′′Xε

(0)
1√
t

∫ t

0
fq(u,Xε(s),

X ′ε(s)√
−r′′Xε

(0)
)ds. (27)

The above result and Lemma 3, allow us to conclude that

lim
t→∞

E[Iq,ε([0, t])]
2 =

1

π
σ2q (u).

We shall now to consider the convergence for the covariances.

ρε(τ) = E[Xε(τ)X(0)] =

∫ 1

0
cos(τλ)

√
fε(λ)dλ→ r(τ), (28)
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ρ′ε(τ) = E[X ′ε(τ)X(0)] = −
∫ 1

0
λ sin(τλ)

√
fε(λ)dλ→ −r′(τ), (29)

ρ′′ε(τ) = E[X ′ε(τ)X ′(0)] = −
∫ 1

0
λ2 cos(τλ)

√
fε(λ)dλ→ −r′′(τ), (30)

when ε→ 0. Moreover,

ρε(τ) =
1

2

∫ ∞
−∞

cos(τλ)
√
fε(λ) 1I[−1,1](λ)dλ =

1√
2

∫ ∞
−∞

cos(τλ)
√
fε(λ)

√
1

2
1I[−1,1](λ)dλ.

By using Fatou, Parseval equality and, the fact that fε(λ) → 2f(λ) in
L2(R), we obtain easily∫ ∞

0
|r(τ)|2dτ ≤ lim sup

ε→0

∫ ∞
0
|ρε(τ)|2dτ = lim sup

ε→0

1

2

∫ ∞
−∞
|ρε(τ)|2dτ

= lim sup
ε→0

1

4π

∫ ∞
−∞
|
√
fε(λ)

√
1

4
1I[−1,1](λ)|2dλ =

∫ ∞
0
|r(τ)|2dτ.

Thus

lim
ε→0

∫ ∞
0
|ρε(τ)|2dτ =

∫ ∞
0
|r(τ)|2dτ (31)

In the same form we get

lim
ε→0

∫ ∞
0
|ρ′ε(τ)|2dτ =

∫ ∞
0
|r(τ)|2dτ and lim

ε→0

∫ ∞
0
|ρ′′ε(τ)|2dτ =

∫ ∞
0
|r′′(τ)|2dτ.(32)

We will compute now

lim sup
ε→0

lim sup
t→∞

E[Iq,ε([0, t])−Iq([0, t])]2 =
2

π
σ2q (u)−2 lim

ε→0
lim
t→∞

E[Iq,ε([0, t])Iq([0, t])].

This limit vanish if we can prove that the third term tends to 2
π σ

2
q (u)

also. But this is a consequence again of Lemma 3, (31) and (32) cf. [7]. Let
us sketch the proof. Defining

dq,2k(u) =
Hq−2k(u)

(q − 2k)!
a2k,

we have

E
[
Iq,ε([0, t]), Iq([0, t])

]
= −r′′X(0)ϕ2(u)

∑
k1,k2

dq,2k1(u)dq,2k1(u)

×1

t

∫ t

0

∫ t

0
E[Hq−2k1(Xε(s))H2k1(

X ′ε(s)√
−r′′Xε(0)

)Hq−2k1(X(s′))H2k1(X̃ ′(s′))]dsds′.
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The integral is by Lemma 3 equal to∑
Lq

Vq,2k1,2k2
1

t

∫ t

0

∫ t

0
( 1I{s>s′}[

−ρ′ε(s− s′)√
−ρ′′ε(0)

]2h1 + 1I{s′>s}[
−ρ′ε(s′ − s)√
−r′′X(0)

]2h1)

× ρε(|s− s′|)2q−(2k1+2k1)−h1 [
−ρ′′ε(|s− s′|)√
−ρ′′ε(0)

√
−r′′(0)

]2k1+2k2−h1dsds′, (33)

where Lq is a set of indexes and Vq,2k1,2k2 are fixed constant. Given that
q > 1 and by using that the functions ρε and its derivatives converge in L2

towards their pointwise limit, it yields that this sum converges towards

2

∫ ∞
0

E[Hq−2k1(X(0))H2k1(
X ′(0)√
−r′′X(0)

)Hq−2k1(X(τ))H2k1(
X ′(τ)√
−r′′X(0)

)]dτ.

Thus the result follows.
The 1

ε -dependence entails that Iq,ε([0, t]) is asymptotically Gaussian and
the proved proximity in L2 allows concluding the same for Iq,ε([0, t]), with
asymptotic variance 1

π σ
2
q (u). The CLT for the crossings of X follows from

the expansion

NX
[0,t](u)− E[NX

[0,t](u)] =
∞∑
q=1

Iq
(
[0, t]

)
,

the asymptotic independence of the Gaussian limit in each chaos and the
convergence of the variance.

7 Notation table

XN (t) see (1)
rXN

covariance of XN (t)
X(t) stat. process with cov. r(t) = sin(t)/t
YN (t) XN (t/N)
rYN covariance of YN (t)

NXN

[0,t](u) Number of crossings of level u by XN (t) on [0, t].

UXN

[0,t](u) Number of up-crossings of level u by XN (t) on [0, t]

X̃(t) X ′(t)/(
√

1/3)

ỸN (t) Y ′N (t)/(
√
−r′′YN (0))

fq([0, t]) see (13)
Iq([0, t]) see (14)

Iq,N ([0, t]) see (16)
Xε(t) see (25)
rε(τ) see (26)

Iq,ε([0, t]) see (27)
ρε(τ) ; ρ′ε(τ) ; ρ′′ε(τ) see (28) ; (29) ; (30)
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