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CLT for Crossings of random trigonometric

Polynomials.

Jean-Marc Azäıs ∗ José R. León †

April 3, 2012

1 Introduction

Let us consider the random trigonometric polynomial:

XN (t) =
1√
N

N∑
n=1

(an sinnt+ bn cosnt),

where the coefficients an and bn are independent standard Gaussian random
variables and N is some integer.

The number of zeroes of such a process on the interval [0, 2π) has been
studied in the paper by Granville and Wigman

Gr:Wi
[3] where a central limit

theorem, as N → +∞ is proved.
The aim of this paper is twofold : firstly we extend their result to the

number of crossings of every level and secondly we propose a simpler proof.
The key point consist in proving that after a convenient scaling the process
XN (t) converges in a certain sense to the stationary process X(t) with co-
variance sin(t)/t. The central limit theorem is then a consequence of the
central limit theorem in large time for X(t).

The organization of the paper is the following: in Section 2 we present
basic calculations; Section 3 is devoted to the presentation of the Wiener
chaos decomposition and to the study of the variance. Section 4 states the
central limit theorem . Additional proofs are given in Section 5 and 6.
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2 Basic results and notation

rXN
(τ) will be the covariance of the process XN (t) given by

rXN
(τ) := E[XN (0)XN (τ)] =

1

N

N∑
n=1

cosnτ =
1

N
cos(

(N + 1)τ

2
)
sin(Nτ2 )

sin τ
2

.

(1) f:rn

We define the process
YN (t) = XN (t/N)

with covariance
rYN (τ) = rXN

(τ/N).

We have

r′YN (τ) =
1

2N sin τ
2N

cos(
2N + 1

2N
τ)− sin τ

4N2 sin2 τ
2N

(2)

r′′XN
(τ) = −

sin τ
2

2N sin2 τ
2N

[sin
(N + 1)τ

2N
sin

τ

2N
+ cos

(N + 1)τ

2N
cos

τ

2N
] (3)

r′′YN (τ) =
1

N2
r′′N (

τ

N
)

=
cos τ

2N cos (2N+1)
2N τ − 2 (2N+1)

2 sin τ
2N sin (2N+1)

2N τ − cos τ

4N2 sin2 τ
2N

−
(2N sin τ

2N cos(2N+1
2N τ)− sin τ) cos τ

2N

4N3 sin3 τ
2N

. (4)

The convergence of Riemann sums to the integral implies simply that

rYN (τ)→ r(τ) := sin(τ)/τ (5)

r′YN (τ)→ r′(τ) = cos(τ)/τ − τ−2 sin(τ) (6)

r′′YN (τ) =
1

N2
r′′N (

τ

N
)→ r′′(τ) = −sin(τ)

τ
− 2

cos(τ)

τ2
+ 2

sin(τ)

τ3
(7)

And these convergence are uniform in every compact interval that does not
contains zero.
We will need also the following upper-bounds that are easy
When τ ∈ [0, Nπ]:

|rYN (τ)| ≤ π/τ ; |r′YN (τ)| ≤ π

2τ
+
π2

4τ2
; |r′′YN (τ)| ≤ (const)

(
τ−1+τ−2+τ−3

)
(8) f:ub

When τ ∈ [Nπ, 2Nπ]:

|rYN (τ)| ≤ π/(2Nπ − τ) ; |r′YN (τ)| ≤ π

2(2Nπ − τ)
+

π2

4(2Nπ − τ)2

|r′′YN (τ)| ≤ (const)
(
(2Nπ − τ)−1 + (2Nπ − τ)−2 + (2Nπ − τ)−3

)
(9) f:ub2
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We now compute the ingredients of the Rice formula

EX2
N (t) = 1, and E(X ′N (t))2 =

1

N

N∑
n=1

n2 =
(N + 1)(2N + 1)

6
.

Denoting by NXN

[0,2π)(u) the numbers of crossings of the level u of XN on the

interval [0, 2π) , the Rice formula gives

E[NXN

[0,2π)(u)] = 2π.
√

E(X ′N (t))2
√

2/π
e−

u2

2

√
2π

=
2√
3

√
(N + 1)(2N + 1)

2
e−

u2

2 .

Hence

lim
N→∞

E[NXN

[0,2π)(u)]

N
=

2√
3
e−

u2

2 .

3 Spectral representation and Wiener Chaos

We can obtain a joint spectral representation of the processes X and YN .
This chaining argument is one of our main tools. We have

X(t) =

∫ 1

0
cos(tλ) dB1(λ) +

∫ 1

0
sin(tλ) dB2(λ), (10)

where B1 and B2 are two independent brownian motion. Using the same
brownian motion we can write

YN (t) =

∫ 1

0

N∑
n=1

cos(
nt

N
)1[n−1

N
, n
N
)(λ)dB1(λ)+

∫ 1

0

N∑
n=1

sin(
nt

N
)1[n−1

N
, n
N
)(λ)dB2(λ).

It is easy to check, using isometry properties of stochastic integrals that
YN (t) has the desired covariance.

By defining the functions

γ1N (t, λ) =
N∑
n=1

cos(
nt

N
)1[n−1

N
, n
N
)(λ) and γ2N (t, λ) =

N∑
n=1

sin(
nt

N
)1[n−1

N
, n
N
)(λ).

we can write

YN (t) =

∫ 1

0
γ1N (t, λ)dB1(λ) +

∫ 1

0
γ2N (t, λ)dB2(λ). (11)

In the sequel we are going to express the representation (10 and 11) in
an Isonormal Process framework. Let define H2 the Hilbert vectorial espace
defined as

{h = (h1, h2) :

∫
R
h21(λ)dλ+

∫
R
h22(λ)dλ <∞},

3



with scalar product

< h,g >=

∫
R
h1(λ)g1(λ)dλ+

∫
R
h2(λ)g2(λ)dλ.

The transformation

h→W (h) :=

∫
R
h1(λ)dB1(λ) +

∫
R
h2(λ)dB2(λ),

defines an isometry between H2 and a Gaussian subspace of L2(Ω,A, P )
where A is the σ−field generated by B1(λ) and B2(λ).

Thus W (h)h∈H2 is the Isonormal process associated to H2. By using the
representations (10) and (11) readily we get

X(t) = W ( 1I[0,1](·, ·)(cos t·, sin t·))
YN (t) = W ( 1I[0,1](·, ·)(γ1N (·, t), γ2N (·, t)))

X̄ ′(t) :=
X ′(t)√

1/3
= W (

1I[0,1]√
1/3

(·, ·)(− sin t·, cos t·))

Ȳ ′N (t) :=
Y ′N (t)√
−r′′YN (0)

= W (
1I[0,1]√
−r′′YN (0)

(·, ·)((γ1N (·, t))′, (γ2N (·, t))′).

We are in disposition of introduce the Wiener’s Chaos which is our second
main tool. Let Hk be the Hermite’s polynomial of degree k defined by

Hk(x) = (−1)ke
x2

2
dk

dxk
(e−

x2

2 ).

It is normalized such that for Y a standard Gaussian random variable we
have E(Hk(Y )Hm(Y )) = δk,mk!. Consider {ei}i∈N an ortonormal basis for
H2. Denoting as Λ the set the sequences a = (a1, a2, . . .) ai ∈ N such that
all the terms except a finite number vanish. For a ∈ Λ we set a! =

∏∞
i=1 ai!

and |a| =
∑∞

i=1 ai. For any multiindex a ∈ Λ we define

Φa =
1√
a!

∞∏
i=1

Hai(W (ei)).

For each n ≥ 1, we will denote by Hn the closed subspace of L2(Ω,A, P )
spanned by the random variables {Φa, a ∈ Λ, |a| = n}. The space Hn is
the nth Wiener chaos associated with B1(λ) and B2(λ). If H0 denotes the
space of constants we have the ortogonal decomposition

L2(Ω,A, P ) =

∞⊕
n=0

Hn.
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For any Hermite’s polynomial Hq, it holds

Hq(W (h)) =Iq(h), :=

∫ +∞

0
. . .

∫ +∞

0
h1(λ1) . . . h

1(λq)dB1(λ1) . . . dB1(λq)

+

∫ +∞

0
. . .

∫ +∞

0
h2(λ1) . . . h

2(λq)dB2(λ1) . . . dB2(λq),

with h = (h1, h2). For instance as YN (t) = W ( 1I[0,1](·, ·)(γ1N (·, t), γ2N (·, t))),
we obtain

H2(YN (t)) =

∫ 1

0

∫ 1

0
γ1N (λ1, t)γ

1
1,N (λ2, t)dB1(λ1)dB1(λ2)

+

∫ 1

0

∫ 1

0
γ2N (λ1, t)γ

2
N (λ2, t)dB2(λ1)dB2(λ2).

We now write the Wiener Chaos expansion for the number of crossings.
As the absolute value function belongs to L2(R, ϕ(x)dx), where ϕ is the
standard Gaussian density, we have |x| =

∑∞
k=0 a2kH2k(x) with

a2k = 2
(−1)k+1

√
2π2kk!(2k − 1)

.

Because of the form of inqualities (8) and (9) it is shorter to study first
XN (t) on [0, π] (resp. YN (t) and X(t) on [0, Nπ]. The generalization to
[0, 2π] (resp. to [0, 2Nπ]) will be done in Section 4. By using the result of
Kratz & León

le:kr
[4] or Th 10.10 in

Az:Wsc
[2]

1√
Nπ

(NX
[0,πN ](u)− ENX

[0,πN ](u))

=
√

1/3ϕ(u)

∞∑
q=1

[ q
2
]∑

k=0

Hq−2k(u)

(q − 2k)!

a2k√
Nπ

∫ πN

0
Hq−2k(X(s))H2k(X̄

′(s)) ds,

(12) f:kl

where[x] is the integer part. We introduce the notation

fq(u, x1, x2) = ϕ(u)

[ q
2
]∑

k=0

Hq−2k(u)

(q − 2k)!
a2kHq−2k(x1)H2k(x2).

Iq([0, πN ] =

√
1/3√
Nπ

∫ πN

0
fq(u,X(t), X̄ ′(t)dt

so that
1√
Nπ

(NX
[0,πN ](u)− ENX

[0,πN ](u)) =
∞∑
q=1

Iq([0, πN ]
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giving the decomposition in the Wiener chaos. The same type of expansion
is also true for NYN

[0,πN ](u)

1√
N

(NYN
[0,πN ](u)− ENYN

[0,πN ](u)) =
∞∑
q=1

Iq,N ([0, πN ] (13) f:kl2

with obvious notation.
Our first goal is to compute the limit variance of (??). Our main tool

will be the Arcones inequality. We define the norm

||fq||2 := Ef2q (u,X, Y ),

Where (X,Y ) is a bidimensional standard Gaussian vector. We have

||fq||2 = ϕ2(u)

[ q
2
]∑

k=0

H2
q−2k(u)

(q − 2k)!
a22k(2k)! ≤ C

[ q
2
]∑

k=0

a22k(2k)! ≤ C,

where C is some constant that does not depend on q. Now we must introduce
the Arcone’s coefficient of dependence

Ar:Ar
[1]

ψN (τ) = sup
(
|rYN (τ)|, |

r′YN (τ)√
−r′′YN (0)

|, |
r′′YN (τ)

r′′YN (0)
|
)
.

The Arcones inequality says that if ψN (s′ − s) < 1, it holds

|E[fq(u, YN (s), Ȳ ′N (s))fq(u, YN (s′), Ȳ ′N (s′))]| ≤ ψqN (s′ − s)||fq||2.

We will use also the following Lemma the proof of which is given in
Section 5

l:a Lemma 1 For every a > 0, there exists a constant Ka such that

sup
N

Var
(
NYN

[0,a](u)
)
≤ Ka <∞ (14) f:lem

Chose some ρ < 1 , using the inequality 8, we can choose a big enough
such that for τ > a we have ψN (τ) < K

τ ≤ ρ.
Then we partition [0, Nπ] into L = [Nπa ] intervals J1, . . . , JL of length

larger than a, and we set for short

N` = NYN
J`

(u)

Then we have

Var(NYN
[0,Nπ](u)) = Var(N1+· · ·+NL) =

∑
`,`′,|`−`′|≤1

Cov (N`, N
′
`)+

∑
`,`′,|`−`′|>1

Cov (N`, N
′
`).
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The first sum is easily shown to be O(N) by applying Lemma 1 and the
Cauchy-Schwarz inequality.

Let us look at a term of the second sum. Using the expansion (13) we
set

N` − E(N`)√
πN

=
∞∑
q=1

Iq,N (J`),

Let us consider the terms corresponding to q > 1. The Arcones inequality
implies that

Cov (Iq,N (J`), Iq,N (J`′)) ≤
∫
J`×J`′

1

Nπ
r′′YN (0)(K/τ)qCdsdt ≤ (const)

∫
J`×J`′

ρq−2τ−2dsdt,

(15) f:maj

where τ = s − t . Summing over all pair on intervals and over q ≥ 2 it is
easy to check that this sum is bounded.

It remains to study the case q = 1. Since H1(X) = X

I1,N (J`) = (Nπ)−1/2
√
−r′′YN (0)uφ(u)

∫
J`

YN (s)ds.

So that∑
`,`′,|`−`′|>1

Cov (I1,N (J`), I1,N (J`′)) ≤ (const)
1

N

∫ πN

0

∫ πN

0
rYN (s− s′)dsds′,

which is bounded because of the following result

1

N

∫ πN

0

∫ πN

0
rYN (s− s′)dsds′, =

2

N

∫ πN

0
(πN − τ)rYN (τ)dτ

= 2

N∑
n=1

∫ πN

0
(π − τ

N
)

1

N
cosn

τ

N
dτ

= 2

N∑
n=1

1− cosnπ

n2

= 4

N∑
j=0

1

(2j + 1)2

→ 4

∞∑
j=0

1

(2j + 1)2
= 4

π2

8
=
π2

2
. (16) varq1

p:1 Proposition 1 For q > 1 we have

Var
(
Iq,N ([0, πN ])

)
→ σ2q := Var

(
Iq([0, πN ])

)
< +∞ as N → +∞

7



For q = 1

Var
(
I1,N ([0, πN ])

)
→ 1

3
u2φ2(u)π.

In the case u 6= 0 this limit is different from

Var
(
I1([0, πN ])

)
=

2

3
u2φ2(u)π.

This different behaviour, depending in which chaos we are, justifies the
uses of Wiener Chaos decomposition.

Proof: Assume first that q > 2 :

E
(
I2q,N ([0, Nπ]

)
= −r′′YN (0)ϕ2(u)

[ q
2
]∑

k1=0

[ q
2
]∑

k2=0

Hq−2k1(u)

(q − 2k1)!
a2k1

Hq−2k2(u)

(q − 2k2)!
a2k2

1

Nπ

∫ Nπ

0

∫ Nπ

0
E[Hq−2k(YN (s))H2k(

Y ′N (s′)√
−r′′YN (0)

)Hq−2k(YN (s′))H2k(
Y ′N (s)√
−r′′YN (0)

)] ds′ds

= −r′′YN (0)ϕ2(u)

[ q
2
]∑

k1=0

[ q
2
]∑

k2=0

Hq−2k1(u)

(q − 2k1)!
a2k1

Hq−2k2(u)

(q − 2k2)!
a2k2

2

∫ πN

0
(1− s

Nπ
)E[Hq−2k(YN (0))H2k(

Y ′N (0)√
−r′′YN (0)

)Hq−2k(YN (s))H2k(
Y ′N (s)√
−r′′YN (0)

)] ds.

We now use the generalized Mehler formula (Lemma 10.7 page 270 of
Az:Wsc
[2]).

mehler Lemma 2 Let (X1, X2, X3, X4) be a centered Gaussian vector with variance
matrix

Σ =


1 0 ρ13 ρ14
0 1 ρ23 ρ24
ρ13 ρ23 1 0
ρ14 ρ24 0 1


Then, if r1 + r2 = r3 + r4,

E
(
Hr1(X1)Hr2(X2)Hr3(X3)Hr4(X4)

)
=

∑
(d1,d2,d3,d4)∈J

r1!r2!r3!r4!

d1!d2!d3!d4!
ρd113ρ

d2
14ρ

d3
23ρ

d4
24,

where J is the set of di’s satisfying : di ≥ 0;

d1 + d2 = r1 ; d3 + d4 = r2 ; d1 + d3 = r3 ; d2 + d4 = r4. (17) a:e:dd

If r1 + r2 6= r3 + r4 the expectation is equal to zero.
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Using this lemma, there exist a finite set Jq and constants Cq,k1,k2 such
that

E[Hq−2k1(YN (0))H2k1(Ȳ ′N (0))Hq−2k2(YN (τ))H2k2(Ȳ ′N (τ))]

=
∑
Jq

Cq,k1,k2 |rYN (τ)|2q−(2k1+2k1)−h1 |
r′YN ( τN )√
−r′′YN (0)

|2h1 |
r′′YN (τ)√
−r′′YN (0)

|2k1+2k2−h1 .

(18) diag

This clearly proves that

E[Hq−2k1(YN (0))H2k1(Ȳ ′N (0))Hq−2k2(YN (τ))H2k2(Ȳ ′N (τ))]

→ E[Hq−2k1(X(0))H2k1(X̄ ′(0))Hq−2k2(X(τ))H2k2(X̄ ′N(τ))]

and the formula (15) gives a domination proving the convergence of the
integral and the fact that σ2q is finite.

Let us look to the case q = 1

E
(
I21,N ([0, Nπ]

)
= −r′′YN (0)ϕ2(u)(ua0)

2 1

Nπ

∫ Nπ

0

∫ Nπ

0
E(YN (s)YN (s′))ds′ds

→ 1/3ϕ2(u)
2u2

π2
π2/2 =

1

3
u2φ2(u). (19)

using (16).
On the other hand we have

E
(
I21 ([0, Nπ]

)
=

1

3
ϕ2(u)(ua0)

2 1

Nπ

∫ Nπ

0

∫ Nπ

0

sin(s− s′)
s− s′

ds′ds

= 1/3ϕ2(u)
2u2

π2
2

∫ Nπ

0
(π − τ/N)

sin(τ)

τ
dτ → 2

3
u2φ2(u).

(20)

4 Central limit Theorem with a chaining argu-
ment

The covariance r(t) of the limit process X(t) is not a summable in the sense
that ∫ +∞

0
|r(t)|dt = +∞.

but it satisfies ∫ N

0
r(t)dt converges as N →∞,

9



for q > 1 ∫ +∞

0
|r(t)|q dt < +∞

In fact a careful inspection of the proof of Theorem 1 in
Le:Kr
[?] or of the proof

of Theorem 10.11 of
Az:Wsc
[2] shows that it is enough to get the following central

limit theorem

Theorem 1 As t→ +∞,

1√
t

(
NX

[0,t](u)− E(NX
[0,t](u))

)
⇒ N(0,

2

3
u2φ2(u) +

∞∑
q=2

σ2q (u)),

where ⇒ is the convergence in distribution.

The main idea is to use this result to extend it to the crossings of YN (t).
Our main result is the following

main Theorem 2 As N → +∞,

1√
2Nπ

(
NYN

[0,2Nπ](u)− E(NYN
[0,2Nπ](u))

)
⇒ N(0,

1

3
u2φ2(u) +

∞∑
q=2

σ2q (u)),

Proof: Let us introduce the cross correlation:

ρN (s, t) = E(X(s)YN (t)) =

N∑
n=1

∫ n
N

n−1
N

cos(sλ− t n
N

) dλ.

=

N∑
n=1

∫ 1
N

0
cos((s− t) n

N
− sv) dv = <{

∫ 1
N

0
e−isvdv

N∑
n=1

ei(s−t)
n
N }

=
sin s

N
s
N

1

N

N∑
n=1

cos(s− t) n
N

+
1− cos s

N
s2

2N2

s

2N2

N∑
n=1

sin(s− t) n
N

So we can write

ρN (s, t) =
sin(s/N)

s/N
rYN (t− s) +

1− cos(s/N)

s2/(2N2)

s

2N

1

N

N∑
n=1

sin(s− t) n
N

The two functions sin(z)
z and 1−cos(z)

z2/2
are bounded, with bounded derivatives

and sin(z)
z tend to 1 as z tends to 0. We have also

| 1
N

N∑
n=1

sin(s− t) n
N
| = | 2

s− t
sin (s−t)

2
2N
s−t

sin(N+1
2N (s− t))

sin (s−t)
2N

| ≤ (const)|s− t|−1,

whenever |s− t| < πN .

10



We have already proved that rYN (s− t) = 1
N

∑N
n=1 cos

(
(s− t) nN

)
, con-

verges to r(s − t) uniformly on every compact that does not contains zero.
The same result is true for the first two derivatives that converge respec-
tively to the corresponding derivative of r(s − t) . In addition for larges
values of |s− t| these functions are bounded by K|s− t|−1 and for each fixed
s, s

2N2

∑N
n=1 sin(s − t) nN → 0. Using the derivation rules it is easy to see

that this is enough to have

ρN (s, t)→ r(s− t)
∂ρN (s, t)

∂s
= E(X ′(s)YN (t))→ r′(s− t)

∂ρN (s, t)

∂t
= E(X(s)Y ′N (t))→ −r′(s− t)

∂2ρN (s, t)

∂s∂t
= E(X ′(s)Y ′N (t))→ −r′′(s− t),

again the convergence being uniform on every compact that does not con-
tains zero. In additions these function are bounded by (const)(s− t)−1.

We are now ready to prove the following lemma

chaine Lemma 3 For q ≥ 2

lim
N→∞

E
[
Iq,N ([0, Nπ])− Iq([0, Nπ])

]2
= 0.

Proof:

E
[
Iq,N ([0, Nπ])− Iq([0, Nπ])

]2
= E

[
Iq,N ([0, Nπ])

]2
+ E

[
Iq([0, Nπ])

]2
− 2E

[
Iq,N ([0, Nπ]).Iq([0, Nπ])

]
.

We have already shown that the two first terms tend to σ2q (u). Only remains
to prove that the third also does. But, since the cross correlation ρN (s, t)
shares all the properties of rYN (s− t), the same proof as in Section 3 proves
that the limit is again σ2q (u).

We now finish the proof of Theorem 2.
The case of I1,N ([0, Nπ] is easy to handle since it is already a Gaussian

variable and that its limit variance is easy to compute using 16 By Lemma
3 for q > 2, Iq,N ([0, Nπ] inherits of the asymptotic Gaussian behavior of
Iq,N ([0, Nπ] .

By Theorem xx of Peccatti and*** this is enough to obtain the normality
of the sum.

It remains to extend the result to [0, 2Nπ] ** ces deux dernier points
pour Chichi**
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5 Proof of Lemma 1
s:e

Let UYN[0,a](u) be the number of up-crossings of the level u by YN (t) in the

interval [0, a] i.e. the number of instant t such that YN (t) = u;Y ′N (t) > 0.
The Rolle theorem implies

NYN
[0,a](u) ≤ 2UYN[0,a](u) + 1.

So it suffices to prove the lemma for the number up-crossings. Writing U
for UYN[0,a](u) for short, we have

Var(U) = E(U(U − 1)) + E(U)− (E(U))2.

We have already proved that the last two terms give a finite contribution
after normalization. For studying the first one we define the function θN (t)
by

rYN (τ) = 1 +
r′′YN (0)

2
τ2 + θN (τ).

and we use relation(4.14) of
Az:Wsc
[2] to get

E(U(U − 1)) = 2

∫ a

0
(a− τ)E[|Y ′N (0)Y ′N (τ)| |YN (0) = YN (τ) = u]pYN (0),YN (τ)(u, u)dτ

≤ (const)a

∫ a

0

θ′N (τ)

τ2
dτ.

By a Taylor-Lagange expansion we get

r′YN (τ) = r′YN (0) +
1

6N5

N∑
n=1

n4τ3 cos(θ(n,N)),

with θ(n,N) ≤ τ/N . We obtain that |θ′N (τ)| ≤ (const)τ3, the constant
being uniform in N . This gives the result.

6 Proof of Theorem 1

We will give a sketch of the proof for completeness. Let Dm be a diago-
nal matrix with diagonal terms dii = limt→∞Var(Iq([0, t]). Theorem 1 of
Peccati & Tudor

pe:tu
[7] says that the random vector

Iq1([0, t]), . . . , Iqm([0, t])⇒ N(0, Dm),

if an only if each Iqi([0, t]) converges in distribution towards N(0, dii). We
will prove this last assertion.

12



Let us begin with the term corresponding to q = 1.

I1([0, t]) =
√

1/3ϕ(u)u a0
1√
t

∫ t

0
X(s)ds =

√
1/3

e−
u2

2 u

π

1√
t

∫ t

0
X(s)ds

⇒ N(0,
e−u

2
u2

3π2
2

∫ ∞
0

sin τ

τ
dτ) = N(0, e−u

2 u2

3
). (21)

pi*** For q > 1 we can adapt the proof of the cited references . The process
X has f(λ) = 1

21[−1,1](λ) as spectral density, if we symmetrize the spectrum.
Let ϑ be an even function with

∫∞
−∞ |λ|

j |ϑ(λ)|dλ <∞ j = 1, 2 and such that

its Fourier Transform has support in [−1, 1]. By defining ϑε = 1
εϑ( ·ε) and

putting fε(λ) = f ∗ ϑε(λ) the following process

Xε(t) =

∫ ∞
0

cos(tλ)
√
fε(λ)dB1(λ) +

∫ ∞
0

sin(tλ)
√
fε(λ)dB2(λ),

satisfies

rε(τ) := EXε(τ)Xε(0) =

∫ ∞
0

cos(τλ)fε(λ)dλ =
1

2

∫ ∞
−∞

cos tλfε(λ)dλ =
1

2
r(τ)ϑ̂(ετ).

Thus Xε is a Gaussian 1
ε -dependent process, this process has variance one

if ϑ̂(0) = 2, which is always possible. Moreover,

r′ε(τ) =
1

2
(r′(τ)ϑ̂(ετ) + r(τ)εϑ̂′(ετ))

and

r′′ε (τ) =
1

2
(r′′(τ)ϑ̂(ετ) + 2r′(τ)εϑ̂′(ετ) + r(τ)ε2ϑ̂′′(ετ)).

These functions have bounded support and converge to r, r′ and r′′ respec-
tively, functions that belong to L2(R). Recalling the set of indexes Jq of
Lemma (2), we get by using Dominate Convergence Theorem

lim
ε→0

∑
Jq

∫ 1
ε

0
|rε(τ)|2q−(2k1+2k1)−h1 | r′ε(τ)√

−r′′ε (0)
|2h1 |r

′′
ε (τ)

r′′ε (0)
|2k1+2k2−h1dτ

=
∑
Jq

∫ ∞
0
|r(τ)|2q−(2k1+2k1)−h1 | r′(τ)√

−r′′(0)
|2h1 |r

′′(τ)

r′′(0)
|2k1+2k2−h1dτ.

The same result holds dropping the absolute value in the integrant. Let us
define

Iq,ε([0, t]) =
√
−r′′Xε

(0)
1√
t

∫ t

0
fq(u,Xε(s),

X ′ε(s)√
−r′′Xε

(0)
)ds.

13



The above result and Lemma 2, allow us to conclude that

lim
t→∞

E[It,εq (fq)]
2 =

1

π
σ2q (u)

We shall now to consider the convergence for the covariances.

ρε(τ) = E[Xε(τ)X(0)] =

∫ 1

0
cos τλ

√
fε(λ)dλ→ r(τ),

ρ′ε(τ) = E[X ′ε(τ)X(0)] = −
∫ 1

0
λ sin τλ

√
fε(λ)dλ→ −r′(τ)

ρ′′ε(τ) = E[X ′ε(τ)X ′(0)] = −
∫ 1

0
λ2 cos τλ

√
fε(λ)dλ→ −r′′(τ).

Moreover,

ρε(τ) =
1

2

∫ ∞
−∞

cos τλ
√
fε(λ)1[−1,1](λ)dλ =

1√
2

∫ ∞
−∞

cos τλ
√
fε(λ)

√
1

2
1[−1,1](λ)dλ

By using Fatou, Parseval and that fε(λ) → 2f(λ) in L2(R), we obtain
easily∫ ∞

0
|r(τ)|2dτ ≤ lim sup

ε→0

∫ ∞
0
|ρε(τ)|2dτ = lim sup

ε→0

1

2

∫ ∞
−∞
|ρε(τ)|2dτ

= lim sup
ε→0

1

4π

∫ ∞
−∞
|
√
fε(λ)

√
1

4
1[−1,1](λ)|2dλ =

∫ ∞
0
|r(τ)|2dτ.

Thus

lim
ε→0

∫ ∞
0
|ρε(τ)|2dτ =

∫ ∞
0
|r(τ)|2dτ (22)

In the same form we get

lim
ε→0

∫ ∞
0
|ρ′ε(τ)|2dτ =

∫ ∞
0
|r(τ)|2dτ and lim

ε→0

∫ ∞
0
|ρ′′ε(τ)|2dτ =

∫ ∞
0
|r′′(τ)|2dτ.(23)

We will compute now

lim sup
ε→0

lim sup
t→∞

E[It,εq (fq)− Itq(fq)]2 =
2

π
σ2q (u)− 2 lim

ε→0
lim
t→∞

E[It,εq (fq)I
t
q(fq)].

This limit vanish if we can prove that the third term tends to 2
π σ

2
q (u)

also. But this is a consequence again of Lemma 2 (22) and (23) cf.
le1:kr1
[5]. Let

us sketch the proof that this is what really happens. Defining dq,2k(u) =
Hq−2k(u)
(q−2k)! a2k, we have
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E[Iq,ε([0, t]), Iq([0, t])] = −r′′X(0)ϕ2(u)
∑
k1,k2

dq,2k1(u)dq,2k1(u)

×1

t

∫ t

0

∫ t

0
E[Hq−2k1(Xε(s))H2k1(

X ′ε(s)√
−r′′Xε(0)

)Hq−2k1(X(s′))H2k1(
X ′(s′)√
−r′′X(0)

)dsds′].

The integral is by Lemma 2 equal to

∑
Lq

Vq,2k1,2k2
1

t

∫ t

0

∫ t

0
(1{s>s′}[

−ρ′ε(s− s′)√
−ρ′′ε(0)

]2h1 + 1{s′>s}[
−ρ′ε(s′ − s)√
−r′′X(0)

]2h1)

× ρε(|s− s′|)2q−(2k1+2k1)−h1 [
−ρ′′ε(|s− s′|)√
−ρ′′ε(0)

√
−r′′(0)

]2k1+2k2−h1dsds′, (24) diagrama

where Lq is a set of indexes and Vq,2k1,2k2 are fixed constant. Given that
q > 1 and by using that the functions ρε and its derivatives converge in L2

towards their pointwise limit, it yields that this sum converges towards

2

∫ ∞
0

E[Hq−2k1(X(0))H2k1(
X ′(0)√
−r′′X(0)

)Hq−2k1(X(τ))H2k1(
X ′(τ)√
−r′′X(0)

)dτ ].

Obtaining the expected result.
The 1

ε -dependence entails that Iq,ε([0, t]) is asymptotically Gaussian and
the proved contiguity in L2 allows concluding the same for Iq,ε([0, t]) , with
asymptotic variance 1

π σ
2
q (u). The CLT for the crossings of X follows from

the expansion

NX
[0,t] =

∞∑
q=1

Itq(fq),

the asymptotic independence of the Gaussian limit in each chaos and the
convergence of the variance.
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