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ABSTRACT
The template matching algorithm is a simple extension to exemplar-
based texture synthesis. Average of template matching predictors or
non-local means based approaches can be seen as heuristic exten-
sions to template matching. These methods which linearly combine
several texture patches have been shown to be more robust in syn-
thesis and to give better results when compared to simple template
matching. However, they do not search to minimize an approxima-
tion error on the known pixel values in the template. They are rather
heuristic methods for calculating the linear weighting coefficients.
This paper proposes a neighbor embedding based texture synthe-
sis method by formulating the problem as a least-squares optimiza-
tion using locally linear embedding. By this means, one calculates
the linear weighting coefficients by solving a constrained optimiza-
tion for approximating the template. The proposed texture synthesis
framework has first been applied to the image prediction (predictive
coding) problem. It has then been extended to a loss concealment ap-
plication for transmission errors. Experimental results demonstrate
the effectiveness of the proposed method for both image compres-
sion and error concealment.

Index Terms— Template matching, average template matching,
non-local means, locally linear embedding, image prediction, error
concealment

1. INTRODUCTION

Texture synthesis is a key component of various image and video
processing applications such as inpainting, restoration, (predictive)
coding, and so on. Existing texture synthesis methods can be classi-
fied into two main categories. The first category relies on either the
use of partial differential equations [1] or variational approaches [2].
The ideas presented in this type basically try to propagate via diffu-
sion both geometric and photometric information that hits the border
of the region to be synthesized. These methods are known to work
relatively well for synthesizing small regions in an image. How-
ever, they tend to introduce blur for large regions, and the results are
highly dependent on the input parameters. The second category of
texture synthesis concerns exemplar-based methods [3, 4, 5] which
sample texture patches (or pixels) from an other image (or from the
image itself) in order to synthesize new textures. Exemplar-based
methods are known to work well in cases of regular textures, and
they have widely been used in a large variety of applications be-
cause of their simplicity and efficiency. Moreover, these methods
can compute a priority for the different patches to be synthesized so
that the algorithm can start by first propagating important structures
in the image. For example, the authors in [6] introduce an exemplar-
based method in which a filling order is defined by a priority function

which depends on the angle between the isophote direction and the
normal direction of the local filling front. The goal of this priority
function is to ensure that the linear structures are propagated before
texture filling.

Exemplar-based methods usually copy a single patch (or a pixel)
from an input texture sample (exemplar) to the output texture ac-
cording to the known local neighboring set of pixels of the current
patch (or pixel) to be synthesized. The well-known template match-
ing (TM) algorithm operates as an extension to exemplar-based tex-
ture synthesis, and has been shown to be an effective method for
several applications including intra and inter prediction [7, 8], and
inpainting [6, 9]. A so-called template is formed by the known pix-
els in a close neighborhood of the unknown patch to be synthesized.
The best match between the template and the candidate texture patch
neighborhood (of the same shape as template), either within a search
window or in the whole image, allows finding the predictor of the
unknown pixel values.

One can even combine several image patches instead of using a
single “best” patch. The simplest way of combining several patches
is to assign uniform weights for each patch. This method is the same
with the average of multiple template matching (ATM) predictors
as proposed in [10]. Recently, non-local means (NLM) based ap-
proaches [11, 12] have also been proposed for different texture syn-
thesis problems. These methods which combine several patches have
been shown to be more robust in estimating the unknown values and
producing better synthesis results. However, the approaches ATM
and NLM do not search to minimize an approximation error on the
template signal. They are rather heuristic methods to calculate the
linear weighting coefficients.

In this paper, we propose a texture synthesis method based on
the locally linear embedding (LLE) technique [13]. The underlying
motivation can be thought of as finding a best linear combination of a
number of “texture primitives” (texture patches) to approximate the
input patch using a neighbor embedding optimization rather than a
heuristic calculation of weighting coefficients. In LLE, the goal is to
reconstruct each input signal from its K nearest neighbors (K-NN).

We focus particularly on texture synthesis for two different im-
age processing problems: (i) predictive coding (image prediction)
and (ii) error concealment. Although there is a strong similarity be-
tween the prediction problem and the error concealment problem,
there are at the same time important differences. In concealment,
the known samples are not restricted to be in a causal neighborhood
and the texture patches can be treated in a different order than the
raster scan. However, in prediction, the processing order is the raster
scan, the known samples are located only in a causal neighborhood
of the block to be predicted. The priority order as used in error con-
cealment can not be used as such (or not with as much freedom)
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Fig. 1. Block-based intra prediction based on template matching. A tem-
plate is formed by previously encoded pixels in the close neighborhood of
the unknown block. The best match between the template and the candi-
date neighborhood, within the search window W, allows finding the predictor
(candidate block) of the unknown block.

for the prediction problem. On the other hand, in an error conceal-
ment application, errors in texture synthesis are very critical and can
propagate very easily.

The rest of the paper is organized as follows. In Sec. 2 we start
with the image prediction problem by revisiting the background ap-
proaches including TM, ATM, and NLM. We then introduce the LLE
based texture synthesis framework for image prediction. In Sec. 3
we extend the proposed texture synthesis method for an error con-
cealment application. We give then experimental results obtained for
image prediction1 and error concealment in Sec. 4. Finally, Sec. 5
concludes this work with a brief conclusion.

2. LOCALLY LINEAR EMBEDDING FOR PREDICTION

2.1. Background approaches: TM, ATM, NLM

The main idea of TM consists in estimating the unknown pixel val-
ues using image patches in a local search window where all the pixel
values are known and available for processing. More precisely, the
values of each pixel to be predicted are determined by comparing
their spatial neighboring pixels (template) with all candidate neigh-
borhoods in the search window, and assigning the candidate pixel
values as a predictor for the unknown sample values by minimizing a
distance between the template and the candidate neighborhood. The
distance measures used are usually classical ones such as the sum of
squared error (SSE). Fig. 1 demonstrates a simple illustration of the
TM algorithm for block-based intra image prediction.

Let S denote a region in the image containing the unknown block
of size n× n and its template as shown in Fig. 1. The region S con-
tains 4 blocks hence of size N = 2n× 2n pixels for running the TM
algorithm. Suppose that the columns am of a matrix A ∈ R

N×M are
constructed by stacking the luminance values of all possible patches,
of size 2n× 2n pixels, in a given causal search window W in the re-
constructed image region. Here the matrix A will be referred to as
the dictionary. Assume also that the N sample values of the region
S are stacked in a column vector b.

For the first step, that is the search for a best match of the known
pixel values in the template, the matrix A is modified by masking
its rows corresponding to the spatial location of the pixels of the
unknown block. A compacted dictionary Ac of size 3n2 ×M is ob-
tained in which actually the columns acm correspond to the possible

1This study analyses particularly the performance of ATM, NLM, and
LLE for image prediction. A more general performance comparison between
TM-based prediction and standard prediction (e.g., H.264/AVC intra) with
advantages and disadvantages is available in [14].

candidate neighborhoods in the search window. The vector b is also
compacted in bc with the known pixels in the template of size 3n2

values. The TM algorithm then proceeds by calculating

mopt = argmin
m∈[1...M]

{dm : dm = DIST (bc,acm)} (1)

where the operator DIST denotes a distance metric such as SSE. The

prediction signal b̂t is simply assigned by the sample values of the

candidate block as b̂t = atmopt
. The columns atm of At corre-

spond to the possible candidate blocks in the search window, where
the matrix At is obtained by masking the rows of the dictionary A
corresponding to the spatial location of the pixels of the template.

Starting with the above definition of simple TM, a weighted lin-
ear combination of multiple TM predictors can be a possible exten-
sion since there might be more than one candidate block which are
equally important, or with a varying degree of importance but useful

to be used in the prediction process. Let the vector b̂t be predicted
as a weighted average of the candidate blocks atmk

, k = 1...K,
where the corresponding candidate neighborhoods acmk

taken from
the search window are the K-NN of the template bc. A simple con-
sideration ATM is of the weighting coefficients which are all equal
to each other. The prediction follows by

b̂t = AK
t α (2)

where AK
t is the matrix containing atmk

in its columns and the

elements αk of the weighting vector α are all equal to 1/K.
Similar to ATM, the NLM based method tries to aggregate mul-

tiple image patches as a weighted linear combination but the weight-
ing coefficients are calculated in a different way. The idea here is to
express the weights in terms of the amount of similarity between the
candidate neighbor patches and the template, i.e., the contribution
weights are calculated with a patch similarity based kernel function
in order to give more weight to the neighboring patches which are
more similar to the template than the others. By using an exponential
kernel, the elements αk of the weighting coefficients vector α can

be calculated as αk = exp

(
−DIST

(
bc,acmk

)

h

)
where h is a decay

coefficient. The calculated weights are normalized to sum-to-one,
i.e., α = α/sum(α), in order to avoid a possible overflow in the
predicted values of the pixels. Finally, the prediction follows Eqn. 2.

2.2. Prediction based on LLE

In this study, we propose to use LLE for calculating the weighting
coefficients in the vector α. We thus search for an approximation
of the template by a linear combination of its K-NN, and then keep
the same weighting coefficients in the linear combination of the co-
located pixels in order to estimate the unknown values of the block
to be predicted. In terms of LLE, this optimization can be written as

argmin
α

||bc −AK
c α||22 subject to 1Tα = 1 (3)

and the optimal weighting coefficients in α are computed as

α =
G−11

1TG−11
. (4)

Here AK
c is the matrix containing acmk

, k = 1...K, in its columns,

G denotes the Gram matrix of AK
c in reference to bc, and 1 is the

column vector of ones. In practice, instead of an explicit inversion
of the matrix G, the linear system of equations Gα = 1 is solved,
then the weights are rescaled so that they sum to one. Note that the
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Fig. 2. Error concealment. The patch φp̂ is centered on the highest priority
pixel p̂ located on the fill front. The template information of φp̂ (blue) is used
for selecting the patches from the known image region and then filling-in the
unknown values of φp̂ (red).

sum-to-one constraint of weights forces the reconstruction of each
patch to lie in the subspace spanned by its neighbors. Since the in-
put texture patch samples are all non-negative, the predicted block
will also be non-negative. However, the calculated weights can be
positive or negative. Finally, the prediction follows Eqn. 2.

3. EXTENSION TO ERROR CONCEALMENT

Error concealment is very similar to the image inpainting problem
where one can compute a priority for different patches so the algo-
rithm proceeds according to a given priority function. In this work,
we use the priority function which is defined in [6]. At each step of
the algorithm, the border (fill front) of the missing region is identi-
fied, and the priority P (p) of each pixel p located on the fill front
is calculated. An n × n patch φp̂ centered on the highest priority
pixel p̂ located on the fill front is selected for synthesis. In the patch
φp̂, there are known values and unknown values to be synthesized.
A template is assumed to be formed with the known pixel values in
the input patch φp̂ (see Fig. 2). The rest is very similar to image pre-
diction case where we search for an optimized approximation of the
template by a linear combination of its K-NN taken from the known
image region, and then keep the same weighting coefficients in the
linear combination of the co-located pixels in order to estimate the
unknown values. After estimating the unknown sample values in φp̂,
we update the fill front and the algorithm repeats the next steps until
all unknown samples in missing region are synthesized.

4. EXPERIMENTAL RESULTS

For the experimental validation, we have first placed the proposed
prediction method into an image compression scheme. In order to
initialize the prediction/compression process, the top 4 rows and left
4 columns of blocks of size 4 × 4 are predicted with H.264/AVC
intra modes. Once a block has been predicted with the respective
prediction method (ATM, NLM, or LLE), the 4 × 4 residual block
is DCT transformed, quantized, and encoded similar to JPEG. In
this coding structure, a uniform quantization matrix with Δ = 16 is
weighted by a quality parameter ranging between 10 and 90. Image
blocks are processed in the raster scan order, and the reconstructed
image is obtained by adding the quantized residue to the prediction.
A skip mode has also been included into the encoder to avoid cod-
ing the blocks of prediction residue in which all the transformed and
quantized coefficients are zero. The corresponding flag is arithmeti-
cally encoded. Nine possible forms of approximation supports (tem-
plates) are considered as shown in Fig. 3. The optimum template
type, which is Huffman encoded, is selected by minimizing a rate-

Fig. 3. Nine possible forms of approximation support (template). The best
type is selected by minimizing the RD cost function.

distortion (RD) cost function of the form J(D,R) = D+λR where
D is the total distortion (SSE) of the reconstructed block and R is
the estimated encoding cost of the residual signal.

Two sets of tests have been carried out. The first one makes use
of approximations with a smaller number of patches considered in
the K-NN search, where K is varied from 1 to 8. RD optimized
K value is signaled to the decoder in addition to the template type.
Fig. 5 demonstrates the encoding PSNR/bit-rate performance for
Foreman (CIF), Barbara (512×512), and Roof (512×512) images.
The coding cost of the optimum value of K as well as the optimal
template type have been included into total bit-rate. One can observe
that ATM outperforms the other methods, however LLE has a closer
performance than NLM. The second set of experiments relaxes the
K value, and takes as K = 100. In this case, there is no need to sig-
nal the value of K since it is fixed and assumed to be known also at
the decoder. Fig. 6 shows the encoding performance results obtained
for the same test images. The first observation one can make is that
the method based on LLE outperforms the other methods. The sig-
nificant performance gain can clearly be seen when the image con-
tains more complex and non-periodic texture areas (like in Barbara
and Roof). This gain has been achieved because of the bit-rate sav-
ings of signaling cost of K (note that this is the same for all methods
considered), and of the better optimization solutions of LLE on cal-
culating the weighting coefficients. The second observation is the in-
crease in the performance of NLM in reference to ATM. Apparently,
with the increasing number of used image patches, NLM becomes
an effective alternative to ATM since the weighting coefficients have
been calculated in a wise manner which prevents over-smoothing ef-
fects of simply averaging K = 100 patches.

We have then placed the proposed texture synthesis method for
assessing the performance in a simple loss concealment application.
Fig. 4 shows the images (referred to as barb1, barb2, and lena)
which have been tested with ATM, NLM, and LLE. Table 1 demon-
strates the obtained PSNR results of texture synthesis methods with
different K values where K = {1, 10, 25, 50, 100}. Notice that for
the special case when K = 1, all of the methods reduce to a simple
TM. In terms of PSNR, the effectiveness of LLE method can clearly
be observed especially for synthesizing highly textural regions. A
linear combination of several texture patches always produce better

Fig. 4. Test images for error concealment: (left) barb1 (21.25 dB), (mid-
dle) barb2 (18.62 dB), (right) lena (21.85 dB).
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Fig. 5. Encoding performance for (left) Foreman, (middle) Barbara, and (right) Roof using LLE in comparison to ATM and NLM (Optimized K ∈ [1, 8]).

Fig. 6. Encoding performance for (left) Foreman, (middle) Barbara, and (right) Roof using LLE in comparison to ATM and NLM (Fixed K = 100).

TM ATM NLM LLE
Image K = 1 10 25 50 100 10 25 50 100 10 25 50 100
barb1 32.89 34.59 34.41 32.41 31.98 31.07 31.09 31.09 31.00 34.77 34.46 36.34 36.36
barb2 33.70 37.24 37.41 37.68 36.73 36.35 36.41 36.70 36.71 38.05 36.21 35.19 37.78
lena 31.16 35.60 35.78 35.28 34.20 35.31 35.14 35.32 35.52 35.32 34.11 34.86 34.89

Table 1. PSNR (in dB) results for test images after concealment.

performance when compared to using only one single “best” patch
as in TM. Please note that here the tested missing regions are larger
than a macroblock size conventionally used for image or video cod-
ing, hence one can expect even better results for macroblock size
missing regions.

5. CONCLUSION

In this paper, we proposed a new texture synthesis method based
on LLE. This method can be seen as a generalization of TM, in the
sense that it searches to approximate the template signal via a con-
strained optimization in contrary to heuristic methods such as ATM
and NLM. Experimental validation shows that the proposed method
offers better performance when compared to TM, ATM, and NLM.
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