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Fine properties of the subdifferential for a class of one-homogeneous functionals

We collect some known results on the subdifferentials of a class of one-homogeneous functionals, which consist in anisotropic and nonhomogeneous variants of the total variation. It is known that the subdifferential at a point is the divergence of some "calibrating field". We establish new relationships between Lebesgue points of a calibrating field and regular points of the level surfaces of the corresponding calibrated function.

Introduction

In this note we recall some classical results on the structure of the subdifferential of first order one-homogeneous functionals, and we give new regularity results which extend and precise previous work by G. Anzellotti [START_REF] Anzellotti | Pairings between measures and bounded functions and compensated compactness[END_REF][START_REF] Anzellotti | On the minima of functionals with linear growth[END_REF][START_REF] Anzellotti | Traces of bounded vector fields and the divergence theorem[END_REF].

Given an open set Ω ⊂ R d with Lipschitz boundary, and a function u ∈ C 1 (Ω) ∩ BV (Ω), we consider the functional J(u) := Ω F (x, Du)

where F : Ω × R d → [0, +∞) is continuous, and F (x, •) is a smooth and uniformly convex positively one-homogeneous functional on R d for all x ∈ Ω. The functional J can be canonically relaxed to the whole of BV (Ω) (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Section 5.5]) and we still write, in analogy with the notation commonly used for the total variation, J(u) = Ω F (x, Du) for u ∈ BV (Ω),

where F (x, Du) is in general a Radon measure in Ω defined by F (x, Du) := F x, Du |Du| |Du| with Du |Du| the Radon-Nikodym derivative of Du with respect to |Du|. Since BV (Ω) ⊂ L d/(d-1) (Ω), it is natural to consider J as a convex, l.s.c. function on the whole of L d/(d-1) (Ω), with value +∞ when u ∈ BV (Ω). In this framework, for any u ∈ L d/(d-1) (Ω) such that J(u) < +∞, that is u ∈ BV (Ω), we can define the subdifferential of J at u, in the duality (L d/(d-1) , L d ), as

∂J(u) := g ∈ L d (Ω) : J(v) ≥ J(u) + Ω g(v -u) dx ∀v ∈ L d/(d-1) (Ω) .
Notice that a function g ∈ L d (Ω) belongs to ∂J(u) if and only if u is a minimizer of the functional J(v) -Ω gvdx among all v ∈ L d/(d-1) (Ω).

The goal of this paper is to investigate the particular structure of the functions u and g, when g ∈ ∂J(u). Let F * (x, z) := sup

w∈R d z • w -F (x, w)
be the Legendre-Fenchel or convex conjugate of F . Notice that F * takes values in {0, +∞}, and F * (x, z) = 0 if and only if F • (x, z) ≤ 1, where F • denotes the convex polar of F defined in (4) below.

Given u ∈ L d/(d-1) , the functional J(u) can also be expressed by duality as

J(u) = sup - Ω udiv z dx : z ∈ C ∞ c (Ω; R d ) , F * (x, z(x)) = 0 ∀x ∈ Ω .
It follows that a function g ∈ ∂J(u) has necessarily the form g = -div z, for some vector field z ∈ L ∞ (Ω; R d ) with F * (x, z(x)) = 0 a.e. in Ω. Since by a formal integration by parts one gets z • Du = F (x, Du), two natural questions arise:

• in what sense is this relation true?

• can one assign a precise value to z on the support of the measure Du?

The first question has been answered by Anzelotti in the series of papers [START_REF] Anzellotti | Pairings between measures and bounded functions and compensated compactness[END_REF][START_REF] Anzellotti | On the minima of functionals with linear growth[END_REF][START_REF] Anzellotti | Traces of bounded vector fields and the divergence theorem[END_REF]. However, for the particular vector fields we are interested in, we can be more precise and obtain pointwise properties of z on the level sets of the function u. Indeed, we shall show that z has a pointwise meaning on all level sets of u, up to H d-1 -negligible sets (which can be much more than |Du|-a.e., as illustrated by the function u = +∞ n=1 2 -n χ (0,xn) , defined in the interval (0, 1), with (x n ) a dense sequence in that interval).

We will therefore focus on the properties of the vector fields z ∈ L ∞ (Ω, R d ) such that F * (x, z(x)) = 0 a.e. in Ω and g = -div z ∈ L d (Ω), and such that there exists a function u such that for any φ ∈ C ∞ c (Ω),

- Ω div z uφ dx = Ω u z • ∇φ dx + Ω φF (x, Du) .
In particular, one checks easily that u minimizes the functional

Ω F (x, Du) - Ω gu dx (1) 
among perturbations with compact support in Ω. Conversely, given g ∈ L d (Ω) with g L d sufficiently small, there exist functions u which minimize (1) under various types of boundary conditions, and corresponding fields z. This kind of functionals appears in many contexts including image processing and plasticity [START_REF] Andreu-Vaillo | Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, collection[END_REF][START_REF] Temam | Problèmes mathématiques en plasticité (French)[END_REF]. Notice also that, by the Coarea Formula [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF], it holds

Ω F (x, Du) - Ω gu dx = R ∂ * {u>s} F (x, ν) dH d-1 (x) - {u>s} g dx ds ,
where ν is the unit normal to {u > s}, and one can show (see for instance [START_REF] Chambolle | An algorithm for mean curvature motion[END_REF]) that any level set of the form {u > s} or {u ≥ s} is a minimizer of the geometric functional

E → ∂ * E F (x, ν) dH d-1 (x) - E g dx . (2) 
defined for sets E of finite perimeter. The canonical example of such functionals is given by the total variation, corresponding to F (x, Du) = |Du|. In this case, (2) boils down to

P (E) - E g dx. (3) 
In [START_REF] Barozzi | The mean curvature of a set of finite perimeter[END_REF], it is shown that every set with finite perimeter in Ω is a minimizer of (3) for some g ∈ L 1 (Ω). If F is even in ν and when g ∈ L d (Ω), the boundary ∂E is only of class C 0,α out of a singular set (see [START_REF] Ambrosio | Partial regularity for quasi minimizers of perimeter[END_REF]). However, if g ∈ L p (Ω) with p > d, and E is a minimizer of (2), then ∂E is locally C 1,α for some α > 0, out of a closed singular set of zero H d-3 -measure [START_REF] Almgren | Regularity and singularity estimates on hypersurfaces minimizing elliptic variational integrals[END_REF][START_REF] Schoen | A new proof of the regularity theorem for currents which minimize parametric elliptic functionals[END_REF] (some regularity assumption on F is required, see also Remark 3.11 below). Since the Euler-Lagrange equation of (2) relates z to the normal of E, understanding the regularity of z is closely related to understanding the regularity of ∂E.

Our main result is that the Lebesgue points of z correspond to regular points of ∂{u > s} or ∂{u ≥ s} (Theorem 3.7), and that the converse is true in dimension d ≤ 3 (Theorem 3.10).

Preliminaries 2.1 BV functions

We briefly recall the definition of function of bounded variation and set of finite perimeter. For a complete presentation we refer to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]. 

E (t) := x ∈ R d : lim r↓0 |E ∩ B r (x)| |B r (x)| = t .
We denote by ∂E := E (0) ∪ E (1) c the measure theoretical boundary of E. Let spt (|Dχ E |) be the support of the measure |Dχ E |: we define the reduced boundary of E by:

∂ * E := x ∈ spt (|Dχ E |) : ν E (x) := lim r↓0 Dχ E (B r (x)) |Dχ E |(B r (x)) exists and |ν E (x)| = 1 ⊂ E ( 1 2 ) .
The vector ν E (x) is the measure theoretical inward normal to the set E.

Proposition 2.3. If E is a set of finite perimeter then Dχ E = ν E H d-1 ∂ * E, P (E) = H d-1 (∂ * E) and H d-1 (∂E \ ∂ * E) = 0.
Definition 2.4. We say that x is an approximate jump point of u ∈ BV (Ω) if there exist ξ ∈ S d-1 and distinct a, b ∈ R such that

lim ρ→0 1 |B + ρ (x, ξ)| B + ρ (x,ξ)
|u(y) -a| dy = 0 and lim

ρ→0 1 |B - ρ (x, ξ)| B - ρ (x,ξ)
|u(y) -b| dy = 0, where B ± ρ (x, ξ) := {y ∈ B ρ (x) : ±(yx) • ξ > 0}. Up to a permutation of a and b and a change of sign of ξ, this characterize the triplet (a, b, ξ) which is then denoted by (u + , u -, ν u ). The set of approximate jump points is denoted by J u .

The following proposition can be found in [2, Proposition 3.92].

Proposition 2.5. Let u ∈ BV (Ω). Then, defining

Θ u := {x ∈ Ω : lim inf ρ→0 ρ 1-d |Du|(B ρ (x)) > 0}, there holds J u ⊂ Θ u and H d-1 (Θ u \ J u ) = 0.

Anisotropies

Let F (x, p) : Ω × R d → [0, +∞) be a continuous functions, which is convex and positively one-homogeneous in the second variable: F (x, λp) = λF (x, p) for all λ > 0, x, p; and such that there exists c 0 > 0 with

c 0 |p| ≤ F (x, p) ≤ 1 c 0 |p| ∀(x, p) ∈ R d × R d .
We say that F is uniformly elliptic if for some δ > 0, the function p → F (p) -δ|p| is still a convex function. We define the polar function of F by

F • (x, z) := sup {F (x,p)≤1} z • p (4) so that (F • ) • = F . It is easy to check that [F (x, •) 2 /2] * = F • (x, •) 2 /2
, where as before the * denotes the convex conjugate with respect to the second variable. In particular, if differentiable,

F (x, •)∇ p F (x, •) and F • (x, •)∇ z F • (x, •) are inverse monotone operators. Also, one has that F * (x, z) = 0 if and only if F • (x, z) ≤ 1, and F * (x, z) = +∞ else. If F (x, •) is differentiable then, for every p ∈ R d , F (x, p) = p • ∇ p F (x, p) (Euler ′ s identity) and z ∈ {F • (x, •) ≤ 1} with p • z = F (x, p) ⇐⇒ z = ∇ p F (x, p). If F is elliptic and of class C 2 (R d × R d \ {0}), then F • is also elliptic and C 2 (R d × R d \ {0}).
We will then say that F is a smooth elliptic anisotropy. Observe that, in this case, the function F 2 /2 is also uniformly δ 2 -convex (this follows from the inequalities D 2 F (x, p) ≥ δ/|p|(Ip ⊗ p/|p| 2 ) and F (x, p) ≥ δ|p|). In particular, for every x, y, z ∈ R d , there holds

F 2 (x, y) -F 2 (x, z) ≥ 2 (F (x, z)∇ p F (x, z)) • (y -z) + δ 2 |y -z| 2 , (5) 
and a similar inequality holds for F • . We refer to [START_REF] Schneider | Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications[END_REF] for general results on convex norms and convex bodies.

Pairings between measures and bounded functions

Following [START_REF] Anzellotti | Pairings between measures and bounded functions and compensated compactness[END_REF] we define a generalized trace [z, Du] for functions u with bounded variation and bounded vector fields z with divergence in L d .

Definition 2.6 (Anzelotti [5]). Let Ω be an open set with Lipschitz boundary, u ∈ BV (Ω) and z ∈ L ∞ (Ω, R d ) with div z ∈ L d (Ω). We define the distribution [z, Du] by [z, Du], ψ = - Ω u ψ div z dx - Ω u z • ∇ψ dx ∀ψ ∈ C ∞ c (Ω).
Proposition 2.7 (Anzelotti [START_REF] Anzellotti | Pairings between measures and bounded functions and compensated compactness[END_REF]). The distribution [z, Du] is a bounded Radon measure on Ω and if ν is the inward unit normal to Ω, there exists a function [z, ν] ∈ L ∞ (∂Ω) such that the generalized Green's formula holds,

Ω [z, Du] = - Ω udiv z dx - ∂Ω [z, ν]u dH d-1 .
The function [z, ν] is the generalized (inward) normal trace of z on ∂Ω.

Given z ∈ L ∞ (Ω; R d ), with div z ∈ L d (Ω)
, we can also define the generalized trace of z on ∂E, where E is a set of locally finite perimeter. Indeed, for every bounded open set Ω with Lipschitz boundary, we can define as above the measure [z, Dχ E ] on Ω. Since this measure is absolutely continuous with respect to

|Dχ E | = H d-1 ∂ * E we have [z, Dχ E ] = ψ z (x)H d-1 ∂ * E with ψ z ∈ L ∞ (∂ * E) independent of Ω.
We denote by [z, ν E ] := ψ z the generalized (inward) normal trace of z on ∂E. If E is a bounded set of finite perimeter, by taking Ω strictly containing E, we have the generalized Gauss-Green Formula

E div z dx = - ∂ * E [z, ν E ]dH d-1 . Anzellotti proved the following alternative definition of [z, ν E ] [6, 7] Proposition 2.8 (Anzelotti [6, 7]). Let (x, α) ∈ R d × R d \ {0}. For any r > 0, ρ > 0 we let C r,ρ (x, α) := {ξ ∈ R d : |(ξ -x) • α| < r, |(ξ -x) -[(ξ -x) • α]α| < ρ}.
There holds

[z, α](x) = lim ρ→0 lim r→0 1 2rω d-1 ρ d-1 Cr,ρ(x,α) z • α dy
where ω d-1 is the volume of the unit ball in R d-1 .

3 The subdifferential of anisotropic total variations

Characterization of the subdifferential

The following characterization of the subdifferential of J is classical and readily follows for example from the representation formula [10, (4.19)]. where the equality holds in the sense of measures. Moreover, for every t ∈ R, for the set

E = {u > t} there holds [z, ν E ] = F (x, ν E ) H d-1
-a.e. on ∂E. We will say that such a vector field is a calibration of the set E for the minimum problem (2).

Remark 3.2. In [START_REF] Anzellotti | Pairings between measures and bounded functions and compensated compactness[END_REF], it is proven that if

z ρ (x) := 1 |Bρ(x)| Bρ(x) z(y) dy, then z ρ • ν E weakly* converges to [z, ν E ] in L ∞ loc (H d-1 ∂ * E). Using (5) it is then possible to prove that if z calibrates E then z ρ converges to ∇ p F (x, ν E ) in L 2 (H d-1 ∂ * E) yielding that up to a subsequence, z φ(ρ) converges H d-1 -a.e. to ∇ p F (x, ν E ).
Unfortunately this is still a very weak statement since it is a priori impossible to recover from this the convergence of the full sequence z ρ .

The main question we want to investigate now is whether we can give a classical meaning to

[z, ν E ] (that is understand if [z, ν E ] = z • ν E ).
We observe that a priori the value of z is not well defined on ∂E which has zero Lebesgue measure.

We let S := spt (Du) ⊂ Ω be the support of the measure Du, that is, the smallest closed set in Ω such that |Du|(Ω \ S) = 0. We will show that essentially in S, z is well-defined, as soon as g ∈ L d (Ω).

The next result is classical, for a proof we refer to [START_REF] Massari | Frontiere orientate di curvatura media assegnata in L p (Italian)[END_REF][START_REF] Gonzalez | Massari Variational mean curvatures[END_REF].

Lemma 3.3 (Density estimate).

There exists ρ 0 > 0 (depending on g ∈ L d (Ω)) and a constant γ > 0 (which depends only on d), such that for any B ρ (x) ⊂ Ω with ρ ≤ ρ 0 , and any level set

E of u (that is, E ∈ {{u > s}, {u ≥ s}, {u < s}, {u ≤ s}, s ∈ R}), if |B ρ (x) ∩ E| < γ|B ρ (x)| then |B ρ/2 (x)∩E| = 0.
As a consequence, E 0 and E 1 are open, ∂E is the topological boundary of E 1 , and (possibly changing slightly γ)

if x ∈ ∂E, then H d-1 (∂E ∩ B ρ (x)) ≥ γρ d-1 .
This result is not true anymore if g ∈ L d (Ω) [START_REF] Gonzalez | Massari Variational mean curvatures[END_REF]. If ∂Ω is Lipschitz, it is true up to the boundary.

Corollary 3.4. It follows that u ∈ L ∞ loc (Ω) and u ∈ C(Ω \ Θ u ).
Proof. For any ball B ρ (x) ⊂ Ω and inf

B ρ/2 (x) u < a < b < sup B ρ/2 (x) u, one has +∞ > |Du|(B ρ (x)) ≥ b a P ({u > s}, B ρ (x)) ds ≥ (b -a)γ ρ 2 d-1
, so that osc B ρ/2 (x) (u) must be bounded and thus u ∈ L ∞ loc (Ω). Moreover, if x ∈ Ω \ Θ u we find that lim ρ→0 osc Bρ(x) (u) = 0 so that u is continuous at the point x.

We remark that if sets (E n ) n satisfy the density estimate of Lemma 3.3 and converge in L 1 to some limit set, then one easily deduces that the convergence also holds in the Hausdorff (or Kuratowski, is the sets are unbounded) sense. Applying this principle to the level sets of u, we find that all points in the support of Du must be on the boundary of a level set of u: Proposition 3.5. For any x ∈ S, there exists s ∈ R such that either x ∈ ∂{u > s} or x ∈ ∂{u ≥ s}.

Proof. First, if x ∈ S then |Du|(B ρ (x)) = 0 for some ρ > 0 and clearly x cannot be on the boundary of a level set of u. On the other hand, if x ∈ S, then for any ball B 1/n (x) (n large) there is a level s n (uniformly bounded) with ∂{u > s n } ∩ B 1/n (x) = ∅ and by Hausdorff convergence, we deduce that either x ∈ ∂{u > s} or x ∈ ∂{u ≥ s} where s is the limit of the sequence (s n ) n (which must actually converge).

The following stability property is classical (see e.g. [START_REF] Chambolle | Plane-like minimizers and differentiability of the stable norm[END_REF]). Proposition 3.6. Let E n be local minimizers of (2), with a function g = g n ∈ L d (Ω), and converging in the L 1 -topology to a set E. Assume that the sets E n are calibrated by z n (see

Prop. 3.1), that z n * ⇀ z weakly- * in L ∞ and g n → g = -div z ∈ L d (Ω), in L 1 (Ω) as n → ∞.
Then z calibrates E, which is thus also a minimizer of (2).

Let us observe that, if z n * ⇀ z and F • (x, z n (x)) ≤ 1 a.e. in Ω, then in the limit one still gets F • (x, z(x)) ≤ 1 a.e. in Ω, thanks to the continuity of F and the convexity in the second variable.

The Lebesgue points of the calibration.

The next result shows that the regularity of the calibration z implies some regularity of the calibrated set. 

Proof. We reason as in [START_REF] Chambolle | Plane-like minimizers and differentiability of the stable norm[END_REF]Th. 4.5] and let z ρ (y) := z(x + ρy). Since x is a Lebesgue point of z, we have that z ρ → z in L 1 (B R ), hence also weakly- * in L ∞ (B R ) for any R > 0, where z ∈ R d is a constant vector.

We let E ρ := (Ex)/ρ and g ρ (y) := g(x + ρy) (so that div z ρ = ρg ρ ). Observe that E ρ minimizes

∂ * Eρ∩BR F (x + ρy, ν Eρ (y)) dH d-1 (y) + ρ Eρ∩BR g ρ (y) dy ,
with respect to compactly supported perturbations of the set (in the fixed ball B R ). Also,

ρg ρ L d (BR) = g L d (BρR) ρ→0 -→ 0 .
By Lemma 3.3, the sets E ρ (and the boundaries ∂E ρ ) satisfy uniform density bounds, and hence are compact with respect to both local L 1 and Hausdorff convergence.

Hence, up to extracting a subsequence, we can assume that E ρ → Ē, with 0 ∈ ∂ Ē. Proposition 3.6 shows that z is a calibration for the energy ∂ Ē∩BR F (x, ν Ē (y)) dH d-1 (y), and that Ē is a minimizer calibrated by z.

It follows that [z, ν Ē ] = F (x, ν Ē (y)) for H d-1 -a.e. y in ∂ Ē, but since z is a constant, we deduce that Ē = {y • ν ≥ 0} with ν/F (x, ν) = ∇ p F • (x, z) 1 . In particular the limit Ē is unique, hence we obtain the global convergence of E ρ → Ē, without passing to a subsequence.

We want to deduce that x

∈ ∂ * E, with ν E (x) = F (x, ν E (x))∇ p F • (x, z
), which is equivalent to [START_REF] Anzellotti | On the minima of functionals with linear growth[END_REF]. The last identity is obvious from the arguments above, so that we only need to show that

lim ρ→0 Dχ Eρ (B 1 ) |Dχ Eρ |(B 1 ) = ν . ( 7 
)
Assume we can show that

lim ρ→0 |Dχ Eρ |(B R ) = |Dχ Ē |(B R ) = ω d-1 R d-1 (8) 
for any R > 0, then for any

ψ ∈ C ∞ c (B R ; R d ) we would get 1 |Dχ Eρ |(B R ) BR ψ • Dχ Eρ = - 1 |Dχ Eρ |(B R ) BR∩Eρ div ψ(x) dx -→ - 1 |Dχ Ē |(B R ) BR∩ Ē div ψ(x) dx = 1 |Dχ Ē |(B R ) BR ψ • Dχ Ē and deduce that the measure Dχ Eρ /(|Dχ Eρ |(B R )) weakly- * converges to Dχ Ē /(|Dχ Ē |(B R )).
Using again ( 8)), we then obtain that

lim ρ→0 Dχ Eρ (B R ) |Dχ Eρ |(B R ) = ν (9)
for almost every R > 0. Since Dχ

Eρ (B µR )/(|Dχ Eρ |(B µR )) = Dχ E ρ/µ (B R )/(|Dχ E ρ/µ |(B R ))
for any µ > 0, (9) holds in fact for any R > 0 and (7) follows, so that x ∈ ∂ * E. It remains to show [START_REF] Auer | Differentiability of the stable norm in codimension one[END_REF]. First, we observe that, by minimality of E ρ and Ē plus the Hausdorff convergence of ∂E ρ in balls, we can easily show the convergence of the energies lim ρ→0 ∂Eρ∩BR

F (x + ρy, ν Eρ (y)) dH d-1 (y) + ρ Eρ∩BR g ρ (y) dy = ∂ Ē∩BR F (x, ν Ē (y)) dH d-1 (y)
and, by the continuity of F , lim ρ→0 ∂Eρ∩BR

F (x, ν Eρ (y)) dH d-1 (y) = ∂ Ē∩BR F (x, ν Ē (y)) dH d-1 (y) . ( 10 
)
Then, [START_REF] Anzellotti | Traces of bounded vector fields and the divergence theorem[END_REF] follows from Reshetnyak's continuity theorem where, instead of using the Euclidean norm as reference norm, we use the uniformly convex function F (x, •) and the convergence of the measures F (x, Dχ Eρ ) to F (x, Dχ Ē ) (see [START_REF] Reshetnyak | Weak Convergence of Completely Additive Vector Functions on a Set[END_REF][START_REF] Chambolle | Plane-like minimizers and differentiability of the stable norm[END_REF]).

Corollary 3.8. For any x ∈ S let E x ∈ {{u > u(x)}, {u ≥ u(x)}} be the upper level set of u such that x ∈ ∂E x . Then, the equality

z(x) = ∇ p F x, Dχ E x |Dχ E x | (x) (11) 
holds Lebesgue a.e. in S = spt (Du).

Remark 3.9. In the inhomogeneous isotropic case F (x, p) = a(x)|p|, with a(•) periodic, a similar result has been proved by Auer and Bangert in [START_REF] Auer | Differentiability of the stable norm in codimension one[END_REF]Th. 4.2]. As a consequence they obtain differentiability properties of the so-called stable norm associated to the functional J (see also [START_REF] Chambolle | Plane-like minimizers and differentiability of the stable norm[END_REF] for the anisotropic version of their result).

In dimension 2 and 3 we can also show the reverse implication, proving that regular points of the boundary correspond to Lebesgue points of the calibration. The idea is to show that the parameters r, ρ in Proposition 2.8 can be taken of the same order. Theorem 3.10. Assume the dimension is d = 2 or d = 3. Let x, s be as in Proposition 3.5, E be a minimizer of (2) and assume x ∈ ∂ * E. Then x is a Lebesgue point of z and (6) holds at x.

Proof. We divide the proof into two steps.

Step 1. We first consider anisotropies F which are not depending on the x variable. Without loss of generality we assume x = 0. By assumption, there exists the limit

ν := lim ρ→0 Dχ E (B ρ (0)) |Dχ E |(B ρ (0))| (12) 
and, without loss of generality, we assume that it coincides with the vector e d corresponding to the last coordinate of y ∈ R d . Also, if we let E ρ := E/ρ, the sets E ρ , E c ρ , ∂E ρ converge in B 1 (0), in the Hausdorff sense (thanks to the uniform density estimates), respectively to {y d ≥ 0}, {y d = 0}, {y d ≤ 0}. We also let z ρ (y) := z(ρy) and g ρ (y) := g(ρy), in particular -div z ρ = ρg ρ . We let

ω(ρ) = sup x∈Ω g L d (Bρ(x)∩Ω) (13) 
which is continuously increasing and goes to 0 as ρ → 0, since |g| d is equi-integrable. We introduce the following notation: a point in R d is denoted by y = (y ′ , y d ), with y ′ ∈ R d-1 . We let D s := {|y ′ | ≤ s}, z := ∇F (ν) and D t s = {D s + λz : |λ| ≤ t} and denote with ∂D s the relative boundary of D s in {y d = 0}.

We choose s ≤ 1, 0 < t ≤ s, (t is chosen small enough so that

D t s ⊂ B 1 (0), that is t < (1/|z|) √ 1 -s 2 ). We integrate in D t s the divergence ρg ρ = -div z ρ = div (z -z ρ ) against the function (2χ E -1)t -ν•y F (ν)
, which vanishes for y d = ±tF (ν) if ρ is small enough (given t > 0), so that ∂E ρ ∩ B 1 (0) ⊂ {|y d | ≤ tF (ν)}. For y on the lateral boundary of the cylinder D t s , let ξ(y) be the internal normal to ∂D s + (-t, t)z at the point y. Using the fact that z ρ is a calibration for E ρ , we easily get that for almost all s,

D t s ρg ρ (2χ E -1)t - ν • y F (ν) dy = ∂Ds+(-t,t)z (2χ E -1)t - ν • y F (ν) [(z -z ρ ), ξ] dH d-1 -2t ∂Eρ∩D t s z • ν Eρ -F (ν Eρ ) dH d-1 + D t s 1 - z ρ • ν F (ν) dy . ( 14 
)
Now since F • (∇F (ν)) = 1, there holds z • ν Eρ -F (ν Eρ ) ≤ 0 and using that z • ξ(y) = 0 on ∂D s + (-t, t)z, we get

D t s 1 - z ρ • ν F (ν) dy ≤ D t s ρg ρ (2χ E -1)t - ν • y F (ν) dy ∂Ds+(-t,t)z (2χ E -1)t - ν • y F (ν) z ρ • ξ dH d-1 . (15) 
We claim that for |ξ| ≤ 1 with ξ • z = 0, there holds

(ξ • z ρ ) 2 ≤ C(F (ν) -ν • z ρ ) (16) Since (ξ • z ρ ) 2 ≤ |z ρ | 2 -[z ρ • (z/|z|)] 2 it is enough to prove |z ρ | 2 -[z ρ • (z/|z|)] 2 ≤ C(F (ν) -ν • z ρ ).
Using that ν/F (ν) = ∇F • (z), from (5) applied to

F • together with F • (z) = 1 ≥ F • (z ρ ), we find (F (ν) -ν • z ρ ) = F (ν)(1 -z ρ • ∇F • (z)) ≥ C|z ρ -z| 2 .
which readily implies [START_REF] Paolini | Regularity for minimal boundaries in R n with mean curvature in L n[END_REF]. We thus have ∂Ds+(-t,t)z

(2χ Eρ -1)t - ν • y F (ν) (z ρ • ξ) dH d-1 ≤ 2C F (ν)t ∂Ds+(-t,t)z 1 - z ρ • ν F (ν) dH d-1 ≤ 2CF (ν)t √ t ∂Ds+(-t,t)z 1 - z ρ • ν F (ν) dH d-1 1 2 H d-2 (∂D s ) . (17) 
Now, we also have

ρ D t s (2χ Eρ -1)t - ν • y F (ν) g ρ dy ≤ 2tρ 1-d D ρt ρs g dy ≤ 2tρ 1-d g L d (Bρs(0)) |D ρt ρs | 1-1/d ≤ ct 2-1/d s d-2+1/d ω(ρs) (18) 
where here, c = 2H d-1 (D 1 ) 1-1/d , and ω is defined in [START_REF] Gonzalez | Massari Variational mean curvatures[END_REF]. We choose a < 1, close to 1, and t ∈ (0, (

1/|z|) √ 1 -a 2 ). If ρ > 0 is small enough (so that ∂E ρ ∩ B 1 is in {|y d | ≤ tF (ν)}), letting f (s) := D t s 1 - zρ•ν F (ν)
dy, we deduce from ( 15), ( 17) and ( 18) that for a.e. s with t ≤ s ≤ a, one has (possibly increasing the constant c)

f (s) 2 ≤ c s d-2 t 3 f ′ (s) + t 4-2/d s 2d-4+2/d ω(ρs) 2 . ( 19 
)
Unfortunately, this estimate does not seem to give much information for d > 

f (s) 2 ≤ c st 3 f ′ (s) + t 10/3 s 8/3 ω(ρs) 2 . ( 20 
)
Given M > 0, we fix a value t > 0 such that log(a/t) ≥ cM . If ρ is chosen small enough, then ∂E ρ ∩ B 1 (0) ⊂ {|y d | < tF (ν)}, and (20) holds. It yields (assuming f (t) > 0, but if not, then the proposition is proved)

- f ′ (s) f (s) 2 + 1 ct 3 1 s ≤ ct 1/3 s 5/3 ω(ρs) 2 f (s) 2 ≤ ct 1/3 s 5/3 ω(aρ) 2 f (t) 2 (21) 
where we have used the fact that t ≤ s ≤ a and f, ω are nondecreasing. Integrating (21) from t to a, after multiplication by t 3 we obtain

t 3 f (a) - t 3 f (t) + log(a/t) c ≤ 3c 8 t 10/3 (a 8/3 -t 8/3 ) ω(aρ) 2 f (t) 2 .
Hence we get

t 3 f (t) + ca 8/3 t -8/3 ω(aρ) 2 t 6 f (t) 2 ≥ M. (22) 
Eventually, we observe that

f (t) = D t t 1 - z(ρy) • ν F (ν) dy = 1 ρ d D ρt ρt 1 - z(x) • ν F (ν) dx , so that (22) can be rewritten      D ρt ρt 1 - z(x) • ν F (ν) dx (ρt) 3      -1 ≥ -1 + 1 + 4M ca 8/3 t -8/3 ω(aρ) 2 2ca 8/3 t -8/3 ω(aρ) 2 (23) 
The value of t being fixed, we can choose the value of ρ small enough in order to have 4M ca 8/3 t -8/3 ω(aρ) 2 < 1, and (using

√ 1 + X ≥ 1 + X/2 -X 2 /8 if X ∈ (0, 1)), (23) yields      D ρt ρt 1 - z • ν F (ν) dy (ρt) 3      -1 ≥ M -M 2 ca 8/3 t -8/3 ω(aρ) 2 ≥ 3 4 M . (24) 
It follows that

lim sup ε→0 D ε ε 1 - z • ν F (ν) dy ε 3 ≤ 4 3 M -1 (25) 
and since M is arbitrary, 0 is indeed a Lebesgue point of z, with value z = ∇F (ν) (recall that 1

-z(x)•ν F (ν) ≥ (C/F (ν))|z(x) -z| 2 ).
Step 2. When F depends also on the x variable, the proof follows along the same lines as in Step 1, taking into account the errors terms in ( 15) and [START_REF] Reshetnyak | Weak Convergence of Completely Additive Vector Functions on a Set[END_REF]. Keeping the same notations as in Step 1 and setting z := ∇ p F (0, ν) we find that since F • (0, z) ≤ 1, there holds z • ν Eρ ≤ F (0, ν Eρ ) and thus

∂Eρ∩D t s z • ν Eρ -F (ρx, ν Eρ )dH d-1 ≤ ∂Eρ∩D t s |F (0, ν Eρ ) -F (ρx, ν Eρ )|dH d-1 ≤ Cρs d-1
where the last inequality follows from t ≤ s and the minimality of E ρ inside D t s . Now since

(F • ) 2 (0, z ρ ) -(F • ) 2 (ρx, z ρ ) ≥ (F • ) 2 (0, z ρ ) -1 ≥ 2 ν F (0, ν) • (z ρ -z) + δ 2 |z ρ -z| 2
we find that (16) transforms into,

(ξ • z ρ ) 2 ≤ C (F (0, ν) -ν • z ρ ) + ((F • ) 2 (0, z ρ ) -(F • ) 2 (ρx, z ρ ))
for every |ξ| ≤ 1 and ξ • z = 0, from which we get ∂Ds+(-t,t)z

(2χ Eρ -1)t - ν • y F (ν) (z ρ • ξ) dH d-1 ≤ 2CF (0, ν)t √ t ∂Ds+(-t,t)z 1 - z ρ • ν F (0, ν) dH d-1 1 2 H d-2 (∂D s ) + 2Ct ∂Ds+(-t,t)z (F • ) 2 (0, z ρ ) -(F • ) 2 (ρx, z ρ ) 1/2 dH d-1 ≤ CF (0, ν)t √ t ∂Ds+(-t,t)z 1 - z ρ • ν F (0, ν) dH d-1 1 2 H d-2 (∂D s ) + Ctρ 1/2 s d-1 t .
Using these estimates, we finally get that, setting as before f (s) := D t s 1 -zρ•ν F (0,ν) dy, there holds f (s)2 ≤ c s d-2 t3 f ′ (s) + t 4-2/d s 2d-4+2/d ω(ρs) 2 + ρts d-1 + ρ 1/2 t 2 s d-1 .

From this inequality, the proof can be concluded exactly as in Step 1.

Remark 3.11. Assuming F has some regularity (Lipschitz in the first variable, and C 2,β and even in the second, see [START_REF] Schoen | A new proof of the regularity theorem for currents which minimize parametric elliptic functionals[END_REF]), then for d = 2 or d = 3 and g ∈ L p (Ω) with p > d, ∂E is of class C 1,α for some α > 0. In this case, [START_REF] Chambolle | An algorithm for mean curvature motion[END_REF] holds everywhere in spt (Du).

Eventually, we can also give a locally uniform convergence result (valid in dimension d = 2, 3, with the assumption 2 that F is even in dimension 3). Proposition 3.12. For all x ∈ Ω we let z ρ (x) := 1 |B ρ (0)| Bρ(x)∩Ω z dy .

Then, F • (x, z ρ (x)) → 1 locally uniformly on S.

Proof. Given K ⊂ Ω a compact set, we can check that for any t > 0, there exists ρ 0 > 0 such that for any x ∈ K ∩ S, if E x is the level set of u through x, then for any ρ ≤ ρ 0 , the boundary of (E xx)/ρ ∩ B 1 (0) lies in a strip of width 2t, that is, there is ν x ρ ∈ S d-1 with ∂((E xx)/ρ) ∩ B 1 (0) ⊂ {|y • ν x ρ | ≤ t}). Indeed, if this is not the case, one can find t > 0, ρ k → 0, x k ∈ K ∩ S, such that ∂((E x kx k )/ρ k ) ∩ B 1 (0) is not contained in any strip of width 2t. Up to a subsequence we may assume that x k → x ∈ K ∩ S, and from the bound on the perimeter, that (E x kx k )/ρ k converges (in the Kuratowski sense) to a local minimizer of ∂E F (0, ν E )dH d-1 and is thus a halfspace. 3 It yields that ∂((E x kx k )/ρ k ) ∩ B 1 (0) converges in the Hausdorff sense (thanks to the density estimates) to a hyperplane. We easily obtain a contradiction.

The thesis follows when we observe that the proof of Proposition 3.10 can be reproduced by replacing the direction ν E x (x) (which exists only if x lies in the reduced boundary of E x ) with the direction ν x ρ given above.

Remark 3.13. In the Euclidean case (F = | . |) it has already been observed in [START_REF] Ambrosio | Partial regularity for quasi minimizers of perimeter[END_REF] that the blow-ups are flat at each point of the boundary of a set with curvature in L d (but for a closed set of maximal dimension d -8), however the spiral example in [START_REF] Gonzalez | Boundaries of prescribed mean curvature[END_REF] shows that even if d = 2, the orientation of the limit line may not be unique.

Proposition 3 . 1 .

 31 Let F be a smooth elliptic anisotropy and g ∈ L d (Ω) then u is a local minimizer of (1) if and only if there exists z ∈ L ∞ (Ω) with div z = g, F * (x, z(x)) = 0 a.e. and [z, Du] = F (x, Du),

Theorem 3 . 7 .

 37 Let E = {u > t} or E = {u ≥ t}, and let x ∈ ∂E be a Lebesgue point of z. Then, x ∈ ∂ * E and z(x) = ∇ p F (x, ν E (x)).

  Definition 2.1. Let Ω be an open set of R d , we say that a function u ∈ L 1 (Ω) is a function of bounded variation if We denote by BV (Ω) the set of functions of bounded variation in Ω (when Ω = R d we simply write BV instead of BV (R d )). We say that a set E ⊂ R d is of finite perimeter if its characteristic function χ E is of bounded variation and denote its perimeter in an open set Ω by P (E, Ω) := Ω |Dχ E |, and write simply P (E) when Ω = R d .

	Ω	z∈C 1 |z|∞≤1 c (Ω) |Du| := sup	Ω	u div z dx < +∞.
	Definition 2.2. Let E be a set of finite perimeter and let t ∈ [0; 1]. We define

  3. It seems it allows to conclude only whenever d ∈ {2, 3}. Since the case d = 2 is simpler, we focus on d = 3. Estimate (19) becomes

We use here thatF (x, •)∇F (x, •) = [F • (x, •)∇F • (x, •)] -1 , so that z = ∇F (x, ν Ē (y)) implies both F • (x, z) = 1 and ν Ē (y)/F (x, ν Ē )(y) = ∇F • (x, z)

Probably just technical.

If d = 2, this Bernstein result readily follows from the strict convexity of F , see [12, Prop 3.6] whereas for d = 3, see [21, Thm.

4.1], where it is assumed that F is even. In the case of the area i.e when F (x, Du) = |Du| and d ≤ 7, see also[START_REF] Gonzalez | Massari Variational mean curvatures[END_REF] Rem 3.2].

A counterexample.

We provide an example where g ∈ L d-ε (Ω), with ε > 0 arbitrarily small, and Theorem 3.10 does not hold.

Let Ω = B 1 (0) be the unit ball of R d and let E = Ω ∩ {x d ≤ 0}. We shall construct a vector field z : Ω → R d such that z = ν E on ∂E ∩Ω, |z| ≤ 1 everywhere in Ω, divz ∈ L d-ε (Ω), but 0 is not a Lebesgue point of z. Notice that E minimizes the functional (3) with g = divz.

Letting r n → 0 be a decreasing sequence to be determined later, and let B n = B rn (x n ) with x n = 2r n e d . Without loss of generality, we may assume r n+1 < r n /4 so that the balls B n are all disjoint. We define the vector field z as follows:

if we choose r n converging to zero sufficiently fast, so that g = -div z ∈ L d-ε (Ω). However, since z • e d ≤ 1/2 in B rn/2 (x n ), we also have

On the other hand, for δ ∈ (0, 1/6 d ) we have

if we take the sequence r n converging to 0 sufficiently fast. It follows that 0 is not a Lebesgue point of z.