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Abstract

For the first time in known literature, one studies entanglement dy-
namics which is the way the complexity of entanglement may change
in time, for instance, in the solution of a Schr/”odinger equation giv-
ing the state of a composite quantum system. The paper is a pre-
liminary study which gives the rigorous definition of the respective
general mathematical model. Applications to effective Schr/”odinger
equations are given in a subsequent paper.

“A physical understanding is a completely un-
mathematical, imprecise, and inexact thing, but
absolutely necessary for a physicist ...”

R. Feynman
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1. Preliminaries

Recently, [1, 2], a non-negative integer valued grading function was
considered on tensor products in order to distinguish between non-
entangled and entangled elements. The essential property of this grad-
ing function is that it gives the minimally entangled expression for all
entangled elements in a tensor product. A main interest in such a min-
imal entanglement is in the study of the variation of that minimum
when the respective elements are time dependent, like for instance,
when they evolve according to a corresponding Schrödinger equation.

In [2], a brief mention of such a dynamics of entanglement was made,
based on earlier unpublished work of the present author. Here, some
of the related details are now presented.

For convenience, first we recall here briefly the way this grading func-
tion classifies entangled elements. Namely, the larger the grade of
such an element, the higher the extent to which it is entangled, and of
course, the other way round. In essence, this is done as follows. Let
X and Y be two vector spaces over a field K, then we define

(1.1) gr : X
⊗

Y −→ N

where for u ∈ X
⊗

Y , we have

(1.2) gr(u) = min{n | u =
∑n

i=1 xi ⊗ yi, xi ∈ X, yi ∈ Y }

with the convention that gr(0⊗ 0) = 0.

One of the relevant results is that, given u =
∑n

i=1 xi ⊗ yi ∈ X
⊗

Y ,
then

(1.3) gr(u) = min{ k, h }

where k and h are, respectively, the dimensions of the linear span of
{x1, . . . , xn} in X, and of {y1, . . . , yn} in Y .
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In particular, u ∈ X
⊗

Y is not entangled, if and only if gr(u) ≤ 1.

Clearly, gr(u) can be computed by well known methods in linear al-
gebra, for instance, methods which give the rank of a matrix.

Also, if X and Y are finite dimensional, then for u ∈ X
⊗

Y , we have

(1.4) gr(u) ≤ min{dimX, dimY }

A specific feature of the grade function (1.1) - (1.3) is that it is defined
exclusively in terms of the respective tensor product X

⊗
Y .

As for obtaining for a given

u =
∑n

i=1 xi ⊗ yi ∈ X
⊗

Y

a corresponding minimum representation

u =
∑m

j=1 uj ⊗ vj ∈ X
⊗

Y

where m = gr(u) ≤ n, we have the following result, see [1].

Proposition 1.1.

Let X and Y be two vector spaces over a field K, and let u =∑n
i=1 xi ⊗ yi ∈ X

⊗
Y . If

(1.5) gr(u) = m < n,

(1.6) the dimension of the linear span of {x1, . . . , xn} is m, and
it is less or equal with the dimension of the linear span
of {y1, . . . , yn},

(1.7) {x1, . . . , xm} are linearly independent

then
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(1.8) u =
∑m

i=1 xi ⊗ vi

where

(1.9) {v1, . . . , vm} is linearly independent, and it is contained
in the linear span of {y1, . . . , yn}

Furthermore, as seen next in the Proof, one can obtain an explicit
expression for the linearly independent vectors {v1, . . . , vm}, as seen
in (1.10) below.

Proof.

In view of (1.6), (1.7), we have

xj =
∑m

i=1 µj, i xi, m < j ≤ n

where µj, i ∈ K. Hence

u =
∑m

i=1 xi ⊗ yi +
∑n

j=m+1

∑m
i=1 µj, i xi ⊗ yj =

=
∑m

i=1 xi ⊗ yi +
∑m

i=1

∑n
j=m+1 µj, i xi ⊗ yj =

=
∑m

i=1 xi ⊗ (yi +
∑n

j=m+1 µj, i yj)

Consequently

(1.10) vi = yi +
∑n

j=m+1 µj, i yj, 1 ≤ i ≤ m

and {v1, . . . , vm} must be linearly independent in view of (1.8), (1.5).
�

In this paper the above grading function will be applied to the study
of the dynamics of composite quantum systems. Namely, let X, Y be
complex Hilbert spaces and let S be a quantum system with the state
space X

⊗
Y . Then its evolution is given by a one parameter family

of unitary operators U(t), with t ∈ [0,∞), where
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(1.11) X
⊗

Y 3 |ψ > 7−→ U(t)( |ψ > ) ∈ X
⊗

Y

Namely, given any preparation |ψ0 > of the system S at time t = 0,
then the state of the system at a time moment t ≥ 0 will be

(1.12) |ψt > = U(t)( |ψ0 > )

The problem under study in this paper is as follows. We obviously have

(1.13) |ψ0 > =
∑n(0)

i=1 xi(0)⊗ yi(0) ∈ X
⊗

Y

while, for t ≥ 0, we shall have

(1.14) |ψt > = U(t)( |ψ0 > ) =
∑n(t)

i=1 xi(t)⊗ yi(t) ∈ X
⊗

Y

Thus in general

• the state |ψt > of the composite system S at any moment of
time t ≥ 0 may be entangled

• the extent of the entanglement may vary from one moment of
time to another

We therefore intend to study this variation in the extent of entangle-
ment, and do so with the help of the grading function gr.

2. An Simple Instance of Possible Entanglement Dynamics

We recall that the evolution of quantum systems which are not subject
to measurement is supposed to take place according to the Schrödinger
equation. In other words, the state |ψ > of a quantum system - a
state which is a vector in a suitable Hilbert space H, and which is
a square integrable function on a corresponding configuration space
given by a finite dimensional Euclidian space E - satisfies a linear par-
tial differential equation, namely the Schrödinger equation, in which
the independent variables are the time t ∈ R, and the coordinates
x ∈ E of that configuration space.
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Our interest here being in entanglement dynamics, see its definition at
the end of this section, we focus on composite quantum systems which,
therefore, have their state space given by suitable tensor products.

In view of the above, it will help first to have a look at the following
entanglement dynamics. Let (X, || ||), (Y, || ||) be two Banach spaces
over a field K. In particular, they can be finite dimensional Euclidean
spaces. We consider ODEs of the form

(2.1) dF (t)/dt = A(F (t)), t ∈ [0,∞)

where

(2.2) [0,∞) 3 t 7−→ F (t) ∈ X
⊗

Y

while

(2.3) A : X
⊗

Y −→ X
⊗

Y

The problem is that, in terms of X and Y , the solution of (2.1) - (2.3)
will in general be of the form

(2.4) F (t) = x1(t)⊗ y1(t) + . . .+ xn(t)(t)⊗ yn(t)(t)

And it is quite likely that xi(t) ∈ X, yi(t) ∈ Y and n(t) ∈ N do indeed
depend on t. Thus the situation is of considerable difficulty, since (2.4)
means that the ODE in (2.1) - (2.3), when considered in terms of X
and Y , will have a variable number of unknowns and equations. Fur-
thermore, the representation of the solution F (t) in (2.4) is not unique.

Of course, when instead of (2.1) - (2.4), we have the classical case of

(2.5) [0,∞) 3 t 7−→ F (t) ∈ X × Y

then instead of (2.4) we have the trivial form of solution, namely

(2.6) F (t) = (x(t), y(t)) ∈ X × Y
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and thus we simply have a usual system of two ODEs in X × Y .

In view of the above, it is natural to introduce

Definition 2.1.

We call entanglement dynamics the situation when given a regular
enough, for instance, continuous mapping

(2.7) R 3 t 7−→ F (t) = x1(t)⊗y1(t)+. . .+xn(t)(t)⊗yn(t)(t) ∈ X
⊗

Y

where

(2.8) gr(F (t)) = n(t), t ∈ R

there may occur a variation in n(t), as t ranges over R.

3. An Example

Let us consider a simple example of (2.1) - (2.4). Let X, Y be Eu-
clidean spaces. Given a, b ∈ X

⊗
Y , we define the infinite straight

line between a and b, namely

(3.1) R 3 t 7−→ F (t) ∈ X
⊗

Y

by

(3.2) F (t) = (1− t)a+ tb, t ∈ R

thus

(3.3) F (0) = a, F (1) = b

and F (t) obviously satisfies the following ODE in X
⊗

Y , namely

(3.4) dF (t)/dt = A(F (t)), t ∈ R
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where A is the constant mapping

(3.5) A : X
⊗

Y 3 u 7−→ A(u) = b− a ∈ X
⊗

Y

Let us assume now that

(3.6) a =
∑n

i=1 xi ⊗ yi, b =
∑m

j=1wj ⊗ zj

then (3.2) gives

(3.7) F (t) =
∑n

i=1(1− t)xi ⊗ yi +
∑m

j=1 twj ⊗ zj, t ∈ R

thus in view of (1.3) we have

(3.8) F (t) =
∑p(t)

q=1 cq(t)⊗ dq(t), t ∈ R

where

(3.9) p(t) = min{ k(t), h }

with k(t) and h being, respectively, the dimension of the linear span of
{(1− t)x1, . . . , (1− t)xn}∪ {tw1, . . . , twm} in X, and of {y1, . . . , yn}∪
{z1, . . . , zm} in Y .

Let us further refine the result in (3.7) - (3.9) above. In this regard,
we make use of the following Lemma whose proof is in the Appendix

Lemma 3.1.

Let

(3.10) t ∈ R, t 6= 0, t 6= 1

then

1) To any linearly independent subset {xi1 , . . . , xir} ∪ {wj1 , . . . , wjs}
in {x1, . . . , xn} ∪ {w1, . . . , wm} corresponds the linearly
independent subset {(1− t)xi1 , . . . , (1− t)xir} ∪ {twj1 , . . . , twjs}
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in {(1− t)x1, . . . , (1− t)xn} ∪ {tw1, . . . , twm}, and conversely.

2) The linear span of {xi1 , . . . , xir} ∪ {wj1 , . . . , wjs} and of
{(1− t)xi1 , . . . , (1− t)xir} ∪ {twj1 , . . . , twjs} are equal.

�

Let us assume that

(3.11) the dimension of the linear span of
{(1− t)x1, . . . , (1− t)xn} ∪ {tw1, . . . , twm} = k ≤
the dimension of the linear span of {y1, . . . , yn}∪{z1, . . . , zm}

then (1.8), (1.9) hold, therefore we have, see (3.8)

(3.12) F (t) =
∑p

q=1 λq(t)cq ⊗ dq, t ∈ R, t 6= 0, t 6= 1

where λq(t) ∈ R, and we have the inclusion {c1, . . . , cp} ⊆ {x1, . . . , xn}∪
{w1, . . . , wm}, with {c1, . . . , cp} being linearly independent.

In case instead of (3.11), we have

(3.13) the dimension of the linear span of
{(1− t)x1, . . . , (1− t)xn} ∪ {tw1, . . . , twm} = k ≥
the dimension of the linear span of {y1, . . . , yn}∪{z1, . . . , zm}

then we note that (3.7) gives

(3.14) F (t) =
∑n

i=1 xi ⊗ ((1− t)yi) +
∑m

j=1wj ⊗ (tzj), t ∈ R

and the above argument leading to (3.12) can be applied, with the dif-
ference in the result that this time we have the inclusion {d1, . . . , dp} ⊆
{y1, . . . , yn} ∪ {z1, . . . , zm}, with {d1, . . . , dp} being linearly indepen-
dent.

Let us return to the situation in (3.12) which implies that

(3.15) gr(F (t)) = f(t) ≤ p, t ∈ R, t 6= 0, t 6= 1
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and let us now suppose that in (3.6) we have

(3.16) gr(a) = n 6= m = gr(b)

Then obviously

(3.17) f(0) = n 6= m = f(1)

thus the non-negative integer valued function

(3.18) f : [0, 1] 3 t −→ f(t) ∈ {0, 1, 2, . . .}

is not constant. Consequently, in terms of Definition 2.1., we obtain

Proposition 3.1.

The solution (3.1) - (3.3), ( 3.7) - (3.9) of the system of ODEs (3.4),
(3.5) exhibits entanglement dynamics.

4. Another Example

Let X = R2, Y = R3, then X
⊗

Y = R6. Further, let, see (2.3),
A : R6 −→ R6 be the identity operator I6 on R6, while a = x1 ⊗ y1 +
x2 ⊗ y2 ∈ X

⊗
Y . We consider the ODE, see (2.1)

(4.1) dF (t)/dt = A(F (t)), t ∈ [0,∞)

where

(4.2) [0,∞) 3 t 7−→ F (t) ∈ R6

with the initial condition

(4.3) F (0) = a = x1 ⊗ y1 + x2 ⊗ y2 ∈ X
⊗

Y

and assume that the general form of the solution is, see (2.4)
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(4.4) F (t) = x1(t)⊗ y1(t) + x2(t)⊗ y2(t) ∈ X
⊗

Y

where this time x1(t), x2(t) ∈ R2, y1(t), y2(t) ∈ R3.

Remark 4.1.

1) Clearly, in view of (1.4), we can assume that every element c ∈
X
⊗

Y can be written as c = u1⊗ v1 + u2⊗ v2. Therefore, there is no
loss of generality in the above choice of a ∈ X

⊗
Y in (4.3), or in the

expression of the solution F (t) in (4.4).
Furthermore, in view of (4.3), (4.4), we assume that

(4.5) x1(0) = x1, y1(0) = y1, x2(0) = x2, y2(0) = y2

2) A specific feature of the system of ODEs in (4.1) - (4.4) is that
(4.1) contains 6 linear equations in 6 unknown functions from R to R,
namely

(4.6) F (t) = (F1(t), F2(t), F3(t), F4(t), F5(t), F6(t)) ∈ R6, t ∈ R

while in (4.4) we have

(4.7) (x1(t), y1(t), x2(t), y2(t)) ∈ R2+3+2+3 = R10, t ∈ R

therefore, there are 10 unknown functions from R to R.

Regarding this discrepancy we note that, even when (4.4) would be
a representation of F (t) with the minimum number of terms, that
representation need not be unique.

�

Now, as is well known, the solution of (4.1) - (4.3) is given by

(4.8) F (t) = exp(tI6) a = exp(t)x1⊗y1+exp(t)x2⊗y2 ∈ R6, t ∈ R

and clearly, given any t ∈ R, we have
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(
x1, x2
linearly independent

)
⇐⇒

(
exp(t)x1, exp(t)x2
linearly independent

)
as well as(
y1, y2
linearly independent

)
⇐⇒

(
exp(t)y1, exp(t)y2
linearly independent

)
It follows that, similar with section 3, here again there is no entangle-
ment dynamics.

5. One More Example

Let us consider a linear system of ODEs which is neither autonomous,
nor homogeneous. We can again take X = R2 and Y = R3, and then
X
⊗

Y = R6. This time the linear system of ODEs is given by

(5.1) dF (t)/dt = A(t)(F (t)) + b(t), t ∈ [0,∞)

where

(5.2) [0,∞) 3 t 7−→ F (t) ∈ R6

it the solution with the initial condition

(5.3) F (0) = a = x1 ⊗ y1 + x2 ⊗ y2 ∈ X
⊗

Y

Here we assume that [0,∞) 3 t 7−→ A(t) : R6 7−→ R6 and [0,∞) 3
t 7−→ b(t) : R6 are continuous.

Further, we can assume that the general form of the solution of (5.2) is

(5.4) F (t) = x1(t)⊗ y1(t) + x2(t)⊗ y2(t) ∈ X
⊗

Y, t ∈ [0,∞)

where x1(t), x2(t) ∈ R2, y1(t), y2(t) ∈ R3.

Under the above, we obviously have
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(5.5) 0 ≤ gr(F (t)) ≤ 2

thus entanglement dynamics arises when, instead of (5.5), we may have

(5.6) 0 ≤ gr(F (t)) ≤ 1

Now as is well known, the solution of (5.1) - (5.3) is given by

(5.7) F (t) = F0(t) + Φ(t)
∫ t

0
Φ−1(s) b(s) ds, t ∈ [0,∞)

where [0,∞) 3 t 7−→ F0(t) ∈ R6 is the solution of the homogeneous
system of ODEs

(5.8) dF (t)/dt = A(t)(F (t)), t ∈ [0,∞)

with the initial condition

(5.9) F0(0) = a

while [0,∞) 3 t 7−→ Φ(t) ∈ R36 is a fundamental 6×6 matrix solution
of (5.8).

Appendix

Proof of Lemma 3.1.

1) Let {xi1 , . . . , xir}∪{wj1 , . . . , wjs} be linearly independent in {x1, . . . , xn}∪
{w1, . . . , wm}, then we show that {(1−t)xi1 , . . . , (1−t)xir}∪{twj1 , . . . , twjs}
is linearly independent in {(1− t)x1, . . . , (1− t)xn} ∪ {tw1, . . . , twm}.
Indeed, assume that

(A.1) λi1(1− t)xi1 + . . .+ λir(1− t)xir +µj1twj1 + . . .+µjstwjs = 0

where λi1 , . . . , λir , µj1 , . . . , µjs ∈ R are not all zero.

But we have 1−t, t 6= 0, hence not all λi1(1−t), . . . , (1−t)λir , tµj1 , . . . , tµjs ∈
R are zero either. And then (A.1) implies that {xi1 , . . . , xir}∪{wj1 , . . . , wjs}
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are not linearly independent, which is contrary to the assumption.

Conversely, if {(1−t)xi1 , . . . , (1−t)xir}∪{twj1 , . . . , twjs} is linearly in-
dependent in {(1−t)x1, . . . , (1−t)xn}∪{tw1, . . . , twm}, then {xi1 , . . . , xir}∪
{wj1 , . . . , wjs} is linearly independent in {x1, . . . , xn} ∪ {w1, . . . , wm}.
Assume indeed that

(A.2) λi1xi1 + . . .+ λirxir + µj1wj1 + . . .+ µjswjs = 0

where λi1 , . . . , λir , µj1 , . . . , µjs ∈ R are not all zero.

Since we have 1− t, t 6= 0, it follows from (A.2) that

(A.3)
[λi1/(1− t)](1− t)xi1 + . . .+ [λir/(1− t)](1− t)xir+

+ [µj1/t]twj1 + . . .+ [µjs/t]twjs = 0

and λi1/(1 − t), . . . , λir/(1 − t), µj1/t, . . . , µjs/t ∈ R are not all zero.
Thus (A.3) implies that {(1− t)xi1 , . . . , (1− t)xir}∪{twj1 , . . . , twjs} is
not linearly independent in {(1− t)x1, . . . , (1− t)xn}∪{tw1, . . . , twm},
which contradicts the assumption.

2) It is a direct consequence of 1).

References

[1] Khrennikov A, Rosinger E E, Van Zyl A : Graded Ten-
sor Products and the Problem of Tensor Grade Com-
putation and Reduction. http://hal.archives-ouvertes.fr/hal-
00717662, http://vixra.org/abs/1207.0050

[2] Khrennikov A, Rosinger E E, Van Zyl A : Graded Tensor Prod-
ucts and Entanglement. Foundations of Propbability and Physics
- 6 (Eds. M D’Ariano, et.al.), AIPI Conference Proceedings 1424,
Vaxjo, Sweden, 14-16 June 2011, pp. 189-194

14


