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We have carried out uniaxial compression of micron-scale amorphous silica pillars. We have measured load–displacement curves and 
observed the morphology of the pillars after unloading, providing strong evidence for large plastic deformations. Minor cracking is also 
observed, with a well-defined pattern. We find that the van Mises stress in compression is comparable to the intrinsic tensile strength of 
silica. Precise analysis of the deformation of the pillars has been carried out by finite element modeling (FEM) using the constitutive 
equation determined previously (G. Kermouche et al., Acta Materialia, 56 (2008) 3222), which quantitatively takes into account densi-
fication, shear flow and strain hardening. The residual stress distribution we predict by FEM matches the observed crack pattern well. 
Finally the calculated stress fields in pillar compression and cone indentation are compared. We propose an interpretation of the con-
trasts in terms of confinement.
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1. Introduction

Silicate glasses are brittle – a claim substantiated by our
daily experience. However, it has also been known for
years that they are ductile at small scales [1]. For example,
Marsh pointed out the close similarity between rows of
indents in steel and in plate glass as early as 1964 [2]. We
believe that progress in our understanding of this ductility
of silicate glasses is one of the main avenues towards the
reduction of their fragility.

There may be two distinct relations between fragility
and ductility in silicate glasses. On the one hand, practical
strength is limited by surface flaws [3]. Many of these flaws
are generated by contact loading of the surface, in which

plastic deformation is involved at smaller length scales.
Understanding the ductility of silicates may help curb the
formation of strength-threatening flaws. On the other
hand, there is the question of the intrinsic tensile strength
of silicates. Many accurate measurements of the tensile
strength of silicate glasses have been obtained over the last
20 years. It is significantly dependent upon composition
and environment, but generally speaking the tensile
strength reaches very large values. For silica, accepted val-
ues at room temperature are 5.5–6 GPa under an ambient
atmosphere and 10–12 GPa under inert conditions [4,5].
At such levels of stress the question of the rupture mecha-
nism arises, both for initiation and propagation: is it a
purely brittle rupture (bond by bond) or does collective
reorganization (i.e. ductility) play a role? Fundamental
comprehension of the ductility in silicate glasses would help
to answer this question, which is relevant for possible rela-
tions between plastic yield stress and intrinsic tensile
strength and also between fracture energy and surface
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energy. For this reason, a sound understanding of the plas-
ticity of silicates is needed.

The most fundamental question is: what are the exact
irreversible deformation mechanisms that can give rise to
plasticity in an amorphous material [6]. In the absence of
periodicity, dislocations are unavailable and shear flow
must rely on other processes, such as more local plastic
rearrangements [7,8]. Moreover, the continuous distribu-
tion of interatomic distances allows for specific irreversible
evolutions of the structure during permanent deformation.
In the case of silica, there is a 20% free volume that can be
suppressed by these local rearrangements: a large perma-
nent volumetric strain (or densification) can be observed
during plastic deformation [9–11].

The second question is methodological: experimentally,
how can we investigate the plastic deformation of silicates
since the typical length scales involved are so small? As a
rule of thumb, the brittle to ductile transition occurs
around the micron scale for amorphous silicates. This is
why, although early experiments successfully identified
the phenomenology of the irreversible deformation pro-
cesses such as densification [9] and shear flow [2,12] during
sharp indentation, they could not quantify the constitutive
response of the material. In this area, significant progress
was made once well-defined stress–strain experiments at
the micron scale became possible. This progress was due
to the development of microfabrication tools and local
strain measurement capabilities. First, data for accurate
identification of the yield surface were obtained by dia-
mond anvil cell (DAC) measurements, under a loading
close to pure hydrostatic pressure [13]. The relation
between maximum hydrostatic pressure p and final density
has been measured up to 20 GPa for amorphous silica
[14,15] and soda-lime glass [16,17]. Since hardening occurs
as densification increases [16,14], shear flow dominates the
deformation process once full densification is achieved [18].
The coupling between densification and the equivalent von
Mises stress was investigated in detail through indentation
experiments. Nanoindentation experiments have been ana-
lyzed by Xin and Lambropoulos [19] using finite element
modeling (FEM). Mappings of the density distribution
[14] in Vickers indents by Raman spectroscopy were shown
to provide significantly richer data for the identification of
the yield surface. Based on these data, a constitutive equa-
tion has been proposed [20] which includes the effects of
shear flow, densification and strain hardening, and
accounts simultaneously for the DAC, the nanoindentation
load–displacement curve and the density maps.

In indentation, complex stress states come as a distribu-
tion, which is not easy to unravel. In order to interrogate
the yield properties accurately, other experiments with
purer loadings are needed. Inspiration can be derived from
recent developments in the area of the plastic response of
metals at the small scale: as an approximation to uniaxial
loading, micropillar experiments have been proposed.
Under uniaxial loading, the relation q/p = 3 is obeyed,
where q is the equivalent von Mises stress. Micropillar

compression has been widely used for the investigation of
the response of metallic single crystals and metallic glasses
[21–24], and has proved extremely valuable in the charac-
terization of strength and flow behavior. However, atten-
tion has been drawn to the unavoidable deviations from
the ideal homogeneous uniaxial stress state due to geomet-
rical approximations and imperfect boundary conditions
[25–28]. It is now clear that reliable conclusions on intrinsic
material response can be derived only when the details of
the experimental set-up are taken into account explicitly
in the analysis.

For amorphous silica, we have recently shown that sili-
cate glasses are very suitable for micropillar compression
because the ratio of the yield stress to Young’s modulus
is comparatively large [29]. In the present paper, we inves-
tigate plastic flow in the compression of amorphous silica
micropillars. We demonstrate the experimental conditions
under which controlled plastic flow can be obtained with
high reproducibility, without failure of the pillar, generat-
ing only minor cracking with a well-defined pattern. We
demonstrate that, under these loading conditions, the plas-
tic flow takes place at a von Mises stress of about 6.9 GPa.
An in-depth analysis of the pillar response by FEM sup-
ports our interpretation: deviations from ideal uniaxial
conditions are considered in detail and provide explana-
tions for heterogeneous plastic flow in the pillar. Our
results suggest that this flow is nearly volume-conservative.
We also calculate the residual stress distribution and dem-
onstrate that it is consistent with the observed crack pat-
tern. Finally, the results are compared with cone
indentation of a flat silica surface and the contrast with pil-
lar compression is discussed in terms of confinement.

2. Material and methods

2.1. Pillars–material and morphology

Amorphous silica wafers (3 inches, polished on one side,
(7.64 mm) thickness, Neyco SA (Paris) France) were etched
by reactive ion etching (RIE) [29]. Note that quoting the
diameter in inches is standard practice in this field. The
resulting micropillars were 4.75 lm high and 3.1 lm in
diameter at the upper section. Under the present etching
conditions, a taper angle of about 4� is observed (Fig. 1).

Individual micropillars were axially loaded with a flat
punch (11 lm diameter, Fig. 2) in a nanoindenter (Agilent
NanoXP), as described in Ref. [29]. The resolutions are
±50 lN for the load and ±0.01 nm for the displacement.
Loading and unloading are carried out at the same rate
of 0.1 mN s�1, which generates a strain rate of about
1:7� 10�3 s�1 during the elastic regime.

Following the conclusions of our previous experiments
[29], we have optimized the geometry of the experiment
to limit the buckling instability of the pillar. This is why
a rather low aspect ratio H/D = 1.5 is used, increasing
the stability of the pillar [25]. In addition, the loading
moments are minimized. The sample surface is aligned
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precisely with the vertical axis of the indenter using a cus-
tom-made tilt stage (Michalex SARL, Orsay, France), as
proposed by Uchic et al. [21]. Alignment is performed using
the built-in optical microscope (field depth 1 lm) and
deemed adequate when the sample surface is in focus on
all four sides of the sample (size 20 mm � 20 mm). Special

care is also given to the calibration of the position in the
horizontal plane to ensure that the pillar makes contact
with the flat punch at the center.

2.2. Measurement procedure

During compression, the displacement effectively
applied to the top surface of the pillar utip is evaluated as
follows. Even with optimized alignment, an accommoda-
tion range is observed over a few hundred nanometers
(Fig. 3). In order to accurately define the origin of displace-
ment, a 15 mN preload is first applied (Fig. 3, section a).
Unloading (section b) and reloading (section c) demon-
strates that accommodation has been suppressed and that
the origin of displacement u0 is now well defined (end of
segment b, Fig. 3). In addition, two other corrections are
needed. The first correction is for the frame stiffness Sasm

(about 500 kN m�1) and results in an additional deflection
F/Sasm, where F is the load. The second correction is due to
thermal drift. During the second loading step (section c),
when the load reaches 15 mN for the second time, a small
but noticeable offset in displacement can be observed in the
load–displacement curve. This offset is due to the thermal
drift acting between t1 and t2 (Fig. 3). Applying a linear
correction, we write the drift rate rdrift = (u2 � u1)/
(t2 � t1). Finally, the displacement is expressed as

utip ¼ uraw � u0 �
F

Sasm

� rdriftðt � t0Þ ð1Þ

Regarding the load, the nanoindenter is effectively load-
controlled, which causes large loading fluctuations and
ultimately catastrophic failure when the sample undergoes
significant softening. For optimum repeatability, loading is
carried out down to a target slope rather than up to a tar-
get load. More precisely, we monitor the slope of the load–
displacement curve: when softening takes place, this slope
decreases markedly. Loading is stopped when the loading
slope falls below a preset target value. Fig. 4 illustrates
load–displacement curves obtained for respectively high
(a) and low (b) loading slope targets.

Fig. 1. Field emission gun scanning electron microscope (FEG-SEM)

images of typical amorphous silica micropillars. The array was fabricated

by RIE.

Fig. 2. Geometry of the micropillar compression set-up in the

nanoindenter.

Fig. 3. Typical load–displacement curve for silica micropillar compres-

sion. A 15 mN preload is applied to the pillar. From this preload, we

correct the data for thermal drift and displacement offset.
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2.3. Data analysis: approximate stress–strain curves

Before the data are compared with full FEM predictions
in Section 3.2, it is useful to resort to an approximate trans-
formation of the load–displacement curve into a stress–
strain curve. An overall estimate of the axial stress and
strain in the micropillar can be calculated directly assuming
homogeneous uniaxial loading. This assumption would be
correct if the micropillar were a perfect cylinder without
friction on the upper and lower faces. The method followed
here is derived from the micropillar compression literature
[25]. Correcting for imperfect boundary conditions is
beyond the scope of this section and will be dealt with in
the FEM section. However, the taper can be taken into
account approximately by expressing the axial compliance
of the whole pillar C (Eq. 2) as the sum of the compliances
of each section

C ¼
Z h0

0

dh

EAðhÞ ¼
h0

Eprtoprbase
¼ h0

Epr2eq
ð2Þ

where rtop is the top radius and rbase the base radius of the
pillar. It appears that the radius req of the equivalent cylin-
der exhibiting the same stiffness as the tapered pillar can be
expressed as req ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rtoprbase
p

.

To calculate the deformation, we note that the substrate
sinks in elastically as the pillar is loaded, and this contribu-
tion to displacement must be taken into account. Follow-
ing Refs. [25,29], we assume that the substrate behaves as
if loaded by a rigid flat punch with a radius equal to the
base radius rbase. The displacement of the pillar base ubase
follows the relation ubase = F/S (Sneddon), where the sub-
strate stiffness S = 2rbaseE/(1 � m2), and E and m are the
Young’s modulus and Poisson’s ratio of the substrate. As
a result, the relative displacement of the top and bottom
of the micropillar is ueff = utip � ubase and the overall true
strain is e = ln((h0 � ueff)/h0), where h0 is the initial height.
It is worth noting that the elastic deflection of the substrate
ubase accounts for a correction of 35% of the displacement
applied on the surface utip in the present case.

The large elastic deformation of the pillar before yield-
ing must also be taken into account when calculating the
axial stress. Assuming a homogeneous elastic radial expan-
sion of the equivalent cylinder, the equivalent section is
A = p(req(1 + me))2 and the overall true stress in the equiv-
alent cylinder is r = F/A.

2.4. Data analysis: finite element modeling

An FEM model was set up to precisely identify the
yield parameters best describing the experimental load–
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Fig. 4. Experimental load–displacement (a and b) and stiffness (c and d) curves. When a target load–displacement slope is reached, loading is terminated

and unloading initiates. These target slopes were respectively 45 kN m�1 (a and c) and 10 kN m�1 (b and d).
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displacement curve, and to quantify the stress heterogene-
ity in the micropillar. The commercial program ABAQUS
Standard 6.8 is used for that purpose [30]. An axisymmetric
analysis is carried out assuming perfect alignment. The flat
punch is purely elastic, described with the constants shown
in Table 1. We assume a frictionless contact between the
flat punch and the micropillar. The pillar itself is 4.75 lm
in height, with a top radius of 1.55 lm and a base radius
of 1.88 lm. It is meshed by 50 elements in height and 20
elements across the radius. The model also includes a large
portion (depth 120 lm and radius 60 lm) of the substrate
to take the compliance into account. Analysis with four-
node axisymmetric elements with reduced integration
(CAX4R) was performed, accounting for the non-
linearities related to large deformations and displacements.

The constitutive model follows our previous paper [20].
The non-linear elastic response of silica [31] is not included
and the elastic contribution is accounted for by a constant
Young’s modulus and Poisson’s ratio (Table 1). We choose
an elliptic yield surface in the (p,q) plane (Fig. 5). This
elliptic shape accounts for shear-assisted densification: den-
sification can take place under reduced hydrostatic pressure
when an additional shear load is applied [32]. The critical
pressure at which densification is triggered under pure
hydrostatic loading is pc and the critical von Mises equiva-
lent stress generating shear flow under pure shear is qc
(Table 1). Pressure hardening is accounted for by using
the free volume (or conversely the density) as an internal
variable following [20]. In this model, densification natu-
rally saturates when the free volume vanishes.

Some of the results are compared to indentation data on
the same material, for which an FEM model of conical
indentation of a flat surface has also been set up. The cone
angle is 69.3� (Vickers indenter), the indentation depth is
2 lm (load 400 mN) and an axisymmetrical domain of
depth 120 lm and radius 60 lm is considered.

3. Results

3.1. Experimental results

The raw data for the compression of silica pillars are
shown in Fig. 4a for high target slope. Under this condi-
tion, the maximum load is slightly below 60 mN and full
elastic recovery of the pillar is found after unloading. The
slope of the load–displacement curve during unloading is
very close to the slope during loading (Fig. 4c).

For a low target slope, softening is observed around
F = 60 mN and a permanent height reduction is observed
in the load range 60–70 mN (Fig. 4b). At 70 mN load,
the permanent height reduction is about 800 nm. Simulta-
neously, we observe that the slope of the load–displace-
ment curve at unloading has increased noticeably (Fig. 4d).

Note that the preload has successfully removed any pro-
gressive development of the contact (Fig. 4a and b) upon
loading, demonstrating that minimal misalignment
between punch and pillar is achieved with the tilt stage
[29]. More generally, in both cases, a very satisfactory
reproducibility of the measurements is achieved thanks to
the protocol outlined in Section 2.

The raw data have also been transformed into stress–
strain curves, as detailed in Section 2. For a high target
slope the maximum axial stress is 6.5 GPa, while for low
target slopes irreversible deformation occurs in the range
6.5–8 GPa (Fig. 6a). At maximum load, with a residual
deformation of 800 nm, the true strain reaches 0.2, which
is an 18% engineering strain.

A scanning electron microscopy (SEM) image of a pillar
after irreversible deformation is shown in Fig. 6b. Interfer-
ometry measurements (ZYGO NewView 5032) confirm
that the height of the pillars has been reduced by 800 nm.
From the SEM picture, it clearly appears that the upper
section of the pillar has undergone a significant permanent
deformation which involves radial expansion. In addition
regularly spaced radial cracks can be seen at the periphery
of this zone, either significantly developed (Fig. 6b), or just
initiated (Fig. 6c). We also observe that after permanent
deformation the top surface is often tilted by a few degrees
with respect to the vertical axis.

Finally, catastrophic failures are sometimes observed
during unloading, as visible on two of the seven data sets
displayed in Fig. 6a. SEM observations reveal that in this
case two failure morphologies may be identified. When fail-
ure is partial, the pillar is split across by a vertical fracture
(Fig. 6d). For full rupture, the pillar is wiped out of the sur-
face (not shown), probably due to failure at the pillar base,
along the horizontal plane.

Table 1

Parameters of the constitutive behaviors.

Material Young’s modulus,

E (GPa)

Poisson’s

ratio, m

pc (GPa) qc (GPa)

Amorphous silica 70 0.18 11.5 7.0

Diamond 1141 0 – –

Fig. 5. Yield surface for amorphous silica. The elliptic surface used in the

present paper follows Kermouche et al. [20]. Also shown is the linear

criterion used by Xin and Lambropoulos [19] and by Gadelrab et al. [33].

The arrows illustrate the flow direction at first yield under uniaxial

loading.
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3.2. Numerical results

A typical load–displacement curve measured in uniaxial
compression with a low slope target (high load) is com-
pared to the FEM prediction in Fig. 7a. Below 60 mN a
reversible softening is observed experimentally (Fig. 4c)
because of the non-linear elastic response of silica. This
behavior is not reproduced by the model because the elastic
non-linearity was omitted. However, permanent flow initi-
ates at a load close to 60 mN both in the experiments and
in the model, and develops up to ca. 70 mN over an irre-
versible displacement, which is slightly smaller (600 nm)
in the FEM calculation than in the measurements
(800 nm).

The von Mises equivalent stress field predicted by the
FEM calculations for a 65 mN load, just above yield, is dis-
played in Fig. 7b. When the yield initiates, the von Mises
equivalent stress reaches 6.85 GPa at the top of the pillar.
The distribution of (p,q) stress states in the micropillar is
displayed in Fig. 7c and d, along with the initial yield sur-
face. For a uniaxial loading we expect q/p = 3, and this
straight line is shown for comparison.

To understand cracking, the distributions of circumfer-
ential stress (or hoop stress rhh) are displayed in Fig. 8
for three load levels: at the beginning of the plastic flow
(a), the maximum load (b) and after unloading (c).

For comparison, we also calculated stress distributions
for cone indentation at a 400 mN load with the same con-

stitutive behavior. A comparison between the experimental
and predicted load–displacement curves is shown in
Fig. 9a. The von Mises equivalent stress field is shown in
Fig. 9b. The stress state distribution for a 400 mN load is
shown in Fig. 9c, and the stress state history for four ele-
ments located at different depths under the indenter tip is
shown in Fig. 9d. Finally, the distribution of the circumfer-
ential stress is displayed in Fig. 10 under load (left) and
after unloading (right).

4. Discussion

4.1. Elastic response: plastic flow

The permanent height reduction observed above 60 mN
on the loading–unloading curves (Fig. 4b) along with the
permanent increase in the axial stiffness (Fig. 4d at unload-
ing) demonstrate that above the 60 mN threshold the
deformation of the micropillar is plastic in nature. Indeed,
significant damage, which could also result in irreversible
deformation, would reduce the stiffness in the loading
direction instead. The SEM observations clearly indicate
that the initially tapered upper section of the pillars flares
up after plastic deformation (Fig. 6b–d), which is evidence
of significant plastic shear flow. It is also worth noting that
no visible slip band is found on the plastically deformed
pillars by SEM inspection. This plastic flow often leads
to an asymmetric deformation of the pillar (Fig. 6c),
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resulting in a slanted top surface after deformation, as evi-
denced both by SEM and interferometric measurements.
The resulting misalignment of the top surface is consistent
with the strong curvature of the stress–strain curve in the
final stage of unloading, over a range of about 200 nm
(Fig. 4b), which reflects the progressive loss of contact
between punch and pillar.

4.2. Pillar geometry and deviation from ideality

The FEM simulations can help assess the extent to
which a uniaxial stress state (q/p = 3) holds true in the
micropillar, during both the elastic and plastic regimes.
The micropillar is perfectly bonded to the substrate, and
this constrains the radial displacements of the base. The
resulting confinement leads to higher levels of hydrostatic
pressure in that region, as evidenced by our FEM simula-
tions (Fig. 7c and d). This slight enhancement of the hydro-
static pressure is the main deviation from ideal uniaxial
loading. In the upper half of the pillar the constraint from
the substrate is minimal and q/p ’ 3, as expected for uniax-
ial loading (Fig. 7d).

Because the pillar tapers, the section is larger in the
lower part of the pillar, reducing q at the base: the yield

threshold is first reached in the upper part of the pillar,
where the plastic deformation localizes. The variation in
the section over the height of the pillar also results in a
slight discrepancy between our estimate (Section 2.3) of
the average axial stress (6.5 GPa) and the actual yield stress
(6.85 GPa in the upper region) at the threshold inferred
from the FEM calculations.

The SEM observations show that the top surface of the
pillar exhibits the largest radial deformation (Fig. 6b). Sig-
nificant friction between the punch and the pillar would
constrain the radial displacement of this surface [28]; how-
ever, minimal friction is thought to take place, thus quali-
tatively validating our assumption of frictionless contact
for the FEM calculations.

4.3. Quantification of the constitutive equation

During loading, the yield criterion is first reached at ele-
ments located in the upper region of the micropillar, where
q/p ’ 3. It is remarkable that the same relation still holds
quite accurately during plastic flow at loads well above
threshold (Fig. 7c and d). This observation is especially
true in the upper region of the pillar, where substrate con-
finement is absent and minimal hydrostatic compression
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develops during pillar compression, even in the plastic
regime.

The strain hardening included in the present model of
plastic flow (Section 2.4) is controlled by the volumetric
plastic deformation or densification. For micropillar com-
pression, our calculations predict that densification does
not exceed 4%, and plastic deformation is reasonably close
to the shear flow expected for a perfectly plastic material
under ideal uniaxial loading, especially in the upper half
of the pillar. As a result, in the compression of tapered
micropillars, plastic flow has a stabilizing effect. From the
expansion of the carrying section there appears an appar-
ent hardening: the pillar can bear loads larger than thresh-
old while the material itself experiences hardly any strain
hardening (Fig. 7d).

Based on our FEM calculations, we conclude that the
overall axial stress in the micropillar (6.5 GPa at threshold)
is best accounted for by taking a yield stress in shear
qc = 7 GPa (Table 1). This value is only slightly larger than
the 6.5 GPa initially determined in Ref. [20]. With this
value, the yield point in pure uniaxial compression is
6.85 GPa (Fig. 5), which is in between the values reported
in the literature (6.4 GPa [20] and 8.3 GPa [33]).

It is notable that this value is within the range of the
intrinsic tensile strengths measured on pristine silica fibers
and actually lies in between the values for accepted room
temperature and the values for inert conditions [4,5]. Since
both uniaxial compression and uniaxial tension are domi-
nated by equivalent von Mises stress, a similar yield stress

could indeed be expected in these two kinds of loadings.
Moreover, if similar plastic events are involved in compres-
sion and tension, opposite macroscopic behaviors are
expected: stabilization by expansion of the section for com-
pression and destabilization by necking for traction. Vali-
dating such a conjecture would require further
investigations into the tensile strength of silica fibers.

4.4. Comparison with indentation

For comparison, we also calculated the stress and strain
distributions for cone indentation using the same constitu-
tive model. Good agreement with the data is obtained, as
demonstrated by the comparison between the experimental
and predicted load–displacement curves (Fig. 9a). Cone
indentation is a self-similar problem, and the stress maps
for one prescribed depth (Fig. 9b) account for the full load-
ing curve. The stress state distribution for a 2 lm depth has
been plotted in Fig. 9c. In this distribution, two distinct sets
of local stress states are evident. We observe that the q/p
ratio for all elements in the elastic regime falls around 4,
which is quite similar to the pillar distribution, especially
in the upper part of the pillar, where the slope is 3. For ele-
ments in the plastic regime, in cone indentation, q stays
close to qc and a large range of hydrostatic pressures can
be explored (Fig. 9c). This wider range of hydrostatic pres-
sures in the plastic regions is the major contrast with the
pillar (Fig. 7c), where the stress state remains nearly uniax-
ial even in the plastic regime.

Fig. 8. FEM calculations of the circumferential stress in the micropillar at 60 mN load (a), 75 mN load (b) and after unloading (c).
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It is also instructive to track the local stress state of an
individual element during a full cone indentation cycle.
The stress trajectories for points located at various depths
under the indenter tip are illustrated in Fig. 9d. In the elas-
tic regime the load rises with a constant ratio q/p around 4
(Fig. 9d, segment 1). Once the yield surface has been
reached, shear flow occurs, but a gradual increase in the
hydrostatic pressures also develops, as demonstrated by

the nearly horizontal portion of segment 2. It is worth not-
ing that this increase in hydrostatic pressure results in the
significant densification that has been shown experimen-
tally for indentation. In line with the requirement of self-
similarity, we consistently observe that the hydrostatic
pressure is larger for elements closer to the indenter tip,
and so is the permanent densification Dq/q (Fig. 9d, in
gray). Finally, during unloading (segment 3), q first
decreases but can rise again at low loads as residual stresses
build-up due to permanent strain.

For a better understanding of the elastic loading phase
in cone indentation, we investigate the q/p ratio in the far
field of an indent. Far enough from the indenter, and
ignoring the local effects of the indenter geometry, we can
use the analytical expressions for the elastic stress field
resulting from normal point loading at the surface [34].
When considering a region located under the indenter
along the loading axis, we find

q=p ¼ 3ð7� 2mÞ
4ð1þ mÞ ð3Þ

We also find that the same relation still holds quite accu-
rately when moving away from the z-axis. In the case of
amorphous silica, Eq. 3 predicts that the q/p ratio under
the indenter in the elastic regime is 4.22 for cone

(a) (b)

(c) (d)

Fig. 9. Cone indentation in silica: experimental and FEM load–displacement curves (a), von Mises stress at a 400 mN load (b), distribution of stress states

at each mesh element of the region of interest plotted in the (p,q) plane (c), stress state trajectories for four elements located at different depths under the

indenter tip during the full loading–unloading cycle.

Fig. 10. FEM calculations of the circumferential stress in the median

plane of a conical indent in silica at a 400 mN load (left), and after

unloading (right).
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indentation, which is in good agreement with the q/p ratio
evidenced from the FE model (Fig. 9c and d, dashed line).
Note also that for an incompressible material a uniaxial
stress state appears under normal point loading (q/p = 3
for m = 0.5).

In summary, we find that the yield surface is first
reached at very similar values of hydrostatic pressure and
von Mises stress both in pillar compression and in cone
indentation. In particular, cone indentation does not lead
to higher levels of hydrostatic pressure in the elastic regime.
A strong contrast between pillar compression and cone
indentation appears only in the plastic regime. Indeed, in
cone indentation, plastic shear flow is confined by the sur-
rounding elastic medium, resulting in the build-up of
hydrostatic pressure shown in Fig. 9d, segment 2. By cut-
ting out material around the pillar, we suppress this con-
finement and plastic shear flow can develop while
preserving the uniaxial stress state. Altogether, our inter-
pretation of densification during cone indentation of silica
is as follows: volume-conservative flow is the main driving
force for densification through the build-up of hydrostatic
pressure resulting from confinement.

4.5. Flow direction

In this comparison with cone indentation, our interpre-
tation strongly depends on the choice of the flow direc-
tion, which is the ratio of densification to shear flow, as
marked by arrows in Fig. 5. Here we have simply
assumed associated plasticity, and with the elliptic form
of the yield surface, this flow direction results in nearly
pure shear flow under uniaxial stress. A flow including
more intrinsic densification would result in a moderate
build-up of hydrostatic pressure. However, numerical
investigations of various intrinsic flow directions could
all lead to similar permanent densifications under sharp
indentation, either from the intrinsic flow direction or
by constrained shear flow. Densification measurements
by Raman spectroscopy on sharp indentation imprints
do not seem appropriate for assessing the actual direction
of intrinsic flow at first yield. In that aspect, micropillar
compression appears to be a more interesting alternative,
as the potentially observed densification would mainly be
related to the intrinsic flow direction. More precise inves-
tigations based on Raman measurements of the densifica-
tion at the top of the pillar as well as comparisons of the
profile of deformed micropillars with FEM models with
different yield directions could provide some insight into
this question.

4.6. Residual stress field

The inhomogeneous permanent deformation due to
plastic flow induces residual stresses. It is well known that
stress fields in brittle materials like silicates transpire in the
fracture patterns [35]. Here we discuss the nature of the
stress fields in pillars under compression as well as the

residual stress fields after unloading. We also sketch a brief
comparison with stress distributions in cone indentation.

In pillar compression below the threshold, the circum-
ferential stresses are compressive. They are small but finite
(not shown) because the base of the pillar is constrained by
the substrate. When the load reaches the threshold, plastic
flow is triggered in the upper region, starting from the
upper edge. Material flows along the directions of maximal
equivalent von Mises stress, diagonally across the pillar.
This flow results in a radial expansion of the upper part
of the pillar. For loads slightly above the yield threshold,
the expansion of this nucleus leads to the build-up of signif-
icant compressive circumferential stresses (Fig. 8a) in the
upper part of the pillar (about �0.5 GPa) and also strains
the lower, elastic, part of the pillar, which becomes tensile
(about +0.5 GPa). At higher loads the plastic deformation
wedges into the upper part of the pillar. The compressive
circumferential stresses increase further, reaching �1 GPa
at the upper corners (Fig. 8b). The tensile restraining stres-
ses also build up, but their location shifts towards the
edges: in particular, our calculations predict a restraining
annulus of tensile stresses at the periphery, with a maxi-
mum value +1 GPa located at about 1 lm under the upper
edge of the pillar. Furthermore, the locations of tensile
stress presented here are consistent with the FE analysis
of Schwaiger and co-authors on the deviation from the
purely uniaxial stress state during micropillar compression
[28].

We can conclude from this analysis, together with the
observations of radial cracks at this exact location
(Fig. 6b and c), that the circumferential tensile stress pro-
duces a decohesion of the strained silica. This decohesion
appears to initiate at stresses under 1 GPa, at the beginning
of the plastic flow resulting from the axial stress (Fig. 6c).
This level of stress is significantly lower than the tensile
strength obtained in fibers, for instance. Indeed, tensile
stresses of 5–6 GPa can be reached before failure of pristine
fibers at room temperature in ambient air [4,5]. The deco-
hesion observed in the present experiments could result
from a weakening of the amorphous network induced by
plastic reorganization, as has been proposed on the basis
of molecular dynamics simulations [36].

When the load is removed after plastic flow has taken
place in the upper part of the pillar, there is a significant
residual radial deformation. However, the base is now
relieved of radial compressive stresses and a median region
of tensile stresses appears halfway up the pillar, just below
the plastically deformed region (Fig. 8c). We think these
residual stresses may be responsible for the catastrophic
failure sometimes observed during unloading. A split pillar
(Fig. 6e) may result from a crack originating from the ten-
sile circumferential stresses in the median region, as Howie
and co-authors have previously observed in Si and InAs
micropillars [24].

There is some similarity between the stress fields
described here for a pillar and the stress fields for cone
indentation. For cone indentation under load (Fig. 10,
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left), the elastic and plastic contributions result in a large
tensile circumferential stress in the median region below
the plastically deformed core [35]. However, there is also
a restraining effect due to confinement by the surrounding
medium, and the circumferential stress at the surface is
compressive. Indeed, in normal glasses, median cracks,
located under the plastically deformed area, initiate during
loading. This result can be contrasted with our observa-
tions on pillars: the upper part of the pillar is not confined,
but the base of the pillar is. As a result, the tensile region
shifts to the upper region of the pillar sides. This is the
region where we observe the array of radial cracks.

In cone indentation, after unloading, the compressive
contribution from the elastic field is zero and the tensile cir-
cumferential stress distribution at the surface due to the
plastic flow of the core region becomes apparent
(Fig. 10.right). Indeed, in normal glasses, which experience
a quite similar stress distribution, radial cracks initiate
upon unloading at the surface from the edge of the plasti-
cally deformed core [35]. For pillars, the confinement effect
is limited to the base of the pillar and the elastic field does
not induce tensile circumferential stresses there. As a result,
the tensile area under the plastically deformed core appears
only upon unloading (Fig. 8c), as does the tensile region at
the base of the pillar, inducing the catastrophic rupture
already mentioned.

In brief, in pillars, substrate confinement effects are
much more limited and only affect the base of the pillar,
while in cone indentation, substrate confinement is more
pronounced at the surface. Due to this contrast, the respec-
tive positions of tensile and compressive circumferential
stresses under load are inverted: while median cracks
appear in cone indentation, we observe an array of radial
cracks at the top of the pillar. After unloading, the stress
distribution becomes essentially tensile all around the plas-
tically deformed core in both cases: radial cracks develop in
cone indentation, while we ascribe a split pillar morphol-
ogy to cracks originating from this distribution.

5. Conclusions

We have demonstrated stable plastic flow in micron-
sized silica pillars. Due to the slightly tapered shape, irre-
versible deformation is dominated by radial flow in the
upper part of the pillar, resulting in a flare at the top of
the pillar. The plastic deformation reaches 20%. This is
accompanied by a well-defined crack pattern: a periodic
array of radial cracks form at the top edge of the pillar.
A few of the pillars also split into two upon unloading.

We have shown that these results are fully consistent
with the constitutive equation we proposed earlier [20].
We propose here a single minor adjustment by raising qc
from 6.5 to 7 GPa. This value is in the range of the intrinsic
tensile strength values measured on pristine silica fibers.
The intrinsic tensile strength could therefore involve some
plasticity, although no definite evidence can yet be brought
in that regard.

Deviations from ideal uniaxial loading have also been
carefully analyzed. We contend that, for silica, an adequate
geometry is a pillar with a 1.5 aspect ratio: in this case, an
almost purely uniaxial loading is effectively obtained in the
upper half of the pillar. A significantly longer pillar would
buckle away during compression; a significantly shorter
one would be dominated by substrate effects. Our analysis
also places bounds on the errors incurred through an
approximate analytical analysis of the raw data.

Under the present assumptions (elliptic yield surface and
associated plasticity), we have characterized the plastic
deformation mechanisms. We conclude that, in cone inden-
tation, volume-conservative shear flow indirectly induces
densification: as the flow is constrained by the strong con-
finement, significant hydrostatic pressure builds up, result-
ing in densification. In contrast, in the uniaxial
compression of micropillars, plastic flow is free, with
reduced hydrostatic pressure and minimal densification.
These considerations open the way for a more accurate
quantification of the flow direction through: (i) precise
shape analysis of the micropillar; and (ii) direct measure-
ment of densification through Raman spectroscopy.

Along the same lines, we analyzed confinement as the
origin of the contrasted stress distributions calculated for
pillar compression and for cone indentation, both under
load and after unloading. We found the results to be in
good agreement with the observed crack pattern: in partic-
ular, the radial cracks at the top of the pillar are consistent
with the annulus of restraining circumferential stresses we
found at this location by FEM calculations. The magnitude
of these tensile stresses (below 1 GPa) suggests that decohe-
sion occurs under stresses considerably lower than expected
when considering the tensile strengths of pristine fibers. We
surmise that this discrepancy is due to the strong plastic
deformation of the material. This weakening of the amor-
phous network during plastic flow might be an interesting
starting point for studying damage initiation in silica.
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