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We present another proof of a study of Bellieud and Bouchitté that we expect to be more suitable to treat more general geometrical and physical cases. We consider the homogenization of the quasi-linear elliptic problem

where Ω is a bounded cylindrical open subset of R 3 and 1 < p < +∞. The fibers occupy a set of thin parallel cylinders periodically distributed in Ω. The conductivity coefficient a ε is ε-periodic and takes very high values in the fibers.

Introduction

Let p ∈ (1, +∞), we consider the homogenization of the elliptic problem

-div σ ε = f, σ ε = a ε |∇u ε | p-2 ∇u ε on Ω u ε = u 0 on Γ 0 σ ε • n = g on Γ 1 (1.1)
where Ω := ω × (0, L) with L > 0 and ω is a bounded domain of R2 with smooth boundary and containing the origin of coordinates. The homogenization study of (1.1) consists in examining the behavior of the sequence of the solution (u ε ) as ε tends to zero. The conductivity coefficient a ε is ε-periodic and satisfies a uniform lower bound, Γ 0 is an open subset of ∂Ω with Hausdorff measure H 2 (Γ 0 ) strictly positive, Γ 1 = ∂Ω\Γ 0 , and n is the unit exterior normal on ∂Ω. The boundary data u 0 is Lipschitz, while (f, g) ∈ L p (Ω) × L p (Γ 1 ), p = p/(p -1).

The problem (1.1) is related to the minimization problem

(P ε ) min F ε (w) -L(w) : w ∈ W 1,p Γ0 (Ω) ,
where

W 1,p Γ 0 (Ω) := w ∈ W 1,p (Ω) : w = u 0 on Γ 0 , F ε (w) := Ω a ε φ p (∇w) dx, φ p (ξ) := 1 p |ξ| p , ∀ ξ ∈ R n , n = 1, 2, 3, L(w) := Ω f w dx + Γ 1 gw dH 2 . (1.2)
We are interested in the asymptotic behavior of (P ε ) as ε → 0. We present another proof of a study of Bellieud and Bouchitté [START_REF] Bellieud -G | Homogenization of elliptic problems in a fiber reinforced structure. Non local effects[END_REF] that we expect to be more suitable to treat more general geometrical and physical cases.

The bases of the cylindrical domain Ω are denoted by ω 0 = ω × {0} and ω L = ω × {L}. For each ε, we consider a periodic distribution of cells

(Y i ε ) i∈I ε such that Y i ε := (εi 1 , εi 2 )+(-ε/2, ε/2) 2 , and I ε := i ∈ Z 2 : Y i ε ⊂ ω . Let (D i r ε ) i∈I ε be the family of disks of R 2 centered at xi ε := (εi 1 , εi 2 ) of radius r ε ε, T i ε := D i r ε ×(0, L) and T ε := ∪ i∈Iε T i ε .
The set of thin parallel cylinders T ε represents the fibers (see Figure 1 and Figure 2). The conductivity coefficient a ε is

a ε (x) = 1 if x ∈ Ω\T ε , λ ε otherwise.
We make the assumptions

r ε → 0, r ε ε → 0, λ ε → +∞, k ε := λ ε r 2 ε ε 2 → k, k ≥ 0 as ε → 0. (1.3)
In [START_REF] Bellieud -G | Homogenization of elliptic problems in a fiber reinforced structure. Non local effects[END_REF], it was shown that the asymptotic limit of (P ε ) is

min Φ(u, v) -L(u) : (u, v) ∈ (L p (Ω)) 2 ,
where Here, the boundary data u 0 is assumed to be Lipschitz in order to ensure that the infimum value of problem (P ε ) remains finite as ε → 0. In case k = +∞, we add further assumption k ε r ε → 0, as ε → 0.

Φ(u, v) =            Ω φ p (∇u) dx + kπ p Ω ∂v ∂x 3 p dx + 2πγ p Ω |v -u| p dx, if (u, v) ∈ W 1,p Γ 0 (Ω) × L p (ω, W 1,p (0, L)), v = u 0 on Γ 0 ∩ (ω 0 ∪ ω L ), +∞ otherwise, (1.4) and [0, +∞] γ =    lim ε→0 ε -2 | log r ε | -1 if p = 2, lim ε→0 2-p p-1 p-1 r 2-p ε ε -2 if p = 2. (1.5) Ω r r r r r ω 0 T c L % ω L ¨¨¨B r r r r r r r j T ε Figure 1: the domain Ω = ω × (0, L) occupied by a composite material ' ε E &% '$ &% '$ &% '$ D i r ε Y i ε c r ε
(1.6)

The conditions

k > 0 and { γ > 0 or ω 0 ⊂ Γ 0 or ω L ⊂ Γ 0 } (1.7) guarantee that the functional Φ is coercive in W 1,p (Ω) × L p (ω, W 1,p (0, L).
We are concerned with the extension of this result to more general cross sections of the fibers and more general energy density than φ p . The aim of this paper is therefore to provide another proof that we expect to be more suitable to treat such general cases. The steps of the proof in [START_REF] Bellieud -G | Homogenization of elliptic problems in a fiber reinforced structure. Non local effects[END_REF] are to successively establish:

(ii) a lower bound inequality of the sequence (F ε (u ε )), (iii) an upper bound inequality of the sequence (F ε (u ε )).

Here we replace the steps (ii) and (iii) by (ii ) an upper equality of the sequence (F ε (u ε )), (iii ) a lower bound inequality of the sequence (F ε (u ε )) which essentially uses a subdiffenrential inequality.

It consists, under (1.3), (1.5), (1.6) and (1.7), in proving the following three propositions. In the sequel, the symbols →, and * stand for the strong convergence, the weak convergence and the weak star convergence, respectively. As usual, the letter C denotes various constants and for all ξ = (ξ

1 , ξ 2 , ξ 3 ) in R 3 , ξ stands for (ξ 1 , ξ 2 ). Proposition 2.1 (compactness property) Let (u ε ) be a sequence such that sup F ε (u ε ) is finite. Then (u ε ) is strongly relatively compact in L p (Ω) and (v ε ), given by v ε := |Ω| |Tε| 1 T ε u ε , is bounded in L 1 (Ω) and, up to a subsequence, (v ε ) weakly* converges in the space of bounded measures M b (Ω) to an element v of L p (Ω). Proposition 2.2 (upper bound equality) For all (u, v) in (L p (Ω)) 2 , such that Φ(u, v) < +∞, there exists a sequence (u ε ) such that u ε → u in L p (Ω), v ε * v in M b (Ω) and lim ε→0 F ε (u ε ) = Φ(u, v).
Proposition 2.3 (lower bound inequality) For all u in L p (Ω) and for all sequences

(u ε ) such that u ε → u in L p (Ω), v ε * v in M b (Ω), one has: lim inf ε→0 F ε (u ε ) ≥ Φ(u, v).
The proofs of these propositions are presented in the following sections.

Proof of Proposition 2.1

Compactness property was already proved in [START_REF] Bellieud -G | Homogenization of elliptic problems in a fiber reinforced structure. Non local effects[END_REF].

Proof of Proposition 2.2

Our sole contribution is to prove that we can replace inequality by equality, for that we use the same approximation u ε of u as in [START_REF] Bellieud -G | Homogenization of elliptic problems in a fiber reinforced structure. Non local effects[END_REF] 

u ε = (1 -θ ε )u + θ ε w ε . The function θ ε is first defined on the closure of ω ε := ∪ i∈Iε Y i ε as a (-ε/2, ε/2) 2 - periodic continuous function which satisfies 0 ≤ θ ε ≤ 1, θ ε = 1 on D ε := ∪ i∈I ε D i r ε , θ ε = 0 on ω ε \ ∪ i∈I ε D i R ε , where D i R ε is the disk of R 2 centered at xi ε of radius R ε such that r ε R ε ε.
Next θ ε is assumed to vanish on ω\ω ε and

w ε (x, x 3 ) = i∈I ε 1 |D i r ε | D i r ε v(ŷ, x 3 ) dŷ 1 Y i ε (x).
The approximation u ε does not satisfy the boundary condition on Γ 0 ∩ (ω 0 ∪ ω L ) so that, as in [START_REF] Bellieud -G | Homogenization of elliptic problems in a fiber reinforced structure. Non local effects[END_REF], we introduce a sharper approximation

u # ε := uϕ ε + u ε (1 -ϕ ε ).
Here

ϕ ε is a C ∞ (Ω) function which satisfies ϕ ε = 1 on Γ 0 , ϕ ε = 0 on Ω\Σ ε , |∇ϕ ε | ≤ C/r ε on Ω where Σ ε := {x ∈ Ω : dist(x, Γ 0 ) < r ε } .
We assume that u and v are Lipschitz on Ω and there exists L > 0 such that

∂v ∂x 3 (x , x 3 ) - ∂v ∂x 3 (x , x 3 ) < L|x -x | ∀ (x , x 3 ), (x , x 3 ) ∈ Ω. (2.1)
Letting Ψ be any continuous function on Ω such that 0 ≤ Ψ ≤ 1, we introduce F Ψ ε , Φ Ψ defined by similar formulae as the ones of F ε and Φ but with Ψ dx in place of dx. We will prove the lemma:

Lemma 2.4 lim ε→0 F Ψ ε (u ε ) = Φ Ψ (u, v).
If Lemma 2.4 is proved, then, by a classical approximation process, we can deduce lim

ε→0 F ε (u ε ) = Φ(u, v). ( 2.2) 
Finally, we complete the proof of (2.2) for any (u, v) such that Φ(u, v) < +∞ by approximation and diagonalization arguments.

Proof of Lemma 2.4. We split F Ψ ε (u ε ) in three parts

F Ψ ε (u ε ) = F Ψ1 ε (u ε ) + F Ψ2 ε (u ε ) + F Ψ3 ε (u ε ). (2.3)
First, we consider

F Ψ1 ε (u ε ) := Ω\B ε ∪T ε φ p (∇u ε )Ψ dx = Ω\B ε ∪T ε φ p (∇u)Ψ dx,
where

B ε := ∪ i∈εI ε D i R ε \D i r ε × (0, L). Hence, the assumption R ε ε yields lim ε→0 |B ε ∪ T ε | = 0 and, consequently, lim ε→0 F Ψ1 ε (u ε ) = Ω φ p (∇u)Ψ dx.
Next, we pay attention to

F Ψ2 ε (u ε ) := Bε φ p (∇u ε )Ψ dx. Writing z ε := (v -u) ∇θ ε , (2.4)
we obtain

∇u ε = z ε + (w ε -v)∇θ ε + (1 -θ ε )∇u + θ ε ∇w ε . Let us show lim ε→0 B ε (φ p (∇u ε ) -φ p (z ε ))Ψ dx = 0. (2.5)
The function φ p , being convex and positively homogeneous of degree p, satisfies

∀ ξ, η ∈ R n , n = 1, 2, 3, |φ p (ξ) -φ p (η)| ≤ C|ξ -η|(|ξ| p-1 + |η| p-1 ). (2.6)
Therefore, Hölder inequality yields

Bε (φ p (∇u ε ) -φ p (z ε ))Ψ dx ≤ C Bε |∇u ε -z ε | p dx 1 p Bε |∇u ε | p dx + Bε |z ε | p dx 1 p
.

The smoothness of (u, v) implies

u ε = u on Ω\(B ε ∪ T ε ), |u ε | ≤ C on Ω, |∇w ε | ≤ C on B ε , u ε = w ε on T ε , |w ε -v| ≤ CR ε on B ε , (2.7) so that Bε |∇u ε | p dx + Bε |z ε | p dx ≤ Cε -2 D(rε,Rε) φ p ( ∇θ ε ) dx, B ε |∇u ε -z ε | p dx ≤ CR p ε ε -2 D(r ε ,R ε ) φ p ( ∇θ ε ) dx,
where

D(r ε , R ε ) = x ∈ R 2 : r ε < |x| < R ε . Hence, if we choose θ ε such that ∃ M > 0 ; ε -2 D(r ε ,R ε ) φ p ( ∇θ ε ) dx ≤ M ∀ ε > 0, (2.8) 
then (2.5) is true. We finally have lim ε→0

F Ψ2 ε (u ε ) = lim ε→0 B ε φ p (z ε )Ψ dx = lim ε→0 B ε |v -u| p φ p ( ∇θ ε )Ψ dx = lim ε→0 D(rε,Rε) φ p ( ∇θ ε ) dx L 0 i∈I ε |v -u| p (ŷ i ε , x 3 )Ψ(ŷ i ε , x 3 ) dx 3 (with ŷi ε ∈ Y i ε ) = lim ε→0 ε -2 D(r ε ,R ε ) φ p ( ∇θ ε ) dx L 0 i∈I ε |Y i ε ||v -u| p (ŷ i ε , x 3 )Ψ(ŷ i ε , x 3 ) dx 3 .
Observe that lim ε→0 L 0

i∈I ε |Y i ε ||v -u| p (ŷ i ε , x 3 )Ψ(ŷ i ε , x 3 ) dx 3 = Ω |v -u| p Ψ dx.
To get the lowest upper bound in Proposition 2.2, it is clear that θ ε has to be the solution of the capacitary problem

(P cap ε ) min    D(r ε ,R ε ) φ p ( ∇ϕ) dx : ϕ ∈ W 1,p (D(r ε , R ε )), ϕ(x) = 1 on |x| = r ε , ϕ(x) = 0 on |x| = R ε .   
As observed in [START_REF] Bellieud -G | Homogenization of elliptic problems in a fiber reinforced structure. Non local effects[END_REF], we have

θ ε = log Rε-log |x| log R ε -log r ε if p = 2, R s ε -|x| s R s ε -r s ε if p = 2 (s = p-2 p-1 )
and

D(rε,Rε) φ p ( ∇θ ε ) dx = 2π p Γ p (r ε , R ε ), where Γ p (r ε , R ε ) := 1 log R ε -log r ε if p = 2, ( s R s ε -r s ε ) p-1 if p = 2 (s = p-2 p-1 ). Note that lim ε→0 ε -2 Γ p (r ε , R ε ) = γ.
If γ < +∞, then (2.8) is satisfied and

lim ε→0 F Ψ2 ε (u ε ) = 2πγ p Ω |v -u| p Ψ dx.
When γ = +∞, it suffices to prove that lim ε→0 F Ψ2 ε (u ε ) = 0. Due to (2.7), the result is a consequence of

F Ψ2 ε (u ε ) ≤ CR p ε ε -2 Γ p (r ε , R ε )
, which tends to zero. Now, we consider the remaining part

F Ψ3 ε (u ε ) := T ε λ ε φ p (∇w ε )Ψ dx.
Recalling the assumption (2.1) on v and using the local Lipschitz property (2.6), we deduce

lim ε→0 F Ψ3 ε (u ε ) = lim ε→0 1 |T ε | Tε λ ε φ p ∂v ∂x 3 Ψ dx = kπ p Ω ∂v ∂x 3 p Ψ dx,
as shown in [START_REF] Bellieud -G | Homogenization of elliptic problems in a fiber reinforced structure. Non local effects[END_REF]. Now, we will prove the upper bound equality by using the sharper approximation (u # ε ). We start with

F ε (u # ε ) = Σε a ε φ p (∇u # ε ) dx + Ω\Σε a ε φ p (∇u ε ) dx. (2.9) Conditions (2.7) imply |u ε -u| ≤ C(r ε 1 T ε + R ε 1 B ε ). Hence Σε a ε φ p (∇u # ε ) dx ≤ C |Σ ε | + Σε a ε (x)|∇u ε | p dx + λ ε |T ε ∩ Σ ε | + R ε r ε p |Σ ε | . Lemma 2.4 implies that for every Ψ ∈ C 0 (Ω, [0, 1]), such that Ψ = 1 on a small neighborhood of Γ 0 ∩ (ω 0 ∪ ω L ), lim sup ε→0 Σ ε a ε φ p (∇u # ε ) dx ≤ lim sup ε→0 Ω a ε φ p (∇u ε )Ψ dx = Ω φ p (∇u) + kπ p ∂v ∂x 3 p + 2πγ p |v -u| p Ψ dx.
Thus, by letting Ψ tend to zero, we deduce lim ε→0 Σε

a ε φ p (∇u # ε ) dx = lim ε→0 Σε a ε φ p (∇u ε ) dx = 0, and lim ε→0 Ω\Σ ε a ε φ p (∇u ε ) dx = lim ε→0 Ω a ε φ p (∇u ε ) dx - Σ ε a ε φ p (∇u ε ) dx = Ω φ p (∇u) + kπ p ∂v ∂x 3 p + 2πγ p |v -u| p dx,
which proves the result for (u, v) smooth. We complete the proof by a standard approximation of (u, v) and a diagonalization argument [START_REF] Attouch | Variational Convergence for Functions and Operators[END_REF].

Proof of Proposition 2.3

It is enough to consider lim inf ε F ε (u ε ) < +∞. Due to the compactness property, (u, v) is in (L p (Ω)) 2 . We first consider the term

F 2 ε (u ε ). Let (u η , v η ) be Lipschitz on Ω such that lim η→0 u η -u L p (Ω) + v η -v L p (Ω) = 0. We define (v η -u η ) ε := i∈Iε (v η -u η )(x i ε , x 3 )1 Y i ε and z ηε := (v η -u η ) ε ∇θ ε . Because of the local Lipschitz property (2.6) of φ p and (u, v) ∈ (L p (Ω)) 2 , Hölder inequality implies lim ε→0 Bε φ p (z ηε ) -φ p (z ε ) dx = 0.
The proof of the upper bound equality allows us to write

lim ε→0 φ p (z ηε ) = 2πγ p Ω |v η -u η | p dx.
The convexity of φ p and the fact that φ p (∇u ε ) ≥ φ p ( ∇u ε ) yield

lim inf ε→0 F 2 ε (u ε ) ≥ lim inf ε→0 Bε φ p ( ∇u ε ) dx ≥ lim inf ε→0 Bε φ p (z ηε ) dx + lim inf ε→0 Bε φ p (z ηε ) • ( ∇u ε -z ηε ) dx.
(2.10)

The very definition of φ p implies

φ p (ξ) = |ξ| p-2 ξ ∀ ξ ∈ R n , n = 1, 2, 3, φ p (tξ) = φ p (t)φ p (ξ) ∀ (t, ξ) ∈ R × R n , n = 1, 2, 3, φ p (ξ) • ξ = pφ p (ξ) ∀ ξ ∈ R n , n = 1, 2, 3. Hence lim ε→0 Bε φ p (z ηε ) • z ηε dx = 2πγ Ω |v η -u η | p dx. (2.11)
For the other term of (2.10), we have

B ε φ p (z ηε ) • ∇u ε dx = i∈I ε L 0 φ p (v η -u η )(x i ε , x 3 ) D i (r ε ,R ε ) φ p ( ∇θ ε ) • ∇u ε dx dx 3 , where D i (r ε , R ε ) = D i Rε \ D i rε .
Let ν be the outer normal on ∂D i (r ε , R ε ), the very definition of θ ε as a solution of (P cap ε ) yields

D i (rε,Rε) φ p ( ∇θ ε ) • ∇u ε dx = ∂D i (rε,Rε) (φ p ( ∇θ ε ) • ν)u ε dl = ∂D i R ε (φ p ( ∇θ ε ) • ν)u ε dl + ∂D i rε (φ p ( ∇θ ε ) • ν)u ε dl = -ũ i ε ∂D i rε (φ p ( ∇θ ε ) • ν) dl + ṽi ε ∂D i rε (φ p ( ∇θ ε ) • ν)u ε dl where ũi ε := R ∂D i Rε (φ p ( b ∇θε)•ν)uε dl R ∂D i rε (φ p ( b ∇θε)•ν) dl = 1 2πR ε ∂D i Rε (φ p ( ∇θ ε )•ν)u ε dl, ũε := i∈Iε ũi ε 1 Y i ε , ṽi ε := R ∂D i rε (φ p ( b ∇θε)•ν)vε dl R ∂D i r ε (φ p ( b ∇θ ε )•ν) dl = 1 2πr ε ∂D i r ε (φ p ( ∇θ ε ) • ν)v ε dl, ṽε := i∈Iε ṽi ε 1 Y i ε . Thus, D i (r ε ,R ε ) φ p ( ∇θ ε ) • ∇u ε dx = (ṽ i ε -ũi ε ) ∂D i r ε (φ p ( ∇θ ε ) • ν) dl = (ṽ i ε -ũi ε ) D i (r ε ,R ε ) φ p ( ∇θ ε ) • ∇θ ε dx = 2πΓ p (r ε , R ε )(ṽ i ε -ũi ε ),
and

B ε φ p (z ηε ) • ∇u ε dx = 2πΓ p (r ε , R ε ) Ω φ p ((v η -u η ) ε )(ṽ ε -ũε ) dx.
It was shown in [START_REF] Bellieud -G | Homogenization of elliptic problems in a fiber reinforced structure. Non local effects[END_REF] that (ṽ ε -ũε ) (v -u) in L p (Ω). On the other hand, (v η -u η ) being smooth and φ p being continuous from L p (Ω) to L p (Ω), we have φ p ((v η -u η ) ε ) → φ p (v η -u η ) in L p (Ω). Hence,

lim ε→0 B ε φ p (z ηε ) • ∇u ε dx = 2πγ Ω φ p (v η -u η )(v -u) dx.
(2.12) Therefore, (2.10), (2.11) and (2.12) imply lim inf ε→0

F 2 ε (u ε ) ≥ 2πγ p Ω |v η -u η | p dx +2πγ Ω |v η -u η | p dx - Ω φ p (v η -u η )(v -u) dx .
The expected lower bound for F 2 ε (u ε ) is obtained by letting η tend to zero. To complete the proof it suffices to use the arguments of [START_REF] Bellieud -G | Homogenization of elliptic problems in a fiber reinforced structure. Non local effects[END_REF] concerning the lower bounds for F 1 ε (u ε ), F 3 ε (u ε ) and the fact that v belongs to L p (ω, W 1,p (0, L)).

The Final Result

The following theorem, a convergence result for the minimizer of (P ε ), is a standard consequence of the previous three propositions. Proof. The proof of this theorem is the same as that in [START_REF] Bellieud -G | Homogenization of elliptic problems in a fiber reinforced structure. Non local effects[END_REF].
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(i) a compactness property of the sequence (u ε ) such that F ε (u ε ) < C,

Conclusions and Remarks

The previous analysis can be easily extended to the case when φ p is replaced by any strictly convex function which satisfies

the density function associated with Φ(u, v) becomes

Indeed, (3.1) and Hölder inequality imply

while our arguments and those of [START_REF] Bellieud -G | Homogenization of elliptic problems in a fiber reinforced structure. Non local effects[END_REF] to derive the upper bound and lower bound respectively are valid when φ p is replaced by any convex function satisfying a growth condition like

which is an obvious consequence of (3.1).

Eventually, the key arguments of our analysis are the identification of γ, θ ε in terms of the solution of capacitary problems and the use of the p-positive homogeneity and convexity of φ p and of the fact that φ p (ξ) ≥ φ p ( ξ). Thus, it is easy to guess what could be Φ(u, v), when φ p is replaced by any strictly convex function and when the cross sections of the fibers are smooth star-shaped domains of R 2 . We hope that our proposed strategy will be able to reduce and overcome the involved technical difficulties.
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