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WHEN THE 3D MAGNETIC LAPLACIAN MEETS A CURVED
EDGE IN THE SEMICLASSICAL LIMIT

NICOLAS POPOFF AND NICOLAS RAYMOND

ABSTRACT. We study the magnetic Laplacian in the case when the Neumann boundary con-
tains an edge. We provide complete asymptotic expansions in powers of h1{4 of the low lying
eigenpairs in the semiclassical limit hÑ 0. In order to get our main result we establish a gen-
eral method based on a normal form procedure, microlocal arguments, the Feshbach-Grushin
reduction and the Born-Oppenheimer approximation.

1. INTRODUCTION

Let Ω be an open bounded and simply connected subset of R3 and pxjq be the cartesian
coordinates. This paper is devoted to the spectral analysis of the Neumann realization on Ω of
the magnetic Laplacian:

Lh “ p´ih∇` Aq2,
where

A “ p´x2, 0, 0q.

When Ω is bounded and convex (cf. [18]), the domain of Lh is

DompLhq :“ tu P H2
pΩq, p´ih∇`Aqu ¨ n “ 0 on BΩu

where n is the exterior normal of the boundary. The associated quadratic form is defined for
u P DompQhq :“ H1pΩq:

Qhpuq :“

ż

Ω

|pDx1 ´ x2qu|
2
` |Dx2u|

2
` |Dx3u|

2dx

with Dxj :“ ´iBxj . The operator Lh has compact resolvent. By gauge invariance and since
Ω is assumed to be simply connected, we know that the spectrum of Lh only depends on the
magnetic field β “ ∇ˆ A which is here constant: β “ p0, 0, 1q.

Notation 1.1. We will denote by λnphq the n-th eigenvalue of Lh.

We are interested in asymptotic expansions of λnphq in the semiclassical limit h Ñ 0. Our
results strongly depend on the geometrical assumptions on Ω and we deal with a case when
BΩ is not smooth, namely the boundary contains an edge E. We will describe the shape of Ω
in Section 1.2, but we can already think to it as a lens (see Figure 1).
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1.1. Motivation and state of the art. The magnetic Laplacian has been extensively studied
in the last decade in relation with the mathematical study of superconductivity. In particular,
it is proved that the third critical field HC3 of the Ginzburg-Landau functional is related to the
lowest eigenvalue of the magnetic Laplacian (see the papers of Lu and Pan [28, 29] and also
the book of Fournais and Helffer [17]). Until now the case when the boundary of Ω is smooth
was the most investigated situation. Let us describe the nature of the known results.

‚ Smooth domains. In 2D the constant magnetic field case is treated when Ω is a disk in
[2, 3, 12] and generalized to smooth and bounded domains by Helffer and Morame in [23]
where it is proved that:

λ1phq „ Θ0h´ C1κmaxh
3{2
` oph3{2

q,

where κmax is the maximal curvature of the boundary and Θ0 and C1 are constants related to
the 1D de Gennes operator (see [4, 29, 23, 8, 6]). Let us briefly recall the definition of this
important operator depending of the parameter ζ P R:

(1.1) hζ “ D2
t ` pt´ ζq

2,

on their common Neumann domain on the half-line:

tv P H2
pR`q, t2v P L2

pR`q, v1p0q “ 0u.

Denoting by µpζq the lowest eigenvalue of hζ , we have: Θ0 :“ min
ζPR

µpζq.

Moreover in most of the papers the authors are only concerned by the first terms of the
asymptotic expansion of λ1phq. In the case of smooth domains the complete asymptotic ex-
pansion of all the eigenvalues is done by Fournais and Helffer in [16]. For the case with
variable magnetic field, we refer to [28, 34] for the first terms of the lowest eigenvalue and to
[36] for a complete expansion.

In 3D the constant magnetic field case is treated by Helffer and Morame in [25] under
generic assumptions on the (smooth) boundary of Ω. The authors provide a two terms ex-
pansion of λ1phq and they prove that the associated eigenfunction concentrates on the curve
where the magnetic field is tangent to the boundary of Ω. More precisely, when h goes to 0,
they prove the following:

(1.2) λ1phq „ Θ0h` CpΩqh
4{3
` oph4{3

q.

The case with variable magnetic field is analyzed in [35, 37].

‚ Non smooth domains. In 2D, the analysis on infinite sectors done in [5] provides a one term
asymptotic expansion for λ1phq when Ω is a curvilinear polygon. When the magnetic field is
constant (and equals 1) and when the opening angle α1 of the smallest vertice is small enough,
this expansion is in the form:

λ1phq „ µpα1qh` ophq,

where µpα1q is the lowest eigenvalue of the magnetic Laplacian (with constant magnetic field
of intensity 1) on a sector of angle α1. This result is improved in [7] where the asymptotic
expansion of the n-th eigenvalue is provided. In particular, it is observed that the splitting of
the eigenvalues comes at the first order.
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In [32], the case with constant magnetic field when Ω is a cuboid is addressed. In this case
Pan provides the first term of the asymptotics for some special orientations of the magnetic
field and he proves that the eigenfunctions concentrate near corners when the magnetic field is
tangent to a face and not to an edge.

The 2D results obtained in [5, 7] can be generalized to dimension 3 in many ways (see
[33]). The two extreme cases which we could have in mind are a dihedral domain with either
a magnetic field parallel to the edge or a magnetic field orthogonal to the symmetry plane of
the edge. This last situation can be used to investigate a lens with constant opening angle
α P p0, πq (see Figure 1). The following one term expansion is proved in [33, Theorem 8.12]:

(1.3) λ1phq “ νpαqh`Oph5{4
q,

where νpαq is the bottom of the spectrum of the magnetic Laplacian on an infinite wedge of
opening α with a magnetic field orthogonal to the symmetry plane of the wedge.

‚ Problematics. In 3D and if Ω is smooth, a constant magnetic field is always tangent to the
boundary at some points. When the boundary is not smooth, it may happen that the magnetic
field is nowhere tangent to the boundary so that the main term in the spectral asymptotics is
no more Θ0h (see (1.3)). In our non regular case (as in the regular case), it is natural to un-
derstand how the geometry of the boundary combines with the magnetic field, especially since
the magnetic field is a 2-form as much as the curvature. In the semiclassical framework, this
leads to investigate how this combination of 2-forms influences the localization (and micro-
localization) properties of the eigenfunctions as much as their approximations by series in
fractional powers of h. Even in the regular case considered in [25], the first term in the as-
ymptotic expansion of the eigenfunctions is not obtained. In our paper we consider a case
when the boundary is not smooth: the case when BΩ contains an edge. Our analysis will show
that, even in the non smooth case, the repartition of the low lying eigenvalues is determined
by an effective 1D harmonic oscillator with respect to the Fourier variable on the edge (see
[16, 22, 37, 36, 14]).

‚ Structure of our result. Without going into the details, let us describe the structure of our
main result. We prove in this paper that (see Theorem 1.17):

λnphq „
hÑ0

νpα0qh` pω0 ` p2n´ 1qω1qh
3{2
` oph3{2

q,

where ω0 P R and ω1 ą 0 are constants related to the geometry. In contrast with the results
from [7], we see that the splitting of the eigenvalues comes in the second term and not in the
first term. Such a structure for the asymptotic expansion has already been observed in [22].

‚ Philosophy of the proofs. Let us now describe the philosophy of the proofs of asymptotic
expansions for the magnetic Laplacian. Before explaining the general method that we imple-
ment in this paper, we distinguish between the different conceptual levels of our analysis. Our
analysis uses the standard construction of quasimodes, localization techniques (“IMS” for-
mula) and a priori estimates of Agmon type satisfied by the eigenfunctions. These “standard”
tools, which are used in most of the papers dealing with λ1phq, are not enough to investigate
λnphq due to the splitting arising at the second order. In fact such a fine behavior is the sign
of a microlocal effect. In order to investigate this effect, a fundamental tool that we use is a
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normal form procedure (in the spirit of the Birkhoff normal form). It turns out that this nor-
mal form also strongly simplifies the construction of quasimodes. Once the behavior of the
eigenfunctions in the phase space is established, we use the Feshbach-Grushin approach to
reduce our operator to an electric Laplacian in the Born-Oppenheimer form (which itself can
be analyzed through the Feshbach-Grushin argument).

The first step to analyze such problems is to perform an accurate construction of quasimodes
and to apply the spectral theorem. In other words we look for pairs pλ, ψq such that we have
}pL´ λqψ} ď ε}ψ}. Such pairs are constructed through an homogenization procedure involv-
ing different scalings with respect to the different variables. In particular the construction uses
a formal power series expansion of the operator and an Ansatz in the same form for pλ, ψq. The
main difficulty in order this step to succeed is to choose well the scalings. Another difficulty
arising in this paper is due to the edge which obliges to expand also the Neumann boundary
condition in power series.

The second step aims at giving a priori estimates satisfied by the eigenfunctions.These are
localization estimates “à la Agmon” (see [1]). To prove them one generally needs to have
a priori estimates for the eigenvalues which can be obtained with a partition of unity (see
for instance [11]) and local comparisons with model operators. Then such a priori estimates
involve an improvement in the asymptotic expansion of the eigenvalues. It turns out that, if we
are just interested in the first terms of λ1phq, we do not need other tools to obtain what we are
looking for (except maybe the introduction of functional calculus as in [25, Sections 11.2 and
13.2]).

In our paper we are interested in expansions at any order of λnphq so that we have to en-
lighten the underlying structure of the magnetic Laplacian which is comparatively deeper than
the one of the electric Laplacian (where the classical harmonic approximation provides the
asymptotics in generic cases, see [13]). To understand at which point the problem is differ-
ent from the situation when we just want to know λ1phq, let us describe what is done for the
2D case in [16] (constant magnetic field) and in our recent work [36] (non constant magnetic
field). In [16, 36] quasimodes are constructed and the usual localization estimates are proved.
Then the behavior with respect to a phase variable needs to be caught to allow a reduction of
dimension process. Let us underline here that this phenomenon of phase localization is char-
acteristic of the magnetic Laplacian and is intimately related to the structure of the low lying
spectrum. In [16] Fournais and Helffer are led to use the pseudo-differential calculus and the
Grushin formalism. In [36], the approach is structurally not the same (and this will be this
approach that we will use in this paper, and which is used for instance in [14]). In [36], in the
spirit of the Egorov theorem (see [15, 38, 31]), we use successive canonical transforms of the
symbol of the operator corresponding to unitary transforms (change of gauge, change of vari-
able, Fourier transform) and we reduce the operator, modulo remainders which are controlled
thanks to the a priori estimates, to an electric Laplacian being in the Born-Oppenheimer form
(see [10, 30] and more recently [8]). This reduction provides a rigorous explanation of the
fact that, in the magnetic problems, the scalings corresponding to different variables are often
different. In particular the present paper proves that, even in non regular cases and in 3D, the
reduction of the magnetic Laplacian to the electric Laplacian is possible.



MAGNETIC SCHRÖDINGER EQUATION 5

Finally let us mention that the methods used in this paper are reminiscent of the semiclassical
Birkhoff normal form (see for instance [39, 9, 40]).

1.2. Geometrical assumptions and local models. In this subsection we describe the geome-
try of the lens and the different models appearing in the analysis near the points of the bound-
ary.

1.2.1. Description of the lens. We first define what we call a lens. Let Σ be a smooth and
connected surface in R3 and Π be the plane x3 “ 0. We assume that the intersection Σ X Π
is a smooth and closed curve and that Σ and Π intersect neither normally nor tangentially.
Denoting by Σ` the set tx P Σ : x3 ą 0u and by Σ´ its symmetric with respect to x3 “ 0, the
lens is the open set of the points lying between Σ` and Σ´ whereas the edge is E “ Σ`XΣ´.
We define αpxq as the opening angle between Σ´ and Σ` at the point x P E. We assume that
αpxq P p0, πq for all x P E.

In our situation the magnetic field β “ p0, 0, 1q is normal to the plane where the edge lies.
For x P BΩzE we introduce the angle θpxq defined by:

(1.4) β ¨ npxq “ sin θpxq.

A model lens with constant opening angle is given by two parts of a sphere glued together
(see Figure 1). In this case we have

(1.5) @x P BΩzE,
π ´ α

2
ă θpxq

where α P p0, πq is the opening angle of the lens: in this case the magnetic field is nowhere
tangent to the boundary. In this paper we will assume that the opening angle of the lens is
variable. For a given point x of the boundary, we analyze the localized (in a neighborhood of
x) magnetic Laplacian and we distinguish between x belonging to the edge and x belonging
to the smooth part of the boundary.

ÝÑ
β

β

E

Ä

π´α
2

θpxq

x

π
2

FIGURE 1. A lens Ω: the magnetic field is nowhere tangent to the boundary
and it makes the angle θpxq with the regular boundary.
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1.2.2. Magnetic Laplacian in the half-space. Near the points of the regular boundary BΩzE,
we will be led to consider the magnetic Laplacian on the half-space with constant magnetic
field, that is the Neumann realization on R3

` “ tpy1, y2, y3q P R3 : y3 ą 0u of:

Hpθq “ D2
y3
`D2

y2
` pDy1 ` y3 cos θ ´ y2 sin θq2,

the corresponding magnetic field given by βθ “ p0, cos θ, sin θq makes an angle θ P r0, π
2
s

with the boundary. This operator has been widely studied (see for instance [29], [24] and more
recently [8]). The bottom of the spectrum of Hpθq is denoted by σpθq. We recall (see [29])
that θ ÞÑ σpθq is an analytic function increasing from Θ0 “ σp0q to 1.

1.2.3. Leading Operator. Let x P E and V a small neighborhood of x in Ω. We suppose
that the opening angle at x is α. There is a diffeomorphism, denoted by the local coordinates
pŝ, t̂, ẑq, from V to an open subset of the infinite wedge of opening α:

Wα “ Rˆ Sα,

where the 2D corner with fixed angle α P p0, πq is defined by:

Sα “
!

pt̂, ẑq P R2 : |ẑ| ă t̂ tan
´α

2

¯)

.

This diffeomorphism will be described in details in Section 2.

Äŝ

E

ẑ

t̂α

FIGURE 2. Using the local coordinates pŝ, t̂, ẑq, a neighborhood of a point of
the edge can be described as a subset of the infinite wedge Wα.

Therefore we are led to study the Neumann realization on L2pWα, dŝdt̂dẑq of the following
operator:

Lα “ D2
t̂ `D

2
ẑ ` pDŝ ´ t̂q

2.

Using the Fourier transform with respect to ŝ, we have the decomposition:

(1.6) Lα “

ż ‘

Lα,η dη,

where Lα,η is the following Neumann realization on L2pSα, dt̂dẑq:

(1.7) Lα,η “ D2
t̂ `D

2
ẑ ` pη ´ t̂q

2,
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where η P R is the Fourier parameter. As

lim
|pt̂,ẑq|Ñ`8

pt̂,ẑqPSα

pη ´ t̂q2 “ `8,

the Schrödinger operator Lα,η has compact resolvent for all pα, ηq P p0, πq ˆ R.

Notation 1.2. For each α P p0, πq, we denote by νpα, ηq the lowest eigenvalue of Lα,η and we
denote by uα,η a normalized corresponding eigenfunction.

Notation 1.3. νpαq denotes the bottom of the spectrum of Lα.

Using (1.6) we have:
νpαq “ inf

ηPR
νpα, ηq.

‚ Properties related to Lα,η and Lα. Let us gather a few elementary properties:

Lemma 1.4. We have:

(1) For all pα, ηq P p0, πq ˆ R, νpα, ηq is a simple eigenvalue of Lα,η.
(2) The function p0, πq ˆ R Q pα, ηq ÞÑ νpα, ηq is analytic.
(3) For all η P R, the function p0, πq Q α ÞÑ νpα, ηq is decreasing.
(4) The function p0, πq Q α ÞÑ νpαq is non increasing.
(5) For all α P p0, πq, we have

(1.8) lim
ηÑ´8

νpα, ηq “ `8 and lim
ηÑ`8

νpα, ηq “ σpπ´α
2
q,

where the function σ is defined in Section 1.2.2.

Proof. We refer to [33, Section 3] for the first two statements. The monoticity comes from
[33, Proposition 8.14] and the limits as η goes to ˘8 are computed in [33, Theorem 5.2]. �

Remark 1.5. As νpπq “ Θ0 (see Section 1.2.2), we have:

(1.9) @α P p0, πq, νpαq ě Θ0.

Actually one can show, by using technics from [32], and the definition of Θ0 that νpαq ą Θ0

for all α P p0, πq.

The following proposition is fundamental in order to compare the spectral quantities coming
from the model operators:

Proposition 1.6. There exists α̃ P p0, πq such that for α P p0, α̃q, the function η ÞÑ νpα, ηq
reaches its infimum and

(1.10) νpαq ă σ
´π ´ α

2

¯

.

Proof. Using the normalized polar coordinates pr, φq P R0 :“ R` ˆ p´1
2
, 1

2
q and the gauge

transform ϕpr, φq “ r2

2
φ, we get (see [5]) that Lα,η is unitary equivalent to Lpol

α,η whose qua-
dratic form is:

Qpol
α,ηpuq :“

ż

R0

ˆ

|Bru|
2
`

1

α2r2
|Bφu|

2
` pr ´ ηq2|u|2

˙

rdrdφ
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on the weighted space L2pR0, rdrdφq. We use a quasimode which does not depend on φ by
taking uqmprq :“ e´ρ

qmr2 with ρqm :“ 1
4

?
4´ π. We take as Fourier parameter ηqm :“ π2

4p4´πq

and we compute Qpol
α,ηqmpuqmq. We get using the min-max principle and (1.6):

DCqm
ą 0, @α P p0, πq, νpαq ď

?
4´ π ` Cqmα2.

We also have the following inequality (see [24, Section 1.4]):
b

Θ2
0 cos2 π´α

2
` sin2 π´α

2
ă σpπ´α

2
q.

Thus we have (1.10) for α small enough. Using (1.8), this upper bound shows that η ÞÑ νpα, ηq
reaches its infimum. �

Remark 1.7. By computing Cqm, we notice that (1.10) holds at least for α P p0, 1.2035q.
Numerical computations show that in fact (1.10) seems to hold for all α P p0, πq.

We will work under the following conjecture:

Conjecture 1.8. For all α P p0, πq, η ÞÑ νpα, ηq has a unique critical point denoted by η0pαq
and it is a non degenerate minimum.

Under this conjecture and using the analytic implicit functions theorem, we deduce:

Lemma 1.9. Under Conjecture 1.8, the function p0, πq Q α ÞÑ η0pαq is analytic and so is
p0, πq Q α ÞÑ νpαq. Moreover the function p0, πq Q α ÞÑ νpαq is decreasing.

1.2.4. Comparison between the models and choice of Ω. The previous subsections lead to
compare the two quantities:

inf
xPE

νpαpxqq, inf
xPBΩzE

σpθpxqq,

where θpxq is defined in (1.4) and αpxq is defined in Section 1.2.1. Let us state the different
assumptions under which we will work throughout this paper:

Assumption 1.10.

(1.11) inf
xPE

νpαpxqq ă inf
xPBΩzE

σpθpxqq.

Remark 1.11. Using (1.5), the fact that σ is increasing and Proposition 1.10, we check that,
in the model case when Ω is made of two parts of a sphere glued together, Assumption 1.10
is satisfied for α small enough. By a continuity argument, Assumption 1.10 holds for not too
large perturbations of this lens.

From the properties of the leading operator we see that we will be led to work near the point
of the edge of maximal opening. Therefore we will assume the following generic assumption:

Assumption 1.12. We denote by α : E ÞÑ p0, πq the opening angle of the lens. We assume
that α admits a unique and non degenerate maximum α0 at the point x0. We denote τ :“ tan α

2
and τ0 :“ tan α0

2
.
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Notation 1.13. In order to shorten the notation we will denote by η0 the number ηpα0q (see
Conjecture 1.8) and by uη0 (respectively vη0 , wη0) the function uα0,ηpα0q (respectively vη0,αpη0q,
wη0,αpη0q). We will also denote by ν2pη0q the quantity B2

ηνpα0, η0q.

1.3. Normal form. This is “classical” that Assumption 1.10 leads to localization properties
of the eigenfunctions near the edge E and more precisely near the points of the edge where
E Q x ÞÑ νpαpxqq is minimal. Therefore, since ν is decreasing and thanks to Assumption
1.12, we expect that the first eigenfunctions concentrate near the point x0 where the opening
is maximal. In Section 2, we explain how we can introduce, near each x P E, a local change
of variables which transforms a neighborhood of x in Ω in a ε0-neighborhood of p0, 0, 0q of
Wαpxq, denoted by Wαpxq,ε0 .

For the convenience of the reader, let us summarize the contents of Proposition 2.1: we
write below the expression of the magnetic Laplacian in the new local coordinates pš, ť, žq
where š is a curvilinear abscissa of the edge. The magnetic Laplacian Lh is given by the
Laplace-Beltrami expression (on L2p| qG|1{2dšdťdžq):

(1.12) qLh :“ | qG|´1{2
q∇h| qG|

1{2
qG´1

q∇h

where:

(1.13) q∇h “

¨

˝

hDš

hDť

hτpšq´1τp0qDž

˛

‚`

¨

˝

´ť` η0h
1{2 ´ h τ

1

2τ
pžDž `Dž žq ` Ř1pš, ť, žq

0
0

˛

‚.

The forms of the Taylor expansions of the remainder Ř1 and the metric qG are analysed in
Proposition 2.1.

Variables Domain Operator

px1, x2, x3q Lens Ω Magnetic laplacian Lh
pš, ť, žq Wedge Wα Normal form qLh
pŝ, t̂, ẑq Wedge Wα Scaled operator pLh

TABLE 1. The magnetic Laplacian in the different coordinates

Remark 1.14. Such a normal form allow us to catch the leading structure of this magnetic
Laplace-Beltrami operator. Indeed, if we just keep the main terms in (1.12) by neglecting
formally the geometrical factors, our operator takes the simpler form:

phDš ´ ť` η0h
1{2
q
2
` h2D2

ť ` h
2τp0q2τpšq´2D2

ž .

Performing another formal Taylor expansion near š “ 0, we are led to the following operator:

phDš ´ ť` η0h
1{2
q
2
` h2D2

ť ` h
2D2

ž ` ch
2š2D2

ž ,
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where c ą 0. Using a scaling in Section 3, we get a rescaled operator pLh whose first term
is the leading operator Lα and which allows to construct quasimodes. Moreover this form is
suitable to establish microlocalization properties of the eigenfunctions with respect to Dš.

Table 1 summarizes the main expressions of the magnetic Laplacian in the different coordi-
nates in which we are going to work throughout this paper.

1.4. Main results. We first state a theorem which gives an a priori information on the spec-
trum.

Theorem 1.15. We assume that Conjecture 1.8 is true. We also assume 1.10 and 1.12. For all
n ě 1 and J ě 1, there exist h0 ą 0 and C ą 0 such that, for h P p0, h0q:

d

˜

h
J
ÿ

j“0

µj,nh
j{4,SpLhq

¸

ď Chh
J`1

4 ,

Moreover, we have:

µ0,n “ νpα0q, µ1,n “ 0, µ2,n “ ω0 ` p2n´ 1q
b

κτ´1
0 }Dẑuη0}

2ν2pη0q,

where ω0 and κ are geometrical constants independent from n (see (3.12)).

The next theorem provides an accurate estimate of the spectral gap between the eigenvalues.

Theorem 1.16. We assume that Conjecture 1.8 is true. We also assume 1.10 and 1.12. For all
n ě 1, there exists h0 ą 0 such that, for h P p0, h0q:

λnphq ě µ0,nh` µ2,nh
3{2
` oph3{2

q.

As a consequence of Theorem 1.15 and 1.16, we get our main result:

Theorem 1.17. We assume that Conjecture 1.8 is true. We also assume 1.10 and 1.12. For all
n ě 1, we have:

λnphq „
hÑ0

h
ÿ

jě0

µj,nh
j{4.

Remark 1.18. Let us compare our result with the one of [25] recalled in (1.2). Firstly we
notice that the main term in our asymptotic expansion of λ1phq is larger than Θ0h and that the
order of the second term (h3{2) is different. Secondly, as announced, we have the asymptotic
expansions of all the λnphq and not only λ1phq. In particular, we see that the dependence of
n comes linearly in the second order term. Moreover, we observe that, for all n ě 1, λnphq
is simple for h small enough. This simplicity, jointly with the quasimodes construction (see
(3.20)), provides an approximation of the corresponding normalized eigenfunction.

Remark 1.19. Let us underline that several non trivial insights (which combine part of the
ideas from [16] and [36]) are used to obtain our main result. From the rough techniques that
have been used in the last fifteen years, we have proved, through an elementary Birkhoff
normal form, basic microlocal arguments, the Feshbach-Grushin projection and the Born-
Oppenheimer approximation, that we could approximately decouple the “phase” (controlled
by explicit Fourier integral operators) and the “amplitude” (controlled by an effective electric
Laplacian) of the first magnetic eigenfunctions.
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1.5. Organization of the paper. The paper is organized as follows. Section 2 is devoted to
the definition of normal magnetic coordinates which give a normal form of Lh. In Section 3,
we prove Theorem 1.15 by using power series expansions of the normal form given in (1.12)
and by constructing explicit quasimodes. In Section 4 we give a rough lower bound for λnphq
and we prove that the associated eigenfunctions are localized in the sense of Agmon at the
scale h1{2 with respect to pť, žq. In Section 5, we investigate the behavior of the eigenfunctions
with respect to Dš and we use a Grushin (cf. [20]) like approximation to catch the behavior of
the eigenfunctions with respect to š. In Section 6 we combine the local and microlocal control
of the eigenfunctions with the Grushin projection to reduce the study to the Born-Oppenheimer
approximation.

2. MAGNETIC NORMAL COORDINATES

The aim of this section is to introduce normal coordinates near a point x1 of E. This normal
form procedure is the key point in the spectral analysis of the magnetic Laplacian.

Proposition 2.1. For all x1 P E, there exist a neighborhood V of x1 in Ω, ε0 ą 0 and local
coordinates pš, ť, žq such that V is given in the coordinates pš, ť, žq “ Ψ´1pxq by:

(2.1) Wαpx1q,ε0 :“

"

pš, ť, žq P p´ε0, ε0q ˆ p0, ε0q ˆ R, |ž| ă tan

ˆ

αpx1q

2

˙

ť

*

.

and so that the edge E X V becomes p´ε0, ε0q ˆ t0u ˆ t0u and is parametrized by š.

The magnetic operator Lh (seen as acting on functions of its domain compactly supported
in V) becomes in these coordinates:

qLh “ | qG|´1{2
q∇h| qG|

1{2
qG´1

q∇h

with boundary conditions:

| qG|1{2 qG´1
q∇hψ̌ ¨

¨

˝

´τ 1pšqť
´τpšq
˘1

˛

‚“ 0 on BNeuWαpx1q,ε0

ψ̌ “ 0 on BDirWαpx1q,ε0 ,

where:

BNeuWαpx1q,ε0 “
 

pš, ť, žq P p´ε0, ε0q ˆ p0, ε0q ˆ R : |ž| “ τpαpšqť
(

,

BDirWαpx1q,ε0 “
 

pš, ť, žq P t˘ε0u ˆ r0, ε0s ˆ R : |ž| ď τpαp˘ε0qqť
(

Y
 

pš, ť, žq P r´ε0, ε0s ˆ tε0u ˆ R : |ž| ď τpαpšqqε0

(

,

and:

q∇h “

¨

˝

hDš

hDť

hτpšq´1τp0qDž

˛

‚`

¨

˝

´ť` η0h
1{2 ´ h τ

1

2τ
pžDž `Dž žq ` Ř1pš, ť, žq

0
0

˛

‚,

with τpšq “ tan
´

αpšq
2

¯

. We notice that the term η0h
1{2 comes from a choice of gauge. We will

sometimes use the notation qTh :“ | qG|1{2 qG´1
q∇h.
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Moreover the Taylor expansions of qG´1, | qG| and the Řj can be written in the form:

qG´1
“ Id3 ` Ľpť, žq ` p|ť| ` |ž|qO1,

| qG| “ 1` ľpť, žq ` p|ť| ` |ž|qO1,

Ř1 “ ř1pť, žq ` pť
2
` ž2

qO1,

where ř1 is an homogeneous polynomial of degree 2 and where Ľ and ľ depend linearly on
pť, žq. We have used the notation O1 for a polynomial Taylor remainder in pš, ť, žq whose term
are all of degree ě 1.

Remark 2.2. If x0 is a point of maximal opening, we have τ 1pαp0qq “ 0.

To prove this proposition, we use successive change of variables (see Table 2).

Variables Domain

px1, x2, x3q Lens Ω

ps, t, zq Gutter Gx1

ps̆, t̆, z̆q Wedge with variable opening Gx1

pš, ť, žq Wedge with constant opening Wα

pŝ, t̂, ẑq Wedge with constant opening Wα

TABLE 2. The changes of variables.

2.1. A first normalization: “the gutter”. We consider the standard tubular coordinates (de-
fined in a neighborhood of p0, 0, 0q):

Φps, t, zq “ pγpsq ` tnpsq, zq

where s ÞÑ γpsq is a normalized parametrization of the edge E so that pγp0q, 0q “ x1. In terms
of quadratic form, we have:

Qhpψq “

ż

Gx1,ε0

"

h2
|Btψ̃|

2
` h2

|Bzψ̃|
2
` p´2

|p´ihBs ´ t`
kpsq

2
t2qψ̃|2

*

pdsdtdz,

where p “ 1´ tkpsq, ψ̃ps, t, zq “ ψpΦps, t, zqq is supported near p0, 0, 0q and where the local
“gutter” Gx1,ε0 is defined as:

Gx1,ε0 “ tps, t, zq P p´ε0, ε0q ˆ p0, ε0q ˆ R : ´fx1ps, tq ă z ă gx1ps, tqu,

where fx1 and gx1 are smooth functions. In particular, this is clear by the local inversion
theorem that, if ε0 is chosen small enough, there exists a neighborhood V of x1 such that
Φ´1pVq “ Gx1,ε0 .

2.2. From the gutter to the edge.
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2.2.1. The change of variables J . We now want to transform the integration domain in an
edge with variable angle. We introduce the rotation Rαpsq with angle αpsq and we let:

pu, vq “ Rαpsqpt, zq,

that is:

(2.2)

$

&

%

u “ cos
´

αpsq
2

¯

t´ sin
´

αpsq
2

¯

z,

v “ sin
´

αpsq
2

¯

t` cos
´

αpsq
2

¯

z.

Therefore, near p0, 0, 0q, the boundary is:

tps, u, vq : φspuq “ v or u “ ψspvqu

where φs et ψs are smooth functions (also smoothly depending on the parameter s) satisfying:

φsp0q “ ψsp0q “ 0, φ1sp0q “ 0, ψ1sp0q “ cotαpsq.

We now introduce the change of variables

pŭ, v̆q “ Cspu, vq,

defined by:

(2.3)
"

ŭ “ u´ ψspvq ` cotαpsqpv ´ φspuqq
v̆ “ v ´ φspuq.

In particular, the boundary becomes the union of v̆ “ 0 and v̆ “ tanαpsqŭ. We have:

(2.4) du,vCs “

ˆ

1´ cotαpsqφ1spuq cotαpsq ´ ψ1spvq
´φ1spuq 1

˙

“ I2 `Rspu, vq,

where

Rspu, vq “

ˆ

´ cotαpsqφ1spuq cotαpsq ´ ψ1spvq
´φ1spuq 0

˙

.

We have Rsp0, 0q “ 0 so that Cs defines a local diffeomorphism. We use now the inverse
rotation and we consider pt̆, z̆q “ Rαpsq

2
pŭ, v̆q:

(2.5)

$

&

%

t̆ “ cos
´

αpsq
2

¯

ŭ` sin
´

αpsq
2

¯

v̆,

z̆ “ ´ sin
´

αpsq
2

¯

ŭ` cos
´

αpsq
2

¯

v̆.

We define:
Jps, t, zq “ ps, R

´
αpsq

2
CsRαpsq

2
q “ ps̆, t̆, z̆q.

There exists a neighborhood W of p0, 0, 0q which is sent by J on the straight gutter with
variable opening Gx1,ε0 defined by:

Gx1,ε0 :“

"

ps̆, t̆, z̆q P p´ε0, ε0q ˆ p0, ε0q ˆ R, |z̆| ă tan

ˆ

αps̆q

2

˙

t̆

*

.
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2.2.2. Jacobian of J . In this subsection we describe the Taylor expansion of the local diffeo-
morphism J . A Taylor expansion near pu, vq “ p0, 0q provides:

(2.6)

#

ŭ “ u´ ψ2s p0q
2
v2 ´ cotαpsqφ

2
sp0q
2
u2 `Op|u|3 ` |v|3q

v̆ “ v ´ φ2sp0q
2
u2 `Op|u|3 ` |v|3q,

where the O smoothly depends on s. We deduce:

(2.7) ds,t,zJ “

ˆ

1 0
W2ps, t, zq I2 `W1ps, t, zq

˙

,

where W1ps, t, zq “ P1pt, zq ` p|ť| ` |ž|qO1, W2ps, t, zq “ P2pt, zq ` pť
2 ` ž2qO1 with Pj

homogeneous of order j. We can also write the Taylor expansions:

(2.8)
"

t “ t̆` Upt̆, z̆q ` pť2 ` ž2qO1

z “ z̆ ` V pt̆, z̆q ` pť2 ` ž2qO1
,

where U, V are homogeneous of order 2.

2.2.3. Expression of the quadratic form in the coordinates ps̆, t̆, z̆q. In the coordinates ps̆, t̆, z̆q
the quadratic form becomes:

(2.9) Qhpψq “ Q̆hpψ̆q “
A

Ğ´1∇̆hψ̆, ∇̆hψ̆
E

L2p|Ğ|1{2ds̆dt̆dz̆q
,

with:

Ğ´1
“ pdJq

¨

˝

p´2 0 0
0 1 0
0 0 1

˛

‚

t
pdJq.

and:

∇̆h “

¨

˝

hBs̆
hBt̆
hBz̆

˛

‚`
t
pdJq´1

¨

˝

´t̆` R̆ps̆, t̆, z̆q
0
0

˛

‚

where R̆ satisfies R̆ “ S̆ ` pť2 ` ž2qO1 where S̆ is an homogeneous polynomial of degree 2
depending on pt̆, z̆q. This becomes:

∇̆h “

¨

˝

hBs̆
hBt̆
hBz̆

˛

‚`

¨

˝

´t̆` R̆1ps̆, t̆, z̆q
0
0

˛

‚,

where R̆1 satisfies:
R̆1 “ S̆1pt̆, z̆q ` pť

2
` ž2

qO1,

where S̆1 is homogeneous of order 2. The metrics Ğ´1 takes the form:

(2.10) Ğ´1
“ I3 ´

ˆ

2k0t̆ 0
0 W1 `

tW1

˙

“ I3 ` L̆` p|ť| ` |ž|qO1

and:
|Ğ| “ 1` l̆ ` p|ť| ` |ž|qO1,
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where l̆ and L̆ are linear expressions in pt̆, z̆q. The normal to the boundary is given by the

vector:

¨

˝

´τ 1ps̆qt̆
´τps̆q
˘1

˛

‚so that the boundary conditions take the form:

|Ğ|1{2Ğ´1∇̆hψ̆ ¨

¨

˝

´τ 1ps̆qt̆
´τps̆q
˘1

˛

‚“ 0 on BNeuGx1,ε0

ψ̌ “ 0 on BDirGx1,ε0 .

2.2.4. From Gx1,ε0 to the edge with constant opening Wαpx0q,ε0 . Finally we use the scaling:

š “ s̆, ť “ t̆, ž “ τps̆q´1τp0qz̆.

We also perform a change of function τps̆q1{2τp0q´1{2ψ̆ (which becomes ψ̌ in the new coordi-
nates) to make the weight related to the Jacobian to disappear so that the quadratic form takes
the form:

(2.11) Qhpψq “ qQhpψ̌q “
A

qG´1
q∇hψ̌, q∇hψ̌

E

L2p| qG|1{2dšdťdžq
,

where:

q∇h “

¨

˝

hDš

hDť

hτpšq´1τp0qDž

˛

‚`

¨

˝

´ť` η0h
1{2 ´ h τ

1

2τ
pžDž `Dž žq ` Ř1pš, ť, žq

0
0

˛

‚,

where Ř1 satisfies:

Ř1 “ r1pť, žq ` pť
2
` ž2

qO1

where r1 is homogeneous of order 2. The term η0h
1{2 comes from an elementary choice

of gauge. The associated operator on L2pWαpx1q,ε0 , |
qG|1{2dšdťdžq is given by the Laplace-

Beltrami expression:

| qG|´1{2
q∇h| qG|

1{2
qG´1

q∇h

with boundary conditions:

| qG|1{2 qG´1
q∇hψ̌ ¨ ň “ 0 on BNeuWαpx1q,ε0

ψ̌ “ 0 on BDirWαpx1q,ε0 ,

where

(2.12) ň “

¨

˝

´τ 1pšqť
´τpšq
˘1

˛

‚.
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3. QUASIMODES

This section is devoted to the proof of Theorem 1.15. The main idea in this section is to
implement an homogenization procedure and a formal power series expansion of the operator
qLh (acting on L2pWα, |G|

1{2dšdťdžq) and of the boundary operator qTh described in Proposition
2.1 (we take x1 “ x0). First we give relations between spectral quantities associated to the
model operator Lα,η defined in (1.7):

‚ Feynman-Hellmann Theorems. Thanks to the analytic dependence with respect to α, we get
the two following propositions (the proof is standard, see for instance [27] and more recently
[14]).

Proposition 3.1. We have:

pLα,η0pαq ´ νpα, η0pαqqqvα,η0pαq “ ´2pη0 ´ t̂quα,η0pαq.

where:
vα,η0pαq “ pBηuα,ηqη“η0pαq.

Proposition 3.2. We have:

pLα,η0pαq ´ νpα, η0pαqqqwα,η0pαq “ pB
2
ηνpα, η0pαqq ´ 2quα,η0pαq ´ 4pη0 ´ t̂qvα,η0pαq.

where:
wα,η0pαq “ pB

2
ηuα,ηqη“η0pαq.

3.1. Quasimodes for the normal form. Before starting the analysis, we use the following
scaling which keeps Wα invariant:

(3.1) š “ h1{4ŝ, ť “ h1{2t̂, ž “ h1{2ẑ

so that we denote by pLh and pTh the operators h´1
qLh and h´1{2

qTh in the coordinates pŝ, t̂, ẑq.
Using the Taylor formula (see Proposition 2.1), we can write in the sense of formal power

series the magnetic Laplacian near the edge and the associated magnetic Neumann boundary
condition:

pLh „
hÑ0

ÿ

jě0

Ljhj{4

and
pTh „

hÑ0

ÿ

jě0

Tjhj{4,

where the first Lj and Tj are given by:

L0 “ D2
t̂ `D

2
ẑ ` pt̂´ η0q

2,(3.2)

L1 “ ´2pt̂´ η0qDŝ,(3.3)

L2 “ D2
ŝ ` 2κτ´1

0 ŝ2D2
ẑ ` L2,(3.4)

where

(3.5) L2 “ 2pη0 ´ t̂qr̂1 ´
l̂

2
P̂ P̂ ` P̂

l̂

2
P̂ ` P̂ L̂P̂ , P̂ “

¨

˝

η0 ´ t̂
Dt̂

Dẑ

˛

‚,
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and:

T0 “ p´t̂` η0, Dt̂, Dẑq,

T1 “ pDŝ, 0, 0q,

T2 “ p0, 0, κτ
´1
0 ŝ2Dẑq `

l̂

2
P̂ ` L̂P̂ ,

where κ “ ´ τ2p0q
2
ą 0. We have used the notation

r̂1pt̂, ẑq “ h´1ř1ph
1{2t̂, h1{2ẑq,(3.6)

l̂pt̂, ẑq “ h´1{2ľph´1{2t̂, h´1{2ẑq,(3.7)

L̂pt̂, ẑq “ h´1{2Ľph´1{2t̂, h´1{2ẑq.(3.8)

We will also use an asymptotic expansion of the normal n̂phq. We recall (see (2.12)) that we
have ň “ p´τ 1pšqť,´τpšq,˘1q so that we get:

n̂phq „
hÑ0

ÿ

jě0

njh
j{4,

with:

(3.9) n0 “ p0,´τ0,˘1q, n1 “ p0, 0, 0q, n2 “ p0, κŝ
2, 0q.

We look for pλ̂phq, ψ̂phqq in the form:

λ̂phq „
hÑ0

ÿ

jě0

λjh
j{4,

ψ̂phq „
hÑ0

ÿ

jě0

ψjh
j{4,

which satisfies, in the sense of formal series, the following boundary value problem:

(3.10)

$

&

%

pLphqψ̂phq „
hÑ0

λ̂phqψ̂phq,

n̂phq ¨ pThψ̂phq „
hÑ0

0 on BNeuWα0 .

This provides an infinite system of PDE’s.

‚ Terms in h0. We solve the equation:

L0ψ0 “ λ0ψ0, in Wα0 , n0 ¨ T0ψ0 “ 0, on BNeuWα0 .

We notice that the boundary condition is exactly the Neumann condition. We are led to choose
λ0 “ νpα0, η0q and ψ0pŝ, t̂, ẑq “ uη0pt̂, ẑqf0pŝq.



18 NICOLAS POPOFF AND NICOLAS RAYMOND

‚ Terms in h1{4. Collecting the terms of size h1{4, we find the equation:

pL0 ´ λ0qψ1 “ pλ1 ´ L1qψ0, n0 ¨ T0ψ1 “ 0, on BNeuWα0 .

As in the previous step, the boundary condition is just the Neumann condition. We use Propo-
sition 3.1 and we deduce:

pL0 ´ λ0qpψ1 ` vη0pt̂, ẑqDŝf0pŝqq “ λ1ψ0, n0 ¨ T0ψ1 “ 0, on BNeuWα0 .

Taking the scalar product of the r.h.s. of the first equation with uη0 with respect to pt̂, ẑq and
using the Neumann boundary condition for vη0 and ψ1, we find λ1 “ 0. This leads to choose:

ψ1pŝ, t̂, ẑq “ ´vη0pt̂, ẑqDŝf0pŝq ` f1pŝquη0pt̂, ẑq,

where f1 will be determined in a next step.

‚ Terms in h1{2. Let us now deal with the terms of order h1{2:

pL0 ´ λ0qψ2 “ pλ2 ´ L2qψ0 ´ L1ψ1, n0 ¨ T0ψ2 “ ´n0 ¨ T2ψ0 ´ n2 ¨ T0ψ0, on BNeuWα0 .

We analyze the boundary condition:

n0 ¨ T2ψ0 ` n2 ¨ T0ψ0 “ ˘κτ
´1
0 ŝ2Dẑψ0 ` κŝ

2Dt̂ψ0 ` n0 ¨
l̂

2
P̂ψ0 ` n0 ¨ L̂P̂ψ0

“ κτ´1
0 ŝ2

p˘Dẑ ` τ0Dt̂qψ0 ` n0 ¨
l̂

2
P̂ψ0 ` n0 ¨ L̂P̂ψ0

“ ˘2κτ´1
0 ŝ2Dẑψ0 ` n0 ¨

l̂

2
P̂ψ0 ` n0 ¨ L̂P̂ψ0.

where we have used the Neumann boundary condition of ψ0. Then, we use Proposition 3.2 to
get:

(3.11) pL0´ λ0qpψ2` vη0Dŝf1´wη0D
2
ŝf0q “ λ2ψ0´

ν2pη0q

2
D2
ŝψ0´ 2κτ´1

0 ŝ2D2
ẑψ0´L2ψ0,

with boundary condition:

n0 ¨ T0ψ2 “ ¯2κŝ2τ´1
0 Dẑψ0 ´ n0 ¨

l̂

2
P̂ψ0 ´ n0 ¨ L̂P̂ψ0, on BS0.

We use the Fredholm condition by taking the scalar product of the r.h.s. of (3.11) with uα0,η0

with respect to pt̂, ẑq. Integrating by parts and using the Green-Riemann formula (the boundary
terms cancel), this provides the equation:

Hf0 “ pλ2 ´ ω0qf0,

with:
H “

ν2pη0q

2
D2
ŝ ` 2κτ´1

0 }Dẑuη0}
2ŝ2

and:
(3.12)

ω0 “ x2pη0 ´ t̂qr̂1uη0 , uη0yL2pSαq ´ νpα0, η0q

ż

Sα

l̂

2
u2
η0
`

ż

Sα

l̂

2
P̂ uη0P̂ uη0 `

ż

Sα
L̂P̂ uη0P̂ uη0 .
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Up to a scaling, the 1D-operator H is the harmonic oscillator on the line. Therefore for λ2 we
take:

(3.13) λ2 “ ω0 ` p2n´ 1q
b

κτ´1
0 }Dẑuη0}

2ν2pη0q

and for f0 the corresponding normalized eigenfunction. With this choice we deduce the exis-
tence of ψK2 such that:

(3.14) pL0 ´ λ0qψ
K
2 “ λ2ψ0 ´

ν2pη0q

2
D2
ŝψ0 ´ 2κτ´1

0 ŝ2D2
ẑψ0, and xψK2 , uη0yt̂,ẑ “ 0.

We can write ψ2 in the form:

ψ2 “ ψK2 ´ vη0Dŝf1 ` wη0D
2
ŝf0 ` f2pŝquη0 ,

where f2 has to be determined in a next step.

‚ Further terms. Let k ě 2 and let us assume that we have constructed pλjqjăk`1, pψKj qjăk`1

and pfjqjăk´1 and that the functions ψj are written in the form:

(3.15) ψj “ ψKj ` fjpsquη0 `Dsfj´1psqvη0 `D
2
sfj´2wη0

with xψKj , uη0yť,ž “ 0.

We are looking for pλk`1, ψ
K
k`1, fk´1q such that the two following equations hold:

pL0 ´ λ0qψk`1 “ λ2ψk´1 ` λk`1ψ0 ´ L1ψk ´ L2ψk´1 `

k
ÿ

j“3

pλj ´ Ljqψk`1´j,(3.16)

n0.T0ψk`1 “ ´n2T0ψk´1 ´ n0.T2ψk´1 ´
ÿ

a`b`c“k`1,
căk´1

na.Tbψc.(3.17)

We look for ψk`1 in the form (see (3.15)):

ψk`1 “ ψKk`1 ` fk`1psquη0 `Dsfkpsqvη0 `D
2
sfk´1wη0 .

Using Propositions 3.1 and 3.2, the l.h.s. of (3.16) becomes:

pL0´λ0qψk`1 “ pL0´λ0qψ
K
k`1´2Dšfkpη0´ ťquη0`D

2
šfk´1

`

B
2
ηνpα0, η0quη0 ´ 4pη ´ tqvη0

˘

.

The r.h.s. of (3.16) can be put in the form:

λ2fk´1uη0 ` λk`1ψ0 ´ L1fkuη0 ´ L1pDsfk´1vη0q ´ L2pfk´1uη0q `Rk

where the remainder Rk is a determined function. Therefore (3.16) holds if and only if

(3.18) pL0 ´ λ0qψ
K
k`1 “ D2

šfk´1 p2pt´ η0qvη0 ´ uη0 ´ pν
2
pα0, η0quη0 ´ 4pη0 ´ tqvη0qq

´ š2fk´1

`

2κτ´1
0 Džuη0

˘

` pλ2uη0 ´ L2uη0qfk´1 ` λk`1ψ0 `Rk,

where we have used the expressions given in (3.3) and (3.4).
Since uη0 , vη0 and wη0 satisfy the Neumann boundary condition, we have n0.T0ψk`1 “

n0.T0ψ
K
k`1. We take the scalar product of (3.18) with uη0 with respect to pt̂, ẑq. Using the

boundary condition (3.17) and the definition of ω0 (see (3.12)), we get:

(3.19) pH ´ pλ2 ´ ω0qq fk´1 “ λk`1f0 ` rk
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where š ÞÑ rkpšq is a known function. The compatibility condition of this 1D-equation writes

λk`1 “ ´xrk, f0yš.

Due to the choice of λ2 (see (3.13)), the Fredholm alternative provides a unique function fk´1

(orthogonal to f0) which satisfies (3.19) and has the regularity and the decay properties of rk.
Using again the Fredholm alternative, we get a unique solution ψKk`1 of (3.18).

‚ Properties of constructed functions. Let us define on Wα the quasi-eigenpair:

(3.20) ψ̂
rJs
h :“

J
ÿ

j“0

ψjh
j{4 and λrJsphq :“

J
ÿ

j“0

λjh
j{4.

As above we omit the subscript n of the energy level corresponding to the choice (3.13).
Due to basic Agmon’s estimates the function uα0 is exponentially decaying at infinity. In

the ŝ variable, the function f0 is a gaussian and thus admits also an exponential decay. By the
Fredholm alternative, all the ψj have an exponential decay: there exists h0 ą 0 such that

(3.21) DCj ą 0, Dδ ą 0, @h P p0, h0q, pQh

´

eδp|ŝ|`|t̂|`|ẑ|qψj

¯

ď Cj}ψj}
2
L2pWαq

.

Moreover, we get the same kind of estimates in the H2-norm. Since the infinite sector Sα is
a convex domain, uα0 , vα0 and wα0 are in H2pSαq, and by elliptic regularity, they belong to
C8pSαq. Using the Fredholm alternative, ψ̂rJsh is in C8 X H2pWαq. Therefore all the ψ̂rJsh

belong to the domain of pQh and, with (3.21), they have exponential decay. Let us recall that
both uη0 and f0 are normalized so that:

}ψ̂
rJs
h }L2

|G|1{2
pWαq

“ 1`Oph1{4
q.

Nevertheless, the function ψ̂rJsh is not in the domain of L̂h (it does not satisfy the boundary
condition).

‚ Quasimode on the lens and conclusion. Let us recall that x0 P E Ă Ω is the point of
the edge where the opening angle is maximal. Let χ P C80 pΩq which satisfies 0 ď χ ď 1,
supppχq Ă Bpx0, 2ε0q X Ω and χ “ 1 on Bpx0, ε0q X Ω. We take ε0 small enough and we
use the diffeomorphism Ψ´1 : pš, ť, žq ÞÑ x which sends a subset of the infinite wedge to a
ε0-neighborhood of x0 P E, see Section 2. Using this diffeomorphism and the scaling (3.1)
we define the function on the lens:

ψJh pxq :“ h´5{8χpxqψ̂
rJs
h ph

´1{4š, h´1{2ť, h´1{2žq.

The function ψJh is supported in a ball centered at x0 of radius 2ε0. Due to the factor h´5{8 and
to the exponential decay of ψ̂rJsh , we have

}ψJh}L2pΩq “ p1`Oph
8
qq}ψ̂

rJs
h }L2pWαq “ 1`Oph1{4

q.

As we have mentioned in the above, we must be careful since ψJh does not satisfy the Neumann
type boundary condition (nevertheless it belongs to H2pΩq by construction). Let us recall that
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for u P H2pΩq, the Neumann trace of u belongs to H1{2pBΩq with the associated Sobolev
embedding. From (3.10) and the homogeneity of the norm } ¨ }H1{2 , we infer:

(3.22) h1{4
}p´ih∇`AqψJh ¨ n}H1{2pBΩq “ OphpJ`1q{4

q.

We now add a correction term to ψJh in order to define a quasimode which satisfies the
boundary condition. We consider the following boundary value problem:

#

p´ih∇`Aq2r “ 0 in Ω,

p´ih∇`Aqr ¨ n “ gJ on BΩ,

where gJ “ p´ih∇ `AqψJh ¨ n. We deduce from [18] (see also [19, Theorem 5.2.1.4]) that
there is a unique solution rJ P H2pΩq. It satisfies:

(3.23) h2
}∇2rJ}L2pΩq ` h}∇rJ}L2pΩq ` }r

J
}L2pΩq ď Ch1{2

}gJ}H1{2pBΩq,

with C ą 0 independent from h. Therefore we infer from (3.22):

}rJ}L2pΩq “ OphpJ`2q{4
q.

We can now define a quasimode on the lens:

uJ,qm
h :“ ψJh ´ r

J .

It satisfies uJ,qm
h P DompLhq and }uJ,qm

h }L2pΩq “ 1`Oph1{4q. Then, we write:

pLh ´ hλrJsphqquJ,qm
h “ pp´ih∇` Aq2 ´ hλrJsphqquJ,qm

h

“ p´ih∇` Aq2ψJh ´ hλ
rJs
phqψJh ` hλ

rJs
phqrJ .

Thanks to Taylor expansions in the coordinates ŝ, t̂, ẑ and to the exponential decay of the
ψj , we estimate by OphpJ`1q{4q the term p´ih∇ ` Aq2ψJh ´ hλrJsphqψJh (see (3.10)) and we
deduce:

}pLh ´ hλrJsphqquJ,qm
h }L2pΩq “ Oph1`pJ`1q{4

q.

We deduce Theorem 1.15 by using the spectral theorem.

4. ESTIMATES OF AGMON

This section is devoted to establish localization estimates satisfied by the eigenfunctions. In
particular we will prove that the eigenfunctions live at the scale h1{2 near the edge and that
they are roughly localized on the edge near x0.

4.1. A first rough estimate for the eigenvalues. Let us begin by proving a rough and stan-
dard estimate for the eigenvalues.

Proposition 4.1. There exist C and h0 ą 0 such that, for h P p0, h0q :

λnphq ě νpα0qh´ Ch
5{4.
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Proof. Let us introduce a partition of unity pχj,hqjě0 with balls of centers xj and of size hρ

where ρ ą 0 will be chosen later:

(4.1)
ÿ

j

χ2
j,h “ 1, on Ω

and such that:
ÿ

j

}∇χj,h}2 ď Ch´2ρ.

The “IMS” formula (see [11]) provides the following decomposition for the quadratic form:

(4.2) Qhpψq “
ÿ

j

`

Qhpχj,hψq ´ h
2
}∇χj,hψ}2

˘

so that:

(4.3) Qhpψq ě
ÿ

j

Qhpχj,hψq ´ Ch
2´2ρ

}ψ}2.

Let us now distinguish between three kinds of balls.

J1phq “ tj : supppχj,hq X BΩ “ Hu,

J2phq “ tj : supppχj,hq X BΩ ‰ H and supppχj,hq X E “ Hu,

J3phq “ tj : supppχj,hq X E ‰ Hu.

‚ Case when j P J1phq: interior case. We have:

(4.4) Qhpχj,hψq ě h}χj,hψ}
2
ě hνpα0q}χj,hψ}

2.

‚ Case when j P J2phq: regular boundary case. Let us now consider the boundary balls which
do not cross the edge. We can assume that such balls have their centers on the boundary and
we denote by θj the angle between the magnetic field β and the boundary at the point xj .There
exist local coordinates Φpy1, y2, y3q “ x so that the derivative satisfies DΦ “ Id`Ophρq and:

Qhpχj,hψq

ě p1´ Chρq

ż

y3ą0

|phDy1 ` Ã1q
Ćχj,hψ|

2
` |phDy2 ` Ã2q

Ćχj,hψ|
2
` |phDy3 ` Ã3q

Ćχj,hψ|
2 dy,

where the tilde means that the functions are considered in the new coordinates. In particular,
we have Ã “ DΦApΦq. We can introduce the linear approximation of Ã denoted by Ã

lin
:

}Ã´ Ã
lin
} ď Ch2ρ.

For all ε P p0, 1q, we get1:

Qhpχj,hψq ě

p1´ εqp1´ Chρq

ż

y3ą0

|phDy1 ` Ã
lin
1 q

Ćχj,hψ|
2
` |phDy2 ` Ã

lin
2 q

Ćχj,hψ|
2
` |phDy3 ` Ã

lin
3 q

Ćχj,hψ|
2 dy

´ Cε´1h4ρ
}Ćχj,hψ}

2.

1We have used the standard inequality |a` b|2 ě p1´ εq|a|2 ´ ε´1|b|2.
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Therefore we are reduced to the magnetic Laplacian in the half-space R3
` with a constant

magnetic field making an angle θj with the boundary (see Section 1.2.2) and we can use the
lower bound:

Qhpχj,hψq ě p1´ εqp1´ Ch
ρ
qhσ pθjq }Ćχj,hψ}

2
´ Cε´1h4ρ

}Ćχj,hψ}
2.

We use the inequality of Assumption 1.10 and we take ε “ h2ρ´1{2 to get:

(4.5) Qhpχj,hψq ě hνpα0q}χj,hψ}
2
´ Ch2ρ`1{2

}χj,hψ}
2
´ Ch1`ρ

}χj,hψ}
2.

‚ Case when j P J3phq. Let us consider the boundary balls which cross the edge E. We can
assume that such balls have their centers on E. We can use the local coordinates of Section
2: Ψpš, ť, žq “ x, which transform the edge with variable angle into the wedge with constant
angle αj: Wαj . Firstly we erase the curvature terms by writing:

Qhpχj,hψq ě p1´ Ch
ρ
q

ż

}q∇hpχ̌j,hψ̌q}
2 dšdťdž.

We have:

}q∇hpχ̌j,hψ̌q}
2

ě p1´ εqp}phDš ` η0 ´ ťqpχ̌j,hψ̌q}
2
` h2

}Dťpχ̌j,hψ̌q}
2
` h2

}Džpχ̌j,hψ̌q}
2
q

´ ε´1
pCph4ρ

` h2
q}χ̌j,hψ̌}

2
` Ch2ρ

}hDžpχ̌j,hψ̌q}
2
q

We choose ε “ h2ρ´1{2. We deduce:

Qhpχj,hψq ě pνpαjqh´ Ch
1{2`2ρ

´ Ch1`ρ
´ Ch5{2´2ρ

q}χj,hψ}
2.

In order to optimize the different remainders here and in (4.3), we are led to choose ρ such that
2´ 2ρ “ 1{2` 2ρ, that is ρ “ 3{8 and the conclusion follows. �

4.2. Normal estimates of Agmon. From the rough control of the eigenvalues, we deduce the
standard “normal estimates of Agmon”.

Proposition 4.2. There exist ε0 ą 0, h0 ą 0 and C ą 0 such that for all h P p0, h0q we have
the following estimates for an eigenfunction ψn associated to λnphq:

ż

e2ε0h´1{2dpx,Eq
|ψn|

2 dx ď C}ψn}
2,(4.6)

Qhpe
ε0h´1{2dpx,Eqψnq ď Ch}ψn}

2.(4.7)

Proof. We use a partition of unity pχj,hqjě0 with balls of size Rh1{2 and we let Φpxq “
ε0h

´1{2dpx, Eq. We write the identity of Agmon:

(4.8) λ}eΦψn}
2
“ Qhpe

Φψnq ´ h
2
}∇ΦeΦψn}

2.

We deduce the inequality:

(4.9)
ÿ

j

`

Qhpχj,he
Φψnq ´ λnphq}χj,he

Φψn}
2
´ h

`

ε2
0 `

C0

R2

˘

}χj,he
Φψn}

2
˘

ď 0.
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We split the sum into three parts as in the proof of Proposition 4.1 and we use in the same way
changes of variables, taking into account that the ball are now of size Rh1{2. We recall that,
thanks to Theorem 1.15, we have:

(4.10) λnphq ď νpα0qh` Ch
3{2.

‚ Case when j P J1phq: interior case. We have:

Qhpχj,he
Φψnq ě h}χj,he

Φψn}
2
ě hνpα0q}χj,he

Φψn}
2.

‚ Case when j P J2phq: regular boundary case. We have:

Qhpχj,he
Φψnq ě σpθjqh}χj,he

Φψn}
2
´ Ch3{2

}χj,he
Φψn}

2.

‚ Case when j P J3phq. We have:

Qhpχj,he
Φψnq ě pνpαjqh´ Ch

3{2
q}χj,he

Φψn}
2.

Therefore we get, from (4.9), the existence of C ą 0 and h0 ą 0 such that for h0 P p0, hq:

h

ˆ

inf
j
σpθjq ´ νpα0q ´ pε

2
0 `

C0

R2 q ´ Ch
1{2

˙

ÿ

J1YJ2

}χj,he
Φψn}

2

ď h
`

ε20 `
C0

R2 ` Ch
1{2
˘

ÿ

J3

}χj,he
Φψn}

2

Using (1.11) we get that for ε0 small enough and R large enough, there exist h0 ą 0, c ą 0
and C̃ ą 0 such that for h P p0, h0q we have:

c ă

ˆ

inf
j
σpθjq ´ νpα0q ´ ε

2
0 ´

C0

R2 ´ Ch
1{2

˙

and
`

ε20 `
C0

R2 ` Ch
1{2
˘

ď C̃.

We deduce that for h P p0, h0q:

c
ÿ

J1YJ2

}χj,he
Φψn}

2
ď C̃

ÿ

J3

}χj,he
Φψn}

2
ď C̃e2ε0R

ÿ

J3

}χj,hψn}
2
ď C1}ψn}

2.

Therefore (4.6) follows and we get (4.7) from the identity (4.8). �

4.3. Rough tangential estimates. We can also use the rough estimate of the eigenvalues to
deduce a rough localization of the eigenfunctions near x0.

Proposition 4.3. There exist h0 ą 0 and C ą 0 such that for all h P p0, h0q, we have the
following estimates for an eigenfunction ψn associated to λnphq:

ż

eχpxqh
´1{8|spxq|

|ψn|
2 dx ď C}ψn}

2,

Qhpe
χpxqh´1{8|spxq|ψnq ď Ch}ψn}

2,

where χ is a smooth cutoff function supported in a fixed neighborhood of E.
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Proof. We use a partition of unity pχj,hqjě0 with balls of size h3{8 as in the proof of Proposition
4.1. We let Φ “ χpxqh´1{8|spxq| where the tangential coordinate s is defined in Section 2.
In particular, we have }∇Φ}2 ď C0h

´1{4 and }∇χj,h}2 ď rC0h
´3{4. As in the proof of the

Proposition 4.2, we combine (4.8) and (4.2), we use a change of variables and the min-max
principle for the sum over J1 Y J2 and we get C1 ą 0 such that

ˆ

h inf
j
σpθjq ´ λnphq ´ C1h

5{4

˙

ÿ

jPJ1phqYJ2phq

}χj,he
Φψn}

2

`
ÿ

jPJ3phq

Qhpχj,he
Φψnq ´ pλnphq ` C1h

5{4
q}χj,he

Φψn}
2
ď 0.

Using Assumption 1.10 and (4.10), we get h0 ą 0 and c ą 0 such that for h P p0, h0q we have
`

h infj σpθjq ´ λnphq ´ C1h
5{4
˘

ě ch. We make a partition of J3 depending on how far we
are from the point x0 where α is maximal, we get:

(4.11) ch
ÿ

jPJ1phqYJ2phq

}χj,he
Φψn}

2
`

ÿ

jPJ3phq
}xj´x0}ěδ0h

1{8

ppνpαjq ´ νpα0qqh´ C1h
5{4
q}χj,he

Φψn}
2

ď
ÿ

jPJ3phq
}xj´x0}ďδ0h

1{8

´Qhpχj,he
Φψnq `

`

νpα0qh` C1h
5{4
˘

}χj,he
Φψn}

2

We have:

(4.12) ´Qhpχj,he
φψnq `

`

νpα0qh` C1h
5{4
˘

}χj,he
Φψn}

2
ď C̃h5{4

}χj,he
Φψn}

2.

We write t}xj´x0} ě δ0h
1{8u “ t}xj´x0} ě r0uYtδ0h

1{8 ď }xj´x0} ď r0u and we have:

‚ If δ0h
1{8 ď }xj ´ x0} ď r0, we use the non-degeneracy of α near x0: for r0 small

enough we have:

νpαjq ´ νpαps0qq ě
ν2pαps0qq

4
psj ´ s0q

2
ě

ν2pαps0qq
4

δ2
0h

1{4.

We choose δ0 such that:
ν2pαps0qq

4
δ2

0 ą C1

and we deduce:

(4.13) @h P p0, h0q, pνpαjq ´ νpα0qqh´ C1h
5{4
ě ch5{4

‚ If }xj ´ x0} ě r0, due to the uniqueness of the maximum of s ÞÑ αpsq, there exists
η ą 0 such that νpαjq ´ νpα0q ě η and therefore we get the existence of c ą 0 such
that:

(4.14) @h P p0, h0q, pνpαjq ´ νpα0qqh´ C1h
5{4
ě ch
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Using (4.12), (4.13) and (4.14) into (4.11) we get:

ch
ÿ

jPJ1phqYJ2phq

}χj,he
Φψn}

2
` ch

ÿ

jPJ3phq
}xj´x0}ěr0

}χj,he
Φψn}

2
` ch5{4

ÿ

jPJ3phq
δ0h

1{8ď}xj´x0}ďr0

}χj,he
Φψn}

2

ď Ch5{4
ÿ

jPJ3phq
}xj´x0}ďδ0h

1{8

}χj,he
Φψn}

2.

Using the fact that Φ is bounded on t}xj ´ x0} ď δ0h
1{8u, we conclude in the same way as in

the proof of Proposition 4.2. �

We use a cutoff function χhpxq near x0 such that:

(4.15) χhpxq “ χ0ph
´1{8`γ špxqqχ0ph

´1{2`γ ťpxqqχ0ph
´1{2`γ žpxqq with 0 ă γ ă

1

8
.

‚ Space of the eigenfunctions. For all N ě 1, let us consider L2-normalized eigenpairs
pλnphq, ψnq1ďnďN such that xψn, ψmy “ 0 when n ‰ m. We consider the N dimensional
space defined by:

qENphq “ span
1ďnďN

ψ̌n, where ψ̌n “ χhψn.

Notation 4.4. We will denote by ψ̌p“ χhψq the elements of qENphq.

Corollary 4.5. Let ψ P spanpψnq1ďnďN and ψ̌ “ χhψ. Then we have:

}ψ} “ }ψ̌}p1`Oph8qq and qQhpψq “ qQhpψ̌qp1`Oph
8
qq,

}Dšψ} “ }Dšψ̌}p1`Oph
8
qq and qQhpDjψq “ qQhpDjψ̌qp1`Oph

8
qq,

where j “ š, ť, ž.

Proof. The first line comes directly from Propositions 4.2 and 4.3. In order to get the estimates
on Djψ (note that these estimates have a meaning since the eigenfunctions are in H2), we use
the technics of [21, 37]. �

Proposition 4.6. There exist h0 ą 0, C ą 0 such that for h P p0, h0q and for all ψ̌ P qENphq
we have for all k and l in N:

ż

|ť|k|ž|l|ψ̌|2 dšdťdž ď Chk{2hl{2}ψ̌}2,(4.16)
ż

|ť|k|ž|lp|hDťψ̌|
2
` |hDžψ̌|

2
` |phDš ´ ť` h

1{2η0qψ̌|q dšdťdž ď Chhk{2hl{2}ψ̌}2.(4.17)

Proof. For ψ an eigenfunction, we have:
ż

e2ε0dpx,Eqh´1{2

|χhψ|
2 dx ď C}ψ}2 ď C̃}χhψ}

2.

For all n ě 1, we have:
ż

dpx, Eqn|χhψ|
2 dx ď Cpnqhn{2}χhψ}

2.
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Using the coordinates pš, ť, žq on the support of χh, we infer:
ż

p|ť| ` |ž|qn|χhψ|
2 dx ď C̃pnqhn{2}χhψ}

2

and we deduce (4.16). We get (4.17) in a similar way. �

Proposition 4.7. For all n ě 1, there exists h0 ą 0 such that for h P p0, h0q, we have:

λnphq “ νpα0, η0qh`Oph
3{2
q.

Proof. We have:
qQhpψ̌q “ x qG

´1
q∇hψ̌, q∇hψ̌yL2

|G|1{2
pdšdťdžq.

With the Taylor expansion of qG´1 and | qG| and the estimates of Agmon with respect to ť and ž,
we infer:

qQhpψ̌q ě qQflat
h pψ̌q ´ Ch

3{2
}ψ̌}2.

where qQflat
h is the quadratic form associated to the leading operator in the pš, ť, žq coordinates:

qQflat
h pψ̌q “ }hDťψ̌}

2
` }hτ0τpšq

´1Džψ̌}
2
` }phDš ` η0h

1{2
´ ťqψ̌}2.(4.18)

Moreover, we have:

qQflat
h pψ̌q ě }hDťψ̌}

2
` }hDžψ̌}

2
` }phDš ` η0h

1{2
´ ťqψ̌}2 ě νpα0, η0qh.

It remains to use Theorem 1.15 and the conclusion follows. �

5. LOCAL AND MICROLOCAL ESTIMATES

As we have seen in Section 3 (see (3.2)), we can think that h2D2
ť
` h2D2

ž ` pη0h
1{2 ´ ťq2 is

an approximation of Lh when acting on the eigenfunctions. This property is not obvious and
relies on the behavior of the tangential derivative Dš when acting on the eigenfunctions.

5.1. Control ofDš. We will need three lemmas to get an optimal control of the eigenfunctions
with respect toDš. We recall that qLh “ | qG|´1{2

q∇h| qG|
1{2

qG´1
q∇h and that q∇h is defined in (5.3).

We denote g “ | qG|1{2 qG´1 so that, for ψ P Domp qQhq, we have qQhpψq “
ş

ǧ|q∇hψ|
2 dšdťdž. If

we denote q∇h “ pP1, P2, P3q, we notice:

qQhpψq “

ż

Wα

g
3
ÿ

j“1

|Pjψ|
2 dšdťdž,

which reminds a form “à la Hörmander” (see [26, Theorem 18.5.9 and below]). Therefore we
can expect a generalized “IMS” formula for the quantity x qLhψ, ψyL2

| qG|1{2
:
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Lemma 5.1. For an eigenpair pλ, ψq which satisfies (4.10), we have the commutator formula:

pλ`Oph8qq }Dšψ̌}
2
L2

| qG|1{2
`Oph8q}ψ̌}2L2

| qG|1{2
(5.1)

“ qQhpDšψ̌q ´ xǧrq∇h, Dšsψ̌, rq∇h, Dšsψ̌y ` <
´

xǧ q∇hψ̌, rrq∇h, Dšs, Dšsψ̌y
¯

` <
´

xpDšǧqq∇hψ̌, q∇hDšψ̌y ` xpDšǧqq∇hψ̌, rq∇h, Dšsψ̌y ` λxpDš| qG|
1{2
qψ̌, Dšψ̌y

¯

.

where:

ǧ “ | qG|1{2 qG´1

and where ψ̌ “ χhψ with χh defined in (4.15).

Proof. We shorten the notation by using L2
| qG|1{2

“ L2p| qG|1{2, dšdťdžq and x¨, ¨yL2

| qG|1{2
to denote

the associated scalar product. The function ψ̌ does not satisfy the boundary condition associ-
ated to qL but it is in H2 so that the following formula makes sense ( qL is considered as a partial
differential operator):

x qLhψ̌, D2
šψ̌yL2

| qG|1{2
“ xχ qLhψ,D2

š ψ̌yL2

| qG|1{2
` xr qLh, χhsψ,D2

šψ̌yL2

| qG|1{2

“ xλψ̌,D2
š ψ̌yL2

| qG|1{2
` xr qLh, χhsψ,D2

šψ̌yL2

| qG|1{2
.

An integration by parts provides:

xψ̌,D2
šψ̌yL2

| qG|1{2
“ }Dšψ̌}

2
L2

| qG|1{2
` xpDš| qG|

1{2
qψ̌, Dšψ̌y.

Therefore we deduce from Corollary 4.5 that:

x qLhψ̌, D2
šψ̌yL2

| qG|1{2
“ pλ`Oph8qq}Dšψ̌}

2
L2

| qG|1{2
` λxpDš| qG|

1{2
qψ̌,Dšψ̌y.

We have:

x qLhψ̌, D2
šψ̌yL2

| qG|1{2
“ xq∇hǧ q∇hψ̌,D

2
šψ̌yL2 .

We use the Green-Riemann formula to compute the quantity xq∇hǧ q∇hψ̌, D
2
š ψ̌yL2 . Using the

Sobolev injections and Corollary 4.5, we control the boundary term by Oph8q}ψ̌}L2}Dšψ̌}L2

and we get:

xq∇hǧ q∇hψ̌,D
2
š ψ̌yL2 “ xǧ q∇hψ̌, q∇hD

2
šψ̌yL2 `Oph8q

`

}ψ̌}2L2 ` }Dšψ̌}
2
L2

˘

.
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The following commutators computations are essentially algebraic:

xǧ q∇hψ̌, q∇hD
2
š ψ̌yL2 “ xǧ q∇hψ̌,

´

Dš
q∇h ` rq∇h, Dšs

¯

Dšψ̌y

“ xDšǧ q∇hψ̌, q∇hDšψ̌y ` xǧ q∇hψ̌, rq∇h, DšsDšψ̌y

“ xǧ q∇hDšψ̌, q∇hDšψ̌y ` xpDšǧqq∇hψ̌, q∇hDšψ̌y

´ xǧrq∇h, Dšsψ̌, q∇hDšψ̌y ` xǧ q∇hψ̌, rq∇h, DšsDšψ̌y

“ qQhpDšψ̌q ` xpDšǧqq∇hψ̌, q∇hDšψ̌y ´ }rq∇h, Dšsψ̌}
2
L2
ǧ

´ xǧrq∇h, Dšsψ̌, Dš
q∇hψ̌y ` xǧ q∇hψ̌,Dšrq∇h, Dšsψ̌y

` xǧ q∇hψ̌, rrq∇h, Dšs, Dšsψ̌y.

We have:

(5.2) ´ xǧrq∇h, Dšsψ̌,Dš
q∇hψ̌y ` xǧ q∇hψ̌, Dšrq∇h, Dšsψ̌y “

xrq∇h, Dšsψ̌, pDšǧqq∇hψ̌y ´ xDšrq∇h, Dšsψ̌, ǧ q∇hψ̌y ` xǧ q∇hψ̌,Dšrq∇h, Dšsψ̌y.

The two last terms are conjugate so that by taking the real part of x qLhψ̌, D2
š ψ̌yL2

| qG|1{2
we get

(5.1). �

We are led to estimate the different remainders due to the commutators.

Lemma 5.2. Let N ě 1. There exist h0 ą 0 and C ą 0 such that, for h P p0, h0q and
ψ̌ P qENphq, we have:

|xǧrq∇h, Dšsψ̌, rq∇h, Dšsψ̌y| ď Ch2
}ψ̌}2,

|xǧ q∇hψ̌, rrq∇h, Dšs, Dšsψ̌y| ď Ch3{2
}ψ̌}2,

|xpDšǧqq∇hψ̌, rq∇h, Dšsψ̌y| ď Ch2
}ψ̌}2,

|xpDšǧqq∇hψ̌, q∇hDšψ̌y| ď Ch}ψ̌}

b

qQhpDšψ̌q ,

h|xpDš| qG|
1{2
qψ̌, Dšψ̌y| ď Ch3{2

`

}ψ̌}2 ` }Dšψ̌}
2
˘

.

Proof. We compute the first order commutator:

(5.3) rq∇h, Dšs “

¨

˝

´ih
`

τ 1

2τ

˘1
pžDž `Dž žq ` pDšŘ1q

0
´ihpτ´1q

1

τp0q

˛

‚.

We have C1 ą 0 such that |DšŘ1| ď C1pť
2 ` ž2q (see Proposition 2.1). From Proposition

4.6 we get }rq∇h, Dšsψ̌} ď C2h with C2 ą 0 and the first upper bound follows. In the same

way we get that }rrq∇h, Dšs, Dšsψ̌} ď C3h with C3 ą 0 and since }∇̌hψ̌} ď

b

qQhpψ̌q “

Oph1{2q}ψ̌}, we get the second upper bound. Using again Proposition 2.1, we deduce that
}Dšǧ} ď C3p|ť| ` |ž|q. �
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Lemma 5.3. There exist h0 ą 0 and C ą 0 such that, for h P p0, h0q and ψ̌ P qENphq, we
have:

}hDťDšψ̌}
2
` }hDžDšψ̌}

2
` }phDš ´ ťqDšψ̌}

2
ď Ch}Dšψ̌}

2
` Ch}ψ̌}2.

Proof. We use Lemma 5.1 and Lemma 5.2 and we deduce:

qQhpDšψ̌q ď λ}Dšψ̌}
2
` Ch}ψ̌}2 ` ChQ̌hpDšψ̌q

Therefore, we infer:

p1´ Chq qQhpDšψ̌q ď pνpα0, η0qh` Ch
3{2
q}Dšψ̌}

2
` Ch}ψ̌}2

so that:
qQhpDšψ̌q ď pνpα0, η0qh` C̃h

3{2
q}Dšψ̌}

2
` C̃h}ψ̌}2.

Moreover, using (4.15) and Notation 4.4, we have:

(5.4) qQhpDšψ̌q ě p1´ Ch
1{2´γ

q}q∇hĎšψ̌}
2.

We write:

}q∇hĎšψ̌}
2
“}phDš ´ ť` η0h

1{2
´ hτ 1

2τ
pžDž `Dž žq ` Ř1qDšψ̌}

2
` }hDťDšψ̌}

2

` }hτpšq´1τp0qDžDšψ̌}
2

ě
1

2
qQflat
h pDšψq ´ 2

`

Ch2´4γ
}Dšψ̌}

2
` Ch1´2γ

}hDžDšψ̌}
2
` Ch2

}ψ̌}2
˘

where qQflat
h is defined in (4.18) and where we have used (4.15). We infer:

qQflat
h pDšψq ď C̃h}Dšψ̌}

2
` C̃h}ψ̌}2

and the conclusion follows.
�

Proposition 5.4. There exist h0 ą 0 and C ą 0 such that, for h P p0, h0q and ψ̌ P qENphq, we
have:

}Dšψ̌} ď Ch´1{4
}ψ̌}.

Proof. Due to the non-degeneracy of the minimum, there exist c0 ą 0, ε0 ą 0 such that for
|ηh1{2| ď ε0:

(5.5) νpη0 ` ηh
1{2
q ě νpα0, η0q ` h

ν2pη0q

4
η2

and for |ηh1{2| ě ε0:

(5.6) νpη0 ` h
1{2ηq ě νpα0, η0q ` c0.
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‚ Estimate near the minimum. We can notice that, with the estimates of Agmon, for all ψ̃ P
qENphq:

(5.7) qQhpψ̌q ď λNphq}ψ̌}
2
`Oph8q}ψ̌}2.

As in the proof of Proposition 4.7, we have:

qQpψ̌q ě }hDťψ̌}
2
` }hDžψ̌}

2
` }phDš ` η0h

1{2
´ ťqψ̌}2 ´ Ch3{2

}ψ̌}2.

We use the Fourier transform F with respect to š and the scaling associated to the variables
pt̂, ẑq and we get:

ż

hνpη0 ` h
1{2ηq|F ψ̌|2 dηdťdž ď pνpα0, η0qh` Ch

3{2
q}F ψ̌}2.

We split the integral of the l.h.s. into two parts and we use (5.5) and (5.6) to infer:
ż

|ηh1{2|ěε0

|F ψ̌|2 dηdťdž ď Ch1{2
}ψ̌}2,(5.8)

ż

|ηh1{2|ďε0

η2
|F ψ̌|2 dηdťdž ď Ch´1{2

}ψ̌}2.(5.9)

‚ Estimate away from the minimum. From (5.4) we get:

}q∇hĎšψ̌}
2
ď pνpα0, η0qh` C̃h

3{2´γ
q}Dšψ̌}

2
` C̃h}ψ̌}2.

We have:

}q∇hĎšψ̌}
2
“}phDš ´ ť` η0h

1{2
´ hτ 1

2τ
pžDž `Dž žq ` Ř1qDšψ̌}

2
` }phDťqDšψ̌}

2

` }phτpšq´1τp0qDžqDšψ̌}
2

We expand the squares and we shall estimate the double products. Let us just analyze the
following term (we use Lemma 5.3 and (4.15)):

ˇ

ˇ<
@

phDš ´ ť` η0h
1{2
qDšψ̌, h

τ 1

τ
pžDž `Dž žqDšψ̌ ` Ř1Dšψ̌

Dˇ

ˇ

ď }phDš ´ ť` η0h
1{2
qDšψ̌}p}h

τ 1

τ
pžDž `Dž žqDšψ̌} ` }Ř1Dšψ̌}q

ď Ch1{2
p}Dšψ̌} ` }ψ̌}qph

1{2´γ
ph1{2

}Dšψ̌} ` h
1{2
}ψ̌}q ` h1´2γ

}Dšψ̌}q.

We can deal with the other double products in the same way. We deduce:

}phDš´ť`η0h
1{2
qDšψ̌}

2
`}hDťDšψ̌}

2
`}hDžDšψ̌}

2
ď pνpα0, η0qh`Ch

3{2´2γ
q}Dšψ̌}

2
`Ch}ψ̌}2.

We use the Fourier transform F to deduce:
ż

hνpη0 ` h
1{2ηq|ηF ψ̌|2 dηdťdž ď pνpα0, η0qh` Ch

3{2´2γ
q}ηF ψ̌}2 ` Ch}ψ̌}2.

We get:
ż

|ηh1{2|ěε0

c0h|ηF ψ̌|2 dηdťdž ď Ch3{2´2γ
}ηF ψ̌}2 ` Ch}ψ̌}2
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and:
ż

|ηh1{2|ěε0

|ηF ψ̌|2 dηdťdž ď C̃h1{2´2γ
}ηF ψ̌}2 ` C̃}ψ̌}2.

We combine this inequality with (5.9) and we get:

}ηF ψ̌}2 ď C̃h1{2´2γ
}ηF ψ̌}2 ` Ch´1{2

}ψ̌}2.

We deduce:
}ηF ψ̌}2 ď 2Ch´1{2

}ψ̌}2.

�

5.2. Feshbach-Grushin projection. The result of Proposition 5.4 implies an approximation
result for the eigenfunctions. Let us recall the scaling defined in (3.1):

(5.10) š “ h1{4ŝ, ť “ h1{2t̂, ž “ h1{2ẑ.

Notation 5.5. We will denote by pENphq the set of the rescaled elements of qENphq. The
elements of pENphq will be denoted by ψ̂. We recall that we denote by pLh the operator h´1

qLh
in the rescaled coordinates. The corresponding quadratic form will be denoted by pQh. In these
variables, Proposition 5.4 becomes:

}Dšψ̌} ď Ch´1{4
}ψ̌}.

Let us recall that γ P p0, 1
8
q is the scale of the cut-off function in (4.15). We have an

approximation lemma:

Lemma 5.6. There exist h0 ą 0 and C ą 0 such that, for h P p0, h0q and ψ̂ P pENphq, we
have:

}ψ̂ ´ Π0ψ̂} ` }Dt̂pψ̂ ´ Π0ψ̂q} ` }Dẑpψ̂ ´ Π0ψ̂q} ď Ch1{8
}ψ̂}(5.11)

}ŝpψ̂ ´ Π0ψ̂q} ` }ŝDt̂pψ̂ ´ Π0ψ̂q} ` }ŝDẑpψ̂ ´ Π0ψ̂q} ď Ch1{8´γ
p}ψ̂} ` p}ŝψ̂}q,(5.12)

where Π0 is the projection on uη0:

Π0ψ̂ “ xψ̂, uη0yt̂,ẑuη0 .

Proof. Let us prove the proposition for an ψ̂ which comes from an eigenfunction associated
with λ̂. We have, using (5.7):

pQhpψ̂q ď pνpα0, η0q ` Ch
1{2
q}ψ̂}2 `Oph8q}ψ̂}2.

In addition, as it was previously obtained in the proof of Proposition 4.7, we get:
pQhpψ̂q ě }Dt̂ψ̂}

2
` }Dẑψ̂}

2
` }ph1{4Dŝ ` η0 ´ t̂qψ̂}

2
´ Ch1{2.

We apply Proposition 5.4 and we deduce:
ˇ

ˇ

ˇ
<xh1{4

pη0 ´ t̂qDŝψ̂, ψy
ˇ

ˇ

ˇ
ď Ch1{4

}ψ̂}2.

Let us define pL0 “ IdŝbpL0´ νpα0, η0qq and denote by pQ0 the associated quadratic form. We
infer:

0 ď Q̂0pψ̂q ´ νpα0, η0q}ψ̂}
2
ď Ch1{4

}ψ̂}2
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and, since Π0ψ̂ is in the kernel of pL0, we get:

0 ď Q̂0ppId´ Π0qψ̂q ´ νpα0, η0q}pId´ Π0qψ̂}
2
ď Ch1{4

}ψ̂}2.

This is then standard, by using the simplicity of the lowest eigenvalue of L0, to deduce (5.11)
(see [8, Corollary 4.10] and also [14]). To get (5.12), we write the “IMS” formula with weight
ŝ:

(5.13) pQhpŝψ̂q ď λ̂}ŝψ̂}2 ` Ch1{2
}ψ̂}2 `Oph8q}ψ̂}2.

Using the support of the functions (see (4.15)), we infer:

pQhpŝψ̂q ěp1´ Ch
1{2´γ

q}ph1{4Dŝ ´ t̂` η0 ´ h
1{2 τ 1ph1{4ŝq

2τph1{4ŝq
pẑDẑ `Dẑ ẑq ` h

´1{2R̂1qŝψ̂}
2

(5.14)

` p1´ Ch1{2´γ
q}Dt̂ŝψ̂}

2
` p1´ Ch1{2´γ

q}τph1{4ŝq´1τp0qDẑ ŝψ̂}
2.

As in the proof of Proposition 5.3, we deduce first:

(5.15) }ph1{4Dŝ ´ t̂` η0qŝψ̂}
2
` }Dt̂ŝψ̂}

2
` }Dẑ ŝψ̂}

2
ď C}ŝψ̂}2 ` C}ψ̂}2

and then we analyze the remainders due to the double products in (5.14). Using (5.15), we get:
ˇ

ˇ

ˇ
xpDŝ ´ t̂` η0qŝψ̂, h

´1{2R̂1ŝψ̂y
ˇ

ˇ

ˇ
ď Ch´1{2h1´2γ

}ŝψ̂}p}ŝψ̂} ` }ψ̂}q.

In addition, we get:
ˇ

ˇ

ˇ

ˇ

xph1{4Dŝ ´ t̂qŝψ̂,
h1{2τ 1ph1{4ŝq

2τph1{4ŝq
pẑDẑ `Dẑ ẑqŝψ̂y

ˇ

ˇ

ˇ

ˇ

ď Cp}ŝψ̂} ` }ψ̂}qph1{2
}ŝψ̂} ` h1{2´γ

pp}ŝψ̂} ` }ψ̂}qqq

and:
ˇ

ˇ

ˇ

ˇ

x
h1{2τ 1ph1{4ŝq

2τph1{4ŝq
pẑDẑ `Dẑ ẑqŝψ̂, h

´1{2R̂1qŝψ̂y

ˇ

ˇ

ˇ

ˇ

ď Ch´1{2h1´2γ
}ŝψ̂}ph1{2

}ŝψ̂} ` h1{2´γ
p}ŝψ̂} ` }ψ̂}qq.

Therefore, from (5.14), we deduce:

pQhpŝψ̂q ě

p1´ Ch1{2´γ
q

´

}ph1{4Dŝ ´ t̂` η0qŝψ̂}
2
` }Dt̂ŝψ̂}

2
` }Dẑ ŝψ̂}

2
´ Ch1{2´2γ

p}ŝψ̂}2 ` }ψ̂}2q
¯

.

so that:

}ph1{4Dŝ ´ t̂` η0qŝψ̂}
2
` }Dt̂ŝψ̂}

2
` }Dẑ ŝψ̂}

2
ď νpα0, η0q}ŝψ̂}

2
` Ch1{2´γ

p}ŝψ̂}2 ` }ψ̂}2q.

We have finally to analyze the term:

xh1{4Dŝŝψ̂, p´t̂` η0qŝψ̂y.

We get:
ˇ

ˇ

ˇ
xh1{4Dŝŝψ̂, p´t̂` η0qŝψ̂y

ˇ

ˇ

ˇ
ď C

´

h1{4
p}ψ̂}2 ` }ŝψ̂}2q ` h1{4´2γ

p}ψ̂}2 ` }ŝψ̂}2q
¯

.



34 NICOLAS POPOFF AND NICOLAS RAYMOND

Therefore, we have proved the following estimate:

}pt̂´ η0qŝψ̂}
2
` }Dt̂ŝψ̂}

2
` }Dẑ ŝψ̂}

2
ď νpα0, η0q}ŝψ̂}

2
` Ch1{4´2γ

p}ŝψ̂}2 ` }ψ̂}2q.

We recognize pQ0pŝψ̂q in the l.h.s. and the conclusion is standard. �

5.3. Control of š. The aim of this section is to obtain a control with respect to ŝ. This estimate
can not be obtained directly since the dependence on ŝ comes as ŝ2D2

ẑ in the operator. There-
fore in order to catch the variable ŝ, we will use the projection to replace (modulo correction
terms) D2

ẑ by a positive number when acting on the eigenfunctions.

Proposition 5.7. There exist h0 ą 0 and C ą 0 such that, for h P p0, h0q and ψ̌ P qENphq, we
have:

}šψ̌} ď Ch1{4
}ψ̌}.

Proof. It is equivalent to prove that:

}ŝψ̂} ď C}ψ̂}.

The proof of Proposition 4.7 provides the inequality:

}Dt̂ψ̂}
2
` }τ0τph

1{4ŝq´1Dẑψ̂}
2
` }ph1{4Dŝ ` η0 ´ t̂qψ̂}

2
ď pνpα0, η0q ` Ch

1{2
q}ψ̂}2.

From the non-degeneracy of the maximum of α, we deduce the existence of c ą 0 such that:

}τ0τph
1{4ŝq´1Dẑψ̂}

2
ě }Dẑψ̂}

2
` ch1{2

}ŝDẑψ̂}
2

so that we have:
ch1{2

}ŝDẑψ̂}
2
ď Ch1{2

}ψ̂}2

and:
}ŝDẑψ̂} ď C̃}ψ̂}.

It remains to use Lemma 5.6 and especially (5.12). In particular, we have:

}ŝDẑpψ̂ ´ Π0ψ̂q} ď Ch1{8´γ
p}ψ̂} ` }ŝψ̂}q.

We infer:
}ŝDẑΠ0ψ̂} ď C̃}ψ̂} ` Ch1{8´γ

p}ψ̂} ` }ŝψ̂}q.

Let us write
Π0ψ̂ “ fhpŝquη0pt̂, ẑq.

We have:

}ŝDẑΠ0ψ̂} “ }Dẑuη0}}ŝfh}L2pdŝq “ }Dẑuη0}}ŝfhuη0} “ }Dẑuη0}}ŝΠ0ψ̂}.

We use again Lemma 5.6 to get:

}ŝDẑΠ0ψ̂} “ }Dẑuη0}}ŝψ̂} `Oph
1{8´γ

qp}ψ̂} ` }ŝψ̂}q.

We deduce:
}Dẑuη0}}ŝψ̂} ď C̃}ψ̂} ` 2Ch1{8´γ

p}ψ̂} ` p}ŝψ̂}q

and the conclusion follows. �
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6. BORN-OPPENHEIMER APPROXIMATION AND CONCLUSION

This section is devoted to the proof of Theorem 1.16. In particular, we show that we can
reduce our spectral investigation to the study of a Born-Oppenheimer approximation.

Proposition 6.1. There exists h0 ą 0 such that for h P p0, h0q and ψ̂ P pENphq, we have:

pQhpψ̂q ě}Dt̂ψ̂}
2
` }Dẑψ̂}

2
` }ph1{4Dŝ ´ t̂` η0qψ̂}

2
` h1{2τ´1

0 κ}Dẑuη0}
2ŝ2
` ω̃0h

1{2
}ψ̂}2

` oph1{2
q}ψ̂}2,

with:

(6.1) ω̃0 “ xp2pη0 ´ t̂qr̂1uη0 , uη0yL2pdt̂dẑq `

ż

Sα

l̂

2
P̂ uη0P̂ uη0 dt̂dẑ `

ż

Sα
L̂P̂ uη0P̂ uη0 dt̂dẑ,

where P̂ , l̂, L̂ and r̂1 are homogeneous polynomials defined in (3.5) and (3.6) (see also Section
2).

Proof. We can write:

(6.2) qQhpψ̌q “

ż

pǧ q∇hψ̌q ¨ pq∇hψ̌q dšdťdž.

By Proposition 2.1, we have:

(6.3) ǧ “ Id`
ľ

2
Id` Ľ` p|ť| ` |ž|qO1

where the notation O1 is defined in Proposition 2.1. Let us estimate the following remainder:

R1 “

ż

 

|š|p|ť| ` |ž|q ` |ť|2 ` |ž|2
(

}q∇hψ̌}
2 dšdťdž.

Using the support of the functions, we have:

|R1| ď

ż

 

Ch1{8´γ
p|ť| ` |ž|q ` |ť|2 ` |ž|2

(

}q∇hψ̌}
2 dšdťdž.

Then, we recall that:

}q∇hψ̌}
2
“}phDš ´ ť` h

1{2η0 ´
hτ 1

2τ
pžDž `Dž žq ` Ř1qψ̌}

2(6.4)

` }hDt̂ψ̌}
2
` }hτ0τ

´1
pšqDžψ̌}

2.

It easily follows that:

}q∇hψ̌}
2
ďCp|phDš ´ ť` h

1{2η0qψ̌|
2
` |hDt̂ψ̌|

2
` |hDžψ̌|

2
q

` Ch2
|pžDž `Dž žqψ̌|

2
` C|Ř1ψ̌|

2.

The estimates of Agmon with respect to ť and ž (see Proposition 4.6) imply:

|R1| ď pCh
1{8´γh3{2

` Ch2
q}ψ̌}2.
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We infer from (6.2) and (6.3) that:

qQhpψ̌q ě

ż
ˆ

Id`
ľ

2
Id` Ľ

˙

q∇hψ̌ ¨ q∇hψ̌ dšdťdž ` oph
3{2
q}ψ̌}2.

It follows that:

(6.5) qQhpψ̌q ě }q∇hψ̌}
2
`

ż
ˆ

ľ

2
Id` Ľ

˙

q∇hψ̌ ¨ q∇hψ̌ dšdťdž ` oph
3{2
q}ψ̌}2.

‚ Terms involving the metrics. With the same argument as previously, we can write:
ż
ˆ

ľ

2
Id` Ľ

˙

q∇hψ̌ ¨ q∇hψ̌ dšdťdž

ě

ż
ˆ

ľ

2
Id` Ľ

˙

¨

˝

hDš ´ ť` h
1{2η0

hDť

hτ0τ
´1Dž

˛

‚ψ̌ ¨

¨

˝

hDš ´ ť` h
1{2η0

hDť

hτ0τ
´1Dž

˛

‚ψ̌ dšdťdž

` oph3{2
q}ψ̌}2.

Let us analyze the different terms involving Dž. Since we have τ0τ
´1pšq “ 1 ` Opš2q, we

have to control a term in the form:
ż

|š|2p|ť| ` |ž|q|hDžψ̌|p|phDš ´ ť` h
1{2η0qψ̌| ` |hDťψ̌| ` |hDžψ̌|q dšdťdž.

This term is controlled by Cph1{8´γq2h1{2h}ψ̌}2. This allows to write:
ż
ˆ

ľ

2
Id` Ľ

˙

q∇hψ̌ ¨ q∇hψ̌ dšdťdž

ě

ż
ˆ

ľ

2
Id` Ľ

˙

¨

˝

hDš ´ ť` h
1{2η0

hDť

hDž

˛

‚ψ̌ ¨

¨

˝

hDš ´ ť` h
1{2η0

hDť

hDž

˛

‚ψ̌ dšdťdž

` oph3{2
q}ψ̌}2.

Let us now deal with the terms involving Dš. Such terms appear in integrals in the form:
ż

m̌1pť, žqphDš ´ ť` η0h
1{2
qψ̌ phDš ´ ť` η0h1{2qψ̌ dšdťdž,

ż

m̌2pť, žqphDš ´ ť` η0h
1{2
qψ̌ hDťψ̌ dšdťdž,

or:
ż

m̌3pť, žqphDš ´ ť` η0h
1{2
qψ̌ hDžψ̌ dšdťdž,

where the m̌j are linear. Let us just analyze the first one, the other being similar. We have to
estimate a double product:

ˇ

ˇ

ˇ

ˇ

ż

m̌1pť, žqhDšψ̌ p´ť` η0h1{2qψ̌ dšdťdž

ˇ

ˇ

ˇ

ˇ

ď C}hDšψ̌}h}ψ̌},
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where we have used the normal estimates of Agmon. It remains to use Proposition 5.4 and we
infer that:

ż
ˆ

ľ

2
Id` Ľ

˙

q∇hψ̌ ¨ q∇hψ̌ dšdťdž(6.6)

ě

ż
ˆ

ľ

2
Id` Ľ

˙

¨

˝

´ť` h1{2η0

hDť

hDž

˛

‚ψ̌ ¨

¨

˝

´ť` h1{2η0

hDť

hDž

˛

‚ψ̌ dšdťdž

` oph3{2
q}ψ̌}2.

‚ Terms involving R1. Let us deal with the first term in (6.5). We recall (6.4). We notice that:
ˇ

ˇ

ˇ

ˇ

xphDš ´ ť` η0h
1{2
qψ̌, h

τ 1

τ
pžDž `Dž žqψ̌y

ˇ

ˇ

ˇ

ˇ

ď Ch1{2
}ψ̌}hh1{8´γ

}ψ̌}.

In the same way, we find:
ˇ

ˇ

ˇ

ˇ

xŘ1ψ̌, h
τ 1

τ
pžDž `Dž žqψ̌y

ˇ

ˇ

ˇ

ˇ

“ oph3{2
q}ψ̌}2.

Therefore the terms of (6.4) involving žDž `Dž ž are controlled by oph3{2q}ψ̌}2. We deduce:

}q∇hψ̌}
2
ě}phDš ´ ť` η0h

1{2
` Ř1qψ̌}

2
` }hDťψ̌}

2
` }τ0τ

´1hDžψ̌}
2(6.7)

` oph3{2
q}ψ̌}2.

We observe that (see Proposition 5.4):

|xhDšψ̌, Ř1ψ̌y| ď Ch3{4h}ψ̌}2.

We deduce the inequality:

}q∇hψ̌}
2
ě}phDš ´ ť` η0h

1{2
qψ̌}2 ` }hDťψ̌}

2
` }τ0τ

´1hDžψ̌}
2(6.8)

` 2xp´ť` η0h
1{2
qψ̌, Ř1ψ̌y ` oph

3{2
q}ψ̌}2.

Let us now notice that:
τ0τ

´1
pšq ě 1` τ´1

0 κš2
´ C|š|3.

We deduce that:

(6.9) }τ0τ
´1hDžψ̌}

2
ě }hDžψ̌}

2
` τ´1

0 κ}šhDžψ̌}
2
´ Ch1{8´γ

}šhDžψ̌}
2.

‚ Rescaling. We now gather (6.5), (6.6), (6.8) and (6.9) and we use the rescaled coordinates
pŝ, t̂, ẑq to get (see (3.5)):

pQhpψ̂q ě}ph
1{4Dŝ ´ t̂` η0qψ̂}

2
` }Dt̂ψ̂}

2
` }Dẑψ̂}

2
` h1{2τ´1

0 κ}ŝDẑψ̂}
2(6.10)

` 2h1{2
xp´t̂` η0qψ̂, r̂1ψ̌y ´ Ch

1{2h1{8´γ
}ŝDẑψ̂}

2

`

ż
ˆ

ľ

2
Id` Ľ

˙

P̂ ψ̂ ¨ P̂ ψ̂ dšdťdž ` oph1{2
q}ψ̂}2.

The main idea is now to replace ψ̂ by Π0ψ̂ in the terms of order h1{2 in order to make the terms
coming from the metrics disappear and get the constant ω̃0. This procedure aims somehow at
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averaging the lower order terms of the symbol of the operator with respect to the eigenfunction
of the leading operator.

We recall Proposition 5.4 and Lemma 5.6. This implies that:
ˇ

ˇ

ˇ
}ŝDẑψ̂} ´ }Dẑuη0}}ŝψ̂}

ˇ

ˇ

ˇ
ď Ch1{8´γ

}ψ̂}.

On the one hand we deduce:
}ŝDẑψ̂} ď C}ψ̂}

and on the other hand:

}ŝDẑψ̂}
2
ě }Dẑuη0}

2
}ŝψ̂}2 ´ Ch1{8´γ

}ψ̂}2.

We infer:
pQhpψ̂q ě}ph

1{4Dŝ ´ t̂` η0qψ̂}
2
` }Dt̂ψ̂}

2
` }Dẑψ̂}

2
` h1{2τ´1

0 κ}Dẑuη0}
2
}ŝψ̂}2(6.11)

` 2h1{2<
´

xp´t̂` η0qψ̂, r̂1ψ̂y
¯

`

ż
ˆ

ľ

2
Id` Ľ

˙

P̂ ψ̂ ¨ P̂ ψ̂ dŝdt̂dẑ ` oph1{2
q}ψ̂}2.

We finally deal only with the term involving r̂1, the other being similar. We use Lemma 5.6
and especially (5.11). We can write:

xp´t̂` η0qψ̂, r̂1ψ̂y.

By the normal estimates of Agmon, we have:

}r̂1p´t̂` η0qψ̂} ď C}ψ̂}

and with (5.12) we get:

xr̂1p´t̂` η0qψ̂, ψ̂y “ xr̂1p´t̂` η0qψ̂,Π0ψ̂y ` op1q}ψ̂}
2.

Using the decay properties of uη0 and (5.11), we have:

}r̂1p´t̂` η0qΠ0ψ̂} ď C}ψ̂}.

It follows that:

xp´t̂` η0qψ̂, r̂1ψ̂y “ xp´t̂` η0qΠ0ψ̂, r̂1Π0ψ̂y ` op1q}ψ̂}
2.

Jointly with (6.10) and the definition of ω̃0, this provides the conclusion. �

‚ Born-Oppenheimer approximation and conclusion. In this last paragraph we prove Theo-
rem 1.16. Let us now consider the inequality of Proposition 6.1. There exists h0 ą 0 such that
for h P p0, h0q and ψ̂ P pENphq, we have:

}Dt̂ψ̂}
2
` }Dẑψ̂}

2
` }ph1{4Dŝ ´ t̂` η0qψ̂}

2
` h1{2τ´1

0 κ}Dẑuη0}
2ŝ2
` ω̃0h

1{2
}ψ̂}2

ď λ̂Nphq

ż

˜

1` h1{2 l̂

2

¸

|ψ̂|2 dŝdt̂dẑ ` oph1{2
q}ψ̂}2.
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Using again (5.11) and λ̂Nphq “ νpα0, η0q ` oph1{2q, we infer (see (3.12) and (6.1)), for all
ψ̂ P pENphq:

}Dt̂ψ̂}
2
` }Dẑψ̂}

2
` }ph1{4Dŝ ´ t̂` η0qψ̂}

2
` h1{2τ´1

0 κ}Dẑuη0}
2ŝ2
` ω0h

1{2
}ψ̂}2(6.12)

ď λ̂Nphq

ż

|ψ̂|2 dŝdt̂dẑ ` oph1{2
q}ψ̂}2.

Let us consider the operator which appears in the left hand side:

(6.13) D2
t̂ `D

2
ẑ ` ph

1{4Dŝ ´ t̂` η0q
2
` h1{2τ´1

0 κ}Dẑuη0}
2ŝ2
` ω0h

1{2.

After Fourier transform with respect to ŝ, the operator (6.13) becomes:

(6.14) D2
t̂ `D

2
ẑ ` ph

1{4ξ ´ t̂` η0q
2
` h1{2τ´1

0 κ}Dẑuη0}
2D2

ξ ` ω0h
1{2.

To see why the Born-Oppeheimer formalism applies to the operator (6.14), let us perform the
scaling ξ̃ “ h1{4ξ. We introduce:

(6.15) LBO
h “ D2

t̂ `D
2
ẑ ` pξ̃ ´ t̂` η0q

2
` hτ´1

0 κ}Dẑuη0}
2D2

ξ̃
` ω0h

1{2.

The operator LBO
h is semiclassical with respect to the variable ξ̃. The Born-Oppenheimer

theory applies (see [30] and [10]) and the n-th eigenvalue λBO
n phq of LBO

h satisfies:

λBO
n phq “ νpα0, η0q ` µ2,nh

1{2
` oph1{2

q.

It remains to apply the min-max principle to the N -dimensional space pENphq (see (6.12)) and
it follows:

λ̂Nphq ě νpα0, η0q ` µ2,nh
1{2
` oph1{2

q.

This is exactly the rescaled statement of Theorem 1.16.
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