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LOCAL-IN-SPACE CRITERIA FOR BLOWUP IN SHALLOW WATER

AND DISPERSIVE ROD EQUATIONS

LORENZO BRANDOLESE

Abstract. We unify a few of the best known results on wave breaking for the Camassa–

Holm equation (by R. Camassa, A. Constantin, J. Escher, L. Holm, J. Hyman and others)

in a single theorem: a sufficient condition for the breakdown is that u
′

0 + |u0| is strictly

negative in at least one point x0 ∈ R. Such blowup criterion looks more natural than the

previous ones, as the condition on the initial data is purely local in the space variable.

Our method relies on the introduction of two families of Lyapunov functions. Contrary

to McKean’s necessary and sufficient condition for blowup, our approach applies to other

equations that are not integrable: we illustrate this fact by establishing new local-in-space

blowup criteria for an equation modeling nonlinear dispersive waves in elastic rods.

1. Introduction

For many evolution equations, typical well-posedness results hold a priori only for short

time intervals. A basic problem is to establish whether such intervals can be taken of

arbitrary length. When it is not the case, one expects to find a maximal existence time

T ∗ < ∞ and some spatial norms of the solution such that ‖u(t, ·)‖ is finite for t ∈ (0, T ∗)
and becomes unbounded as t ↑ T ∗. A blowup criterion is nothing but a condition on

the initial data u0(x) implying the latter scenario. In this paper we will focus on blowup

criteria of a very special nature: local-in-space blowup criteria. This notion requires the

introduction of an equivalence relation in the class of initial data.

Let x0 ∈ Ω, where Ω is the spatial domain where the PDE is considered. We say that

two initial data are “equivalent at x0” if they are identical in a neighborhood of x0. A

local blowup criterion at x0 is a condition on the equivalence class [u0], implying the finite

time blowup of any solution arising from initial data equivalent to u0.

For evolution equations involving diffusive phenomena, blowup criteria are typically

non local with respect to the space variable: indeed, it is usually possible to prevent the

blowup of the solutions by perturbating the initial data only in some regions, leaving the

data unchanged in the other regions.

For non-diffusive equations the situation is different. The simplest example is provided

by the inviscid Burgers equation on the line, ut + uux = 0. Applying the method of the

characteristics shows that the condition for the formation of shock waves is that u0 has a

negative derivative in some point x0 ∈ R.

The goal of this paper is to establish the analogue of such elementary fact for more

realistic models arising in one dimensional shallow water theory and for equations modeling

the propagation of dispersive waves in elastic rods. Such models are well-posed in Sobolev

Key words and phrases. Camassa–Holm, rod equation, blowup, wave breaking, nonlinear waves, dis-

persive waves.
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spaces Hs(R), at least during a short time interval, for sufficiently large s > 0. Our blowup

criterion will simply read

(1.1) inf
R

(

u′0 + βγ |u0|
)

< 0,

where βγ is a constant depending on the physical parameter γ (related to the Finger defor-

mation tensor) of the model. For the celebrated Camassa–Holm equation, such criterion

boils down to

(1.2) inf
R

(

u′0 + |u0|
)

< 0.

In the last 20 years, several hundreds of papers were devoted to study of the Camassa–

Holm equation or its generalizations, and many of them addressed the issue of blowup (or

wave breaking). At best of our knowledge, criteria (1.1)-(1.2) remained unnoticed, despite

they were anticipated by many earlier results. In fact, we unify in this way some of the

best known blowup criteria, including those established by R. Camassa, A. Constantin,

J. Escher, L. Holm, J. Hyman, Y. Zhou, etc.). See Section 2.2 for a short survey of previous

results and the relevant references.

A specific feature of the blowup criteria (1.1)-(1.2) is that they are local (in the sense of

the previous definition) at the point x0 where the negative infimum is achieved. This means

that it is impossible to prevent the blowup without modifying u0 around the point x0:

perturbing u0 only outside a neighborhood of x0 may just help in delaying the formation

of singularities.

A related physical interpretation is that fast oscillations will always lead to a blowup

for such models (i.e., to the formation of a breaking wave or to the breaking of the rod in

finite time), no matter how small is the region where the oscillations are present and how

small are their amplitude.

The organization of the paper is straightforward. There is only one new theorem (Theo-

rem 2.1). We state it and compare it with previously known results in Section 2. Section 3

is devoted to its proof and Section 4 to technical remarks and concluding observations.

2. The main result

2.1. The compressible hyper-elastic rod equation. The propagation of nonlinear

waves inside cylindrical hyper-elastic rods, assuming that the diameter is small when

compared to the axial length scale, is described by the one dimensional equation

vτ + σ1vvξ + σ2vξξτ + σ3(2vξvξξ + vvξξξ) = 0, ξ ∈ R, τ > 0.

Such equation was derived by H.H. Dai [14]. Here v(τ, ξ) represents the radial stretch

relative to a prestressed state, σ1 6= 0, σ2 < 0 and σ3 ≤ 0 are physical constants depending

by the material. The scaling transformations

τ =
3
√−σ2
σ1

t, ξ =
√
−σ2x,

with γ = 3σ3/(σ1σ2) and u(t, x) = v(τ, ξ), allow us to reduce the above equation to

(2.1) ut − uxxt + 3uux = γ(2uxuxx + uuxxx), x ∈ R, t > 0.
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We complement this equation with vanishing boundary conditions at ±∞: such bound-

ary conditions will be taken into account through an appropriate choice of the functional

setting, guaranteeing the well-posedness of the Cauchy problem. The existence and the

orbital stability of solitary waves for equation (2.1) is discussed e.g. in [13]. In the case

γ = 1, solitary waves are peaked solitons.

For γ = 0, the rod equation (2.1) reduces to the well-known BBM equation [1], modeling

surface waves in a canal. In this case the solutions exist globally, meaning that the BBM

equation can model permanent waves, but is unsuitable for describing breaking waves.

For γ = 1 (2.1) becomes the Camassa–Holm equation (CH), modeling long waves in

shallow water. Such equation marked an important development in nonlinear dynamics

and is of great current interest [5], [12], [16]. It admits strong solutions that exist globally

and others that lead to a wave breaking in finite time. In this case equation (2.1) has

a bi-hamiltonian structure and is integrable. The Camassa–Holm equation is thus much

better understood than equation (2.1). Useful survey papers on such equation are [8]

and [25].

We denote by

p(x) = 1
2e

−|x|

the fundamental solution of the operator 1 − ∂2
x. Let y = u − uxx be the potential of u.

We thus have u = p ∗ y, and y satisfies

yt + γyxu+ 2γyux + 3(1− γ)uux = 0.

It is also convenient to rewrite the Cauchy problem associated with equation (2.1) in

the following weak form:

(2.2)







ut + γuux = −∂xp ∗
(

3− γ

2
u2 +

γ

2
u2x

)

, t ∈ (0, T ), x ∈ R,

u(0, x) = u0(x).

For any γ ∈ R, the Cauchy problem for the rod equation is locally well-posed in Hs,

when s > 3/2. More precisely, if u0 ∈ Hs(R), s > 3/2, then there exists a maximal time

0 < T ∗ ≤ ∞ and a unique solution u ∈ C([0, T ∗),Hs) ∩ C1([0, T ∗),Hs−1). Moreover, the

solution u depends continuously on the initial data.

It is also known that u admits the invariants

E(u) =

∫

R

(u2 + u2x) dx

and

F (u) =

∫

R

(u3 + γuu2x) dx.

In particular, the invariance of the Sobolev H1-norm of the solution implies that u(x, t)

remains uniformly bounded up to the time T ∗. On the other hand, if T ∗ < ∞ then

lim supt→T ‖u(t)‖Hs = ∞ (s > 3/2) and the precise blowup scenario of strong solutions is

the following:

(2.3) T ∗ < ∞ ⇐⇒ lim inf
t→T ∗

(

inf
x∈R

γux(t, x)
)

= −∞.
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Applying the above result with γ = 0 one recovers the fact that solutions of the BBM do

not blowup.

The above results are due to Constantin and Strauss [13]. They were previously estab-

lished in the particular case γ = 1 corresponding to the Camassa–Holm equations (see e.g.

[11]).

The main result of the present paper is the following blowup criterion for equation (2.2),

in the case 1 ≤ γ ≤ 4 (for γ 6∈ [1, 4], see Section 4).

Theorem 2.1. Let 1 ≤ γ ≤ 4. There exists a constant βγ ≥ 0 (given by the explicit

formula (3.5) below, see Figure 2.1) with the following property: Let T ∗ be the maximal

time of the unique solution u of equation (2.2) in C([0, T ∗),Hs)∩C1([0, T ∗),Hs−1) arising

from u0 ∈ Hs(R), with s > 3/2. Assume that there exists x0 ∈ R such that

u′0(x0) < −βγ |u0(x0)|,

then T ∗ < ∞.

Remark 2.2. It was observed in [13] that, for γ = 3, all non-zero solutions develop a

singularity in finite time. This conclusion agrees with Theorem 2.1, since β3 = 0 and any

non-zero initial data u0 ∈ Hs must have a strictly negative derivative in some point. In

fact, the function γ 7→ βγ , defined for γ ∈ [1, 4], is continuous, strictly decreasing on [1, 3]

and increasing on [3, 4]. Moreover, β1 = 1, β3 = 0 and β4 =
1
2 .

Let us restate explicitly the result corresponding to the wave breaking for the Camassa–

Holm equation (γ = 1):

Corollary 2.3. Let T ∗ the maximal time of the unique solution u ∈ C([0, T ∗),Hs) ∩
C1([0, T ∗),Hs−1) of the Camassa–Holm equation on R,

(2.4) ut + uux = −∂xp ∗
(

u2 +
1

2
u2x

)

,

starting from u0 ∈ Hs(R), with s > 3/2. If there exists x0 ∈ R such that

u′0(x0) < −|u0(x0)|,

then T ∗ < ∞.

Remark 2.4 (The periodic case). The above results extend to periodic solutions, with the

same restrictions on γ and the same constant βγ : if u0 ∈ Hs(T) with s > 3/2 and

(2.5) inf
x∈T

(u′0 + βγ |u0|)(x) < 0,

then the corresponding solution defined on the torus blows up. In particular, in the case of

the periodic Camassa–Holm equation, wave breaking occurs as soon as u′0(x0) < −|u0(x0)|
at some point x0 ∈ T. However, contrary to the case of the whole real line, we expect that

some improvements on the expression of βγ should be possible in the case of the torus:

finding the best coefficient βγ would require combining ideas of the present paper with the

variational techniques used e.g. in [26].
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Figure 2.1. The plot of βγ

In this paper we will not discuss the continuation of the solution after the formation

of a singularity. In general, there are several way to continue solutions beyond the wave

breaking and it is possible to obtain weak solutions that conserve or that dissipate the

energy ‖u‖H1 . This issue is extensively studied, e.g. in [2], [3], [7], [19], [20], [21]. On the

other hand, we know of no global existence results for strong solutions to equation (2.2),

excepted for the particular cases γ = 0 or γ = 1 (see, e.g., [1], [9], [24]) and for the

examples of smooth solitary waves constructed in [15] for 0 < γ < 1.

2.2. Earlier results on wave breaking for Camassa–Holm. In their pioneering pa-

per [5], R. Camassa and L. Holm announced that if u′0(x0) is negative with |u′0(x)| suf-
ficiently large, then the solution of the Camassa–Holm equation must lead to a wave

breaking. Several subsequent theorems confirmed their claim. The best known have been

nicely surveyed by L. Molinet [25] and are the following. In the theorems below, the

word “solution” must be understood as in Corollary 2.3. In the first two theorems the

assumption u0 ∈ H3(R) could be relaxed to u0 ∈ Hs(R), s > 3/2, as noted in [25].

Theorem 2.5 (Camassa, Holm, Hyman [6]. The more precise formulation below is taken

from [10]). If u0 ∈ H3(R), u0 is odd and u′0(0) < 0, then the corresponding solution of

the Camassa–Holm equation blows up in finite time.

The proof of the above theorem relies on the fact that the solution remains odd for all

time, implying that x 7→ uxx(t, x) is also odd and thus ut,xx(t, 0) = 0 for all t ∈ [0, T ). One

then deduces the differential inequality d
dt [ux(t, 0)] ≤ −1

2ux(t, 0)
2, leading to the condition

of blowup scenario.

The next theorem has been systematically adapted to the many different generalizations

of the Camassa–Holm equation. It was anticipated by [5], [6], where one finds the idea

of obtaining a differential inequality similar to the previous one for m(t) = ux(t, x̄(t)),

where x̄(t) ∈ R is a point where ux(·, t) attains its minimum. The main technical difficulty
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consists in proving that the map t 7→ m(t) is a.e. differentiable. This subtle point was

successfully addressed by A. Constantin and J. Escher. The resulting criterion reads as

follows:

Theorem 2.6 (Constantin, Escher [11]). Let u0 ∈ H3(R) be such that, at some point

x0 ∈ R, u′(x0) < −‖u0‖H1/
√
2. Then the solution of the Camassa–Holm equation blows

up in finite time.

A third interesting blow up criterion is provided by the next theorem.

Theorem 2.7 (Constantin, [9]). Let u0 ∈ H3(R) be such that the associated potential

y0 = u0 − (u0)xx changes sign and satisfies, for some x0 ∈ R, y(x) ≥ 0 for x ≤ x0 and

y0(x) ≤ 0 for x ≥ x0. Then the solution of the Camassa–Holm equation blows up in finite

time.

Notice that these three criteria are non-local in the sense explained in the introduction.

Moreover, despite a few common features, none of them implies the other two. On the

other hand, Corollary 2.3 clearly unifies the three above results: The blowup criterion

of Camassa, Holm and Hyman is considerably relaxed: for example, one can replace the

antisymmetry condition on u0 by the simpler requirement u0(0) = 0. On the other hand,

it follows from Corollary 2.3 that solutions arising from small perturbations of a nonzero

antisymmetric initial datum always blow up.

The criterion by Constantin and Escher follows immediately from the Sobolev embed-

ding inequality

‖u‖L∞ ≤ ‖u0‖H1/
√
2.

The blowup criterion of Constantin [9] is deduced from Corollary 2.3 applying the elemen-

tary identities (just apply integration by parts):

(2.6) (u0 − u′0)(x) = e−x

∫ x

−∞
eξy0(ξ) dξ,

(2.7) (u0 + u′0)(x) = ex
∫ +∞

x
e−ξy0(ξ) dξ.

There is a fourth blowup criterion, due to Y. Zhou [27], that slightly extends Con-

stantin’s theorem. Zhou’s theorem affirms that the solution of the Camassa–Holm equa-

tion blows up provided that there exists x1 ∈ R such that

y(x1) = 0,

∫ x1

−∞
eξy0(ξ) dξ > 0 and

∫ +∞

x1

e−ξy0(ξ) dξ < 0.

Using identities (2.6)-(2.7) shows that Corollary 2.1 encompasses also Zhou’s criterion. In

fact, the corollary essentially tells us that the above restriction y(x1) = 0 can be dropped.

On the other hand, using some properties that are specific to the case γ = 1 (in

particular the fact that the Camassa–Holm equation has a bi-hamiltonian structure and

can be integrated), H. McKean succeded in providing a necessary and sufficient condition

for wave-breaking [24]. His theorem asserts that, if u0 ∈ H3(R) and y0 ∈ L1(R), then
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the solution of the Camassa–Holm equation will develop a singularity in finite time if and

only if y0 satisfies the following sign condition:

∃x1 < x2 such that y0(x1) > 0 > y0(x2).

Notice that the assumptions of Corollary 2.3 are slighlty more general than that of

McKean’s theorem. However, the conclusion of Corollary 2.3 is less precise, because it

provides a sufficient condition that is no longer necessary. On the other hand, the crucial

advantage of our approach is that it makes use of few properties of the Camassa–Holm

equation. For this reason our theorem, unlike McKean’s, remains valid also in the case

γ > 1. Moreover, it seems hopeful that the proof of Theorem 2.1 can be adapted to a

wide class of physically relevant equations arising in shallow water theory. We will briefly

discuss a few possible extensions in the last section.

2.3. Main idea of the proof. One first reduces to the case u0 ∈ H3(R) by approxi-

mation. As in [9], [23], the starting point is the analysis of the flow map q(t, x), defined

by

(2.8)

{

qt(t, x) = γu(t, q(t, x)), t ∈ (0, T ), x ∈ R,

q(0, x) = x.

One easily checks that q ∈ C1([0, T ) × R,R) and qx(t, x) > 0 for all t ∈ (0, T ) and x ∈ R.

In the case γ = 1, the potential y = u− uxx satisfies the fundamental identity

y(t, q(t, x))
(

qx(t, x)
)2

= y0(x), t ∈ [0, T ), x ∈ R (γ = 1),

implying that the zeros and the sign of y are invariant under the flow. This nice property

of y is an essential feature of the Camassa–Holm. It implies a few remarkable algebraic

identities (see [23]), and can be used not only to obtain wave breaking criteria, but also

global existence results, [11], [9], [24].

For γ 6= 1 the zeros and the sign of y are no longer invariant of the flow. This explains

why global existence results are much more difficult to establish in this case. Indeed, the

above identity extends as follows (for t ∈ [0, T ) and x ∈ R)

y(t, q(t, x))
(

qx(t, x)
)2

= y0(x) + 3(γ − 1)
(

∫ t

0
(uux)(s, q(s, x))qx(s, x)

2 ds
)

.

Such formula is obtained from the previous one by applying the “variation of the con-

stants”. It can also be checked directly by computing the total time derivative. But it

turns out that this identity is not as useful as for γ = 1.

The essential idea of the proof of Theorem 2.1 is then to find two constants α and β

such that, for all x ∈ R, the functions

t 7→ eαq(t,x)(βu− ux)(t, q(t, x))

are monotone non-decreasing on [0, T ), and the functions

t 7→ e−αq(t,x)(βu+ ux)(t, q(t, x))

are non-increasing. Such monotonicity properties will be convenient substitutes of McK-

ean’s algebraic identities [23] established for the Camassa–Holm equation.
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3. Two families of Lyapunov functions

Proof of Theorem 2.1. Let us first consider the case u0 ∈ H3(R). As in [9], we shall

look for a differential inequality for d
dtux(t, q(t, x)). Recalling that ∂2

xp ∗ f = p ∗ f − f ,

differentiating equation (2.2) with respect to the x variable yields

(3.1) utx + γuuxx =
3− γ

2
u2 − γ

2
u2x − p ∗

(3− γ

2
u2 +

γ

2
u2x

)

.

For 0 ≤ γ ≤ 4, let δ = δ(γ) given by

(3.2) δ =

√
γ

4

(
√

12− 3γ −√
γ
)

.

Notice that for 0 ≤ γ ≤ 3, then δ ≥ 0 was characterized by Y. Zhou [28] as the best

constant satisfying the inequality

p ∗
(3− γ

2
u2 +

γ

2
u2x

)

≥ δu2.

We will extend this inequality also to the case 3 ≤ γ ≤ 4 (in this case δ ≤ 0). In fact, the

next lemma proves more than this:

Lemma 3.1. Let 0 ≤ γ ≤ 4, 0 ≤ β ≤ 1 and δ as in (3.2). Then

(3.3) (p± β∂xp) ∗
(3− γ

2
u2 +

γ

2
u2x

)

≥ δu2.

Proof. We denote by 1R+ and 1R− the characteristic functions of R+ and R
− respectively.

Let a ∈ R:

(p1R+) ∗ (a2u2 + u2x)(x) =
e−x

2

∫ x

−∞
eξ(a2u2 + u2x)(ξ) dξ

≥ ae−x

∫ x

−∞
eξuux dξ

=
au2(x)

2
− ae−x

2

∫ x

−∞
eξu2 dξ

=
au2(x)

2
− a(p1R+) ∗ (u2)(x).

This leads to

(p1R+) ∗
(

(a2 + a)u2 + u2x
)

≥ a

2
u2.

Choosing a to be the largest real root of the second order equation (a will be negative for

3 < γ ≤ 4)

a2 + a = (3− γ)/γ

we get γa = 2δ, hence

(p1R+) ∗
(3− γ

2
u2 +

γ

2
u2x

)

≥ δ
2u

2.

The same computations also show that

(p1R−) ∗
(3− γ

2
u2 +

γ

2
u2x

)

≥ δ
2u

2.
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We have, both in the a.e. and the distributional sense,

p− β∂xp = (1− β)p1R− + (1 + β)p1R+ ,

p+ β∂xp = (1 + β)p1R− + (1− β)p1R+ .

For 0 ≤ β ≤ 1, taking the linear combination in the two last inequalities implies esti-

mate (3.3). �

The optimality of the constant δ in inequality (3.3) follows by the fact that for 0 < γ < 3,

the equality holds at the origin when au = ux in (−∞, 0) and −au = ux in (0,∞). Here

a is the positive root of a2 + a = (3− γ)/γ. In other words, the choice u(x) = e−a|x| gives
the equality in (3.3) for x = 0. When 3 < γ ≤ 4, then a < 0 and one chooses u(x) = ea|x|.

Let 0 < T ≤ T ∗. Recalling that u ∈ C1([0, T ),H2), we see that u and ux are continuous

on [0, T ) × R and x 7→ u(t, x) is Lipschitz, uniformly with respect to t in any compact

time interval in [0, T ). Then the flow map q(t, x) is well defined by (2.8) in the whole time

interval [0, T ) and q ∈ C1([0, T )× R,R).

We have, for 0 < γ ≤ 4,

d

dt

[

ux(t, q(t, x))
]

=
[

utx + γuuxx
]

(t, q(t, x))

= 3−γ
2 u2 − γ

2u
2
x − p ∗

(

3−γ
2 u2 + γ

2u
2
x

)

≤
(

(3−γ
2 − δ)u2 − γ

2u
2
x

)

(t, q(t, x))

= γ
2

(

β2
γu

2 − u2x
)

(t, q(t, x)),

(3.4)

where

β2
γ =

3− γ

γ
− 2δ

γ
.

According to (3.2), then we set

(3.5) βγ =

(

−1

2
+

3

γ
−

√
12− 3γ

2
√
γ

)1/2

.

This expression shows that γ 7→ βγ is continuous, decreasing on (0, 3], increasing for

γ ∈ [3, 4]. Moreover, β1 = 1 and β3 = 0 and β4 =
1
2 .

The next step is to find a good factorization of (β2
γu

2 − u2x)(t, q(t, x)) ensuring some

monotonicity properties for each factor. The obvious factorization β2
γu

2 − u2x = (βγu −
ux)(βγu + ux) is not the most interesting one, as it will be revealed by the the next

proposition.

This leads us to study the functions of the form:

A(t, x) = eαq(t,x)(βu− ux)(t, q(t, x)),

and

B(t, x) = e−αq(t,x)(βu+ ux)(t, q(t, x)).

where 0 < γ ≤ 4, and α and β are real constants to be chosen later.
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Computing the derivatives with respect to t using the definition of the flow map (2.8)

gives, for α ∈ R and 0 ≤ β ≤ 1,

At(t, x) = eαq(t,x)
[

αβγu2 − αγuux + β(ut + γuux)− (utx + γuuxx)
]

= eαq(t,x)
[(

αβγ − 3−γ
2

)

u2 + γ
2u

2
x − αγuux + (p − β∂xp) ∗

(

3−γ
2 u2 + γ

2u
2
x

)]

≥ eαq(t,x)
[(

αβγ − 3−γ
2 + δ

)

u2 − αγuux +
γ
2u

2
x

]

.

Here we used in the second equality equations (2.2) and (3.1), next the inequality provided

by Lemma 3.1.

The condition on the discriminant

∆ = α2γ2 − 2γ
(

αβγ − 3−γ
2 + δ

)

≤ 0

guarantees that the quadratic form inside the brackets is nonnegative. Minimizing ∆ with

respect to α gives α = β. Choosing α = β, the condition ∆ ≤ 0 boils down to

β2 ≥ 3−γ
γ − 2δ

γ = β2
γ ,

where βγ is given by (3.5).

In particular, choosing α = β = βγ (this is indeed possible when 1 ≤ γ ≤ 4 but not

when 0 < γ < 1, as in the former case 0 ≤ β ≤ 1 and Lemma 3.1 can be applied) we get

At(t, x) ≥ 0, for all t ∈ [0, T ), x ∈ R.

Similarly, for α ∈ R and 0 ≤ β ≤ 1,

Bt(t, x) = −e−αq(t,x)
[(

αβγ − 3−γ
2

)

u2 + γ
2u

2
x + αγuux + (p+ β∂xp) ∗

(

3−γ
2 u2 + γ

2u
2
x

)]

≤ −e−αq(t,x)
[(

αβγ − 3−γ
2 + δ

)

u2 + αγuux +
γ
2u

2
x

]

.

The condition guaranteeing that the quadratic form inside the brackets is non-negative is

identical to the previous one.

Summarizing, we established the following fundamental proposition:

Proposition 3.2. Let 1 ≤ γ ≤ 4, u as in Theorem 2.1 and βγ as in (3.5). Set

A(t, x) = eβγq(t,x)(βγu− ux)(t, q(t, x)),

B(t, x) = e−βγq(t,x)(βγu+ ux)(t, q(t, x)).

Then, for all x ∈ R, the function t 7→ A(t, x) is monotonically increasing and t 7→ B(t, x)

is decreasing.

It is then convenient to factorize

(β2
γu

2 − u2x)(t, q(t, x)) = A(t, x)B(t, x).

This being achieved, the proof now can proceed like Constantin’s [9]: from inequality (3.4)

we get

d

dt
[ux(t, q(t, x)] =

γ
2 (β

2
γu− u2x)(t, q(t, x))

= γ
2 (AB)(t, x).

(3.6)
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Now let x0 be such that u′(x0) < −βγ |u(x0)|. We denote g(t) = ux(t, q(t, x0)), A(t) =

A(t, x0) and B(t) = B(t, x0). Proposition 3.2 yields, for all t ∈ [0, T ),

A(t) ≥ A(0) > 0 and B(t) ≤ B(0) < 0

Thus, AB(t) ≤ AB(0) < 0. Then we get, for all t ∈ [0, T ),

g′(t) ≤ γ
2AB(t) ≤ γ

2AB(0) < 0.

Assume, by contradiction, T = ∞. Let α0 =
γ
2 (u

′(0)2 − β2
γu

2
0)(x0). Then g(t) ≤ g(0) −

α0t. We can choose t0 such that g(0)−α0t0 ≤ 0 and (g(0)−α0t0)
2 ≥ ‖u0‖2H1 . For t ≥ t0,

using that g(t) ≤ g(t0), and the conservation of the energy E(u) = ‖u(t)‖2H1 = ‖u0‖2H1 ,

we get

g′(t) ≤ γ
2A(t)B(t) = γ

2

(

β2
γu

2 − u2x
)

(t, q(t, x0))

≤ γ
2

(

β2
γ

2 ‖u0‖2H1 − g(t)2
)

≤ −γ
4g(t)

2.

This differential inequality implies that, for t ≥ t0,

g(t) ≤ 4g(t0)

4 + γ(t− t0)g(t0)
.

Thus, ux(t, q(t, x0)) must blow up in finite time, and T ∗ ≤ t0 + 4/(γ|g(t0)|) < ∞. This

rough upper bound for T ∗ could be slightly improved refining the above inequality for

g′(t). The condition of the blowup scenario (2.3) is fulfilled. The conclusion thus follows

at least when u0 ∈ H3(R).

If 3/2 < s < 3 and u0 ∈ Hs(R), we first approximate u0 in the Hs-norm by a sequence

of data un0 belonging to H3(R). By the continuous dependence on the data, we see passing

to the limit as n → ∞ that the above estimate for g(t) and the upper bound for T ∗ remain

valid also in this case. �

The above proof provides some rough information on the location of the blowup: indeed

from the definition of the flow map (2.8), it follows that the formation of a singularity

occurs somewhere inside the interval [x0 − γ‖u0‖H1T ∗

√
2

, x0 +
γ‖u0‖H1T ∗

√
2

].

4. Earlier blow criteria for the rod equation. Some generalizations.

Experimental studies on a few hyper-elastic materials revealed that the parameter γ

can range from -29.4770 to 3.4174, see [15]. The interval [1, 4] ∋ γ where Theorem 2.1 can

be applied thus overlap, but not completely cover, the physically interesting cases.

Adapting to the elastic rod equation the proof of Theorem 2.6, Y. Zhou [28] established

that for 0 < γ < 3 a blowup occurs provided ∃x0 ∈ R such that

(4.1) |u′0(x0)| < − βγ√
2
‖u0‖H1 .

Theorem 2.1 thus improves Zhou’s criterion in the range 1 ≤ γ < 3 and extends it to

3 ≤ γ ≤ 4. On the other hand, Theorem 2.1 cannot be applied for 0 < γ < 1. For reader’s
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convenience, let us give a direct and simple proof of criterion (4.1), valid for 0 < γ ≤ 4.

We only need to recall inequality (3.4)

d

dt
[ux(t, q(t, x))] ≤ γ

2 (β
2
γu

2 − u2x)(t, q(t, x)),

and the usual L∞-estimate

‖u‖∞ ≤ 1√
2
‖u‖H1 = 1√

2
‖u0‖H1 .

Letting g(t) = ux(t, q(t, x0)), then we obtain the differential inequality

g′(t) ≤ γ
2

(

β2
γ

2 ‖u0‖2H1 − g(t)2
)

with the initial condition g(0) = u′0(x0). Condition (4.1) ensures g′(0) < 0 and the blowup

follows for 0 < γ ≤ 4 integrating this Riccati-type differential inequality .

Remark 4.1. The reason for excluding γ < 1 in Theorem 2.1 is that one would have βγ > 1

(see Figure 2.1). In this case, it is not difficult to see that the result of Proposition 3.2

(implying that the condition u′0(x0) < −βγ |u0(x0)| is conserved by the flow) is no longer

valid. The main reason is the lack of the inequalities

p± β∂xp ≥ 0

when β > 1.

According to [13] and [15], equation (2.2) admits smooth and orbitally stable solitary

waves solutions of the form φc(x − ct) for γ < 1 and orbitally stable peaked solitons

ce−|x−ct| for γ = 1. As observed in [13], if u(t, x) = φc(x − ct) is a solution vanishing at

infinity, then the profile φc must be a translate of cφ, i.e.,

φc(x) = cφ(x− a), x ∈ R,

where φ solves the differential equation

(φ′)2 = γφ(φ′)2 − φ3 + φ2.

Moreover, φ is positive, even and monotonically decreasing from its peak. In addition, it

decays exponentially as |x| → ∞, and the same for its derivatives. For γ < 1, the initial

datum u0(x) = cφ(x) gives rise to a global smooth solution uc = cφ(x − ct). It follows

from the last equation, the parity and the decay properties of φ, that we can find a large

enough x0 such that u′(x0, t) ≃ −|u(x0, t)|. This means that if one believes in the validity

of a local-in-space blowup criterion of the form u′0(x0) < −αγ |u0(x0)| also for γ < 1, then

αγ must satisfy αγ ≥ 1.

The restriction γ > 4 might be purely technical as well. Of course, the expression of the

coefficient βγ computed in (3.5) in this case does not make sense, but one might conjecture

that the statement of Theorem 2.1 holds with another coefficient αγ .

Let us stress the fact that for γ < 0 or γ > 4 nonlocal blowup criteria are still available:

for example, it was observed in [13], [28] that a blowup occurs when, for some x0,

u′0(x0) >
√

(γ−3)/γ√
2

‖u0‖H1 , if γ < 0,
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or

u′0(x0) < −
√

(γ−3)/γ√
2

‖u0‖H1 , if γ > 3.

This readily follows from equation (3.1). However, for 3 < γ ≤ 4, criterion (4.1) is slightly

better, as βγ ≤
√

(γ − 3)/γ.

In this paper we only considered vanishing boundary conditions at infinity. Different

kind of boundary conditions are also of interest. See [17]. Our method could be used to

obtain blowup results, e.g., for solutions with constant limit at x → +∞ and x → −∞,

The main result of the present paper remains valid, after suitable modifications, to

other one dimensional models for the propagation of nonlinear waves. For example, equa-

tion (2.1) is a particular case (corresponding to f(u) = γ−3
2 u2, g(u) = γu2) of the so called

“generalized hyperelastic rod equation”,

ut + f ′(u)ux + ∂xp ∗
[

g(u) + f ′′(u)
2 u2x

]

= 0,

studied, e.g., in [19]. The choice f(u) = u2 and g(u) = κu + u2, with κ ≥ 0, would

correspond to the Camassa–Holm equation with the additional term κux. In a forthcoming

paper we will address the blowup issue for a large class of functions f and g.
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