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Abstract The effect of numerical quadrature in finite element metHodsolving
quasilinear elliptic problems of nonmonotone type is stddUnder similar assump-
tion on the quadrature formula as for linear problems, oatienror estimates in the
L2 and theH® norms are proved. The numerical solution obtained from thitefel-
ement method with quadrature formula is shown to be unique &ufficiently fine
mesh. The analysis is valid for both simplicial and rectdagfinite elements of ar-
bitrary order. Numerical experiments corroborate the tbgoal convergence rates.
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1 Introduction

The use of numerical quadrature for the practical implewmt@nt of finite element
methods (FEMs), when discretizing boundary value probjamasually required.
Indeed, except in very special cases, the inner produchiesian the FEM cannot
be evaluated exactly and must be approximated. This intesladditional errors in
the numerical method, which rates of decay have to be eginahe control of the
effects introduced by numerical quadrature is importantalmost all applications
of FEMs to problem in engineering and the sciences. Comparéite huge litera-
ture concerned with the analysis of FEM, the effect of nupsGuadrature has only
be treated in a few papers. Such results have been derivedablgtGind Raviart
[12] and Strang [30] for second order linear elliptic eqoatiby Raviart [27] for
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parabolic equations and by Baker and Dougalis for secondrdrgperbolic equa-
tions [7]. In our paper we derive optimal a priori convergenates in thé41 andL2
norm for FEMs with numerical quadrature applied to quasainelliptic problems of
nonmonotone type. The analysis is valid for dimensidrs 3 and for simplicial or
guadrilateral FEs of arbitrary order. We also show the usigss of the numerical
solutions for a sufficiently fine FE mesh. Both the a priorivengence rates and the
uniqueness results are new.

We first mention that quasilinear problems as consideretisngaper are used
in many applications [5]. For example, the stationary stétihe Richards problems
[8] used to model infiltration processes in porous mediagsstiiution of a nonlinear
nonmonotone quasilinear problem as considered in thisrgape Section 5 for a
numerical example). Second, our results are also of irttere®nnection to the re-
cent development of numerical homogenization methodsf(gesxample [15,16, 1,
2,19] and the references therein). Indeed, such methodsaassl on a macroscopic
solver whose bilinear form is obtained by numerical quadetwith data recovered
by microscopic solvers defined on sampling domains at thelratiare nodes [1, 2,
15]. Convergence rates for FEMs with numerical quadrattgetaus essential in the
analysis of numerical homogenization methods and the ai jgri@r bounds derived
in this paper allow to use an approach similar to the lineaedar the analysis of
nonlinear homogenization problems [3,4].

We briefly review the literature for FEM applied to quasiémelliptic problems
of nonmonotone type. In the absence of numerical quadratptanal a priori error
estimates in th&d! and L2 norms where first given by Douglas and Dupont [13].
This paper contains many ideas useful for our analysis. ¥erakntion that Nitsche
derived in [25] an error estimate for thé” norm (without numerical quadrature).
The analysis of FEMs with numerical quadrature for quasdinproblems started
with Feistauer anderi$ek [18], wheremonotone problembave been considered.
The analysis (for piecewise linear triangular FEs) doesapply for nonmonotone
problems that we consider. Nonmonotone problems have baesidered by Feis-
tauer et al. in [17], where the convergence of a FEM with nucaéguadrature has
been established for piecewise linear FEs. Convergenegate not been derived in
the aforementioned paper and the question of the uniquefiessumerical solution
has not been addressed. This will be discussed in the preapeat for simplicial or
quadrilateral FEs of arbitrary order (see Theorem 5). We timdt in [17], it is also
discussed the approximation problem introduced by usingnged boundary of the
domain for the dimensiod = 2; this was generalized far= 3 in [23].

The paper is organized as follows. In section 2 we introdbeemodel problem
together with the FEM based on numerical quadrature. We stbte our main re-
sults. In section 3 we collect and prove several prelimimasults as a preparation
for the analysis of the numerical method given in sectiondmirical examples are
given in section 5. They corroborate our theoretical cogerce rates and illustrate
the application of the numerical method to the (station&ighards equation. Fi-
nally, an appendix contains the proof of technical lemmasius derive the a priori
convergence rates.
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Notations Let Q  RY be open and denote BySP(Q) the standard Sobolev spaces.
We use the standard Sobolev norfing|s o) and|| - [lwse(q)- For p= 2 we use the

notationH3(Q), andH2(Q) denotes the closure iH1(Q) of C(Q) (the space of
functions of clas€* with compact support i®). Let (-, -) denote the scalar product
in L?(Q) or the duality betweeid ~1(Q) andH}(Q). For a domairk c Q, K|
denotes the measure §f For a smooth functioa(x,u), we will sometimes use the

notationsg,a, duza or alternativelyay, ay for the partial derivative#ua, j—jza.

2 Model problem and FEM with numerical quadrature
2.1 Model problem

Let Q be a bounded polyhedron &f whered < 3. We consider quasilinear elliptic
problems of the form

—0- (a(x,u(x))0u(x)) = f(x) in Q, @)
u(x) =0 ondQ.

We make the following assumptions on the tersot s) = (amn(X,S)) 1<mn<d

— the coefficient®mn(X, S) are continuous functions a@ x R which are uniformly
Lipschitz continuous with respect #i.e., there exist\; > 0 such that

— a(x,s) is uniformly elliptic and bounded, i.e., there exist\o > 0 such that

MElIP<axs)g-&  Jlax9&| <Aollgl.  VEeRY vxeQ,vseR.
3
We also assume thdtc H~1(Q). Consider the forms
A(Z v, w) ::/ a(x, z(x))Ov(x) - Ow(x)dx, vz v,we H3(Q), 4
Q
and
F(w):=(f,w), VYweH3(Q). (5)

From (3), it can be shown that the bilinear folz; -,-) is elliptic and bounded in
H3(Q), i.e., there exish, Ag > 0 such that

AMvliEyg) < AZWY), Yz v e HG(Q), (6)
AZ VW) < Ao|[Vll (o) [Wilhi(o). V2 VW € HE(Q). W
We can then state the weak formulation of problem (1) whietdsefindu € H&(Q)

such that
Alu;u,w) =F(w),  Ywe H3(Q). (8)

Theorem 1 [14,22,10]. Assumé2), (3) and f < H~%(Q). Then Problen(8) has a
unique solution & H}(Q).
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Remark 1The existence of a solution of the weak formulation (8) of problem
(1) was first shown in [13, p. 693], using a compactness argurée refer to [10,
Thm. 11.6] for a short proof of the uniqueness of the solutinrj22], the existence
and the uniqueness of a weak solution of Problem (1) are shawine L?(Q), with
more general mixed Dirichlet-Neumann boundary conditiamsa bounded domain
with a Lipschitz boundary. For the proof of the uniquenels,divergence form of
the differential operator is an essential ingredient. ln¢hse of a domai® with a
smooth boundary Q, assuming ther-Holder continuity of the right-hand sideon
Q andac C?(Q xR), itis shown in [13] that the solution has regulanitg C>% (Q)
and that it is unique (using results from [14]).

Remark 2Since the tensaa(x,s) depends o, and also is not proportional in gen-
eral to the identityl, the classical Kirchhoff transformation (see for instafie@])
cannot be used in our study.

A comment about monotonicit# (nonlinear) formM (-, -) defined orH(Q) x H(Q)
is called aH(Q)-monotone if it satisfies

M(,v—w) —M(w,v—w) >0, YvyweH(Q).

Notice that the fornfv,w) — A(v;v,w) in (4) is not monotoné general, so the results
in [18] do not apply in our study. For instance, it is non-mmme for the tensor
a(x,u) := b(u)l with a differentiable scalar functiomsatisfyingsob'(so) +b(sp) < 0
for some reak.

2.2 FEM with quadrature formula
In this section we present the FEM with numerical quadratbes will be used
throughout the paper. We shall often use the following bnokerms for scalar or

vector functions/" that are piecewise polynomial with respect to the trianirma
%!

1/p
IV s o) = IV s ,
Q) (KEZ% W p(K))

1/2

Wl = (3 M) -
@) (KEZ% ( ))
Vs @) = X[V e

foralls>0and all 1< p < co.

Let %, be a family of partition ofQ in simplicial or quadrilateral elemenks of
diametethk and denotd := maxc 4 hk . We assume that the family of triangulations
is conformal and shape regular. For some results (wheredtetl), we will need in
addition the following inverse assumption

hﬂ < C forall K € ; and all.%; of the family of triangulations. 9)
K
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We consider the following FE spaces
S(Q, Th) = {V" € H5(Q); 'k € Z(K), YK € T}, (10)

where Z‘(K) is the spaceZ’(K) of polynomials onK of total degree at most
¢ if K is a simplicial FE, or the spac€’(K) of polynomials onK of degree at
most/ in each variables iK is a quadrilateral FE. We next consider a quadrature
formula {ij,akj }le, wherexk; € K are integration points andx; quadrature

weights. For any elemei of the triangulation, we considerGt-diffeomorphism

Fx such thatk = F (K), whereK is the reference element. For a given quadrature
formula onK, the quadrature weights and integration point&os .%, are given by
ax; = QjldefdF )|, x«; = F(Xj), j = 1,...,J. We next state the assumptions that
we make on the quadrature formulas.

QY@ >0 j=1....0, Fjcy®0P&)P = A0 g, VAR) € 2 (K), A >
0;

(Q2) Jg POdx=37_; @ P(%;), VA(R) € %UA(K), wherea = max(2/ —2,¢) if K is
a simplicial FE, oro = max(2¢ — 1,/ + 1) if K is a rectangular FE.

Notice that Q1),(Q2) are the usual assumptions for the case of linear elliptbpr
lems. Based on the above quadrature formulas we define Brdllw" € §(Q, %),

J
AW = S zakja(ij,i‘(ij))Dvh(ij)~vah(ij). (11)
KeZ j=1

From (3) and Q1), it can be shown that the bilinear forg(z"; -, -) is elliptic and
bounded irSf,(Q, h), i.e., there exish,Ag > 0 (independent dfi) such that

AVl ) < An(@V), V2N € (2, F) (12)
An(Z5VP W) < Aol o) W o), V2LV W' € H(Q, F). (13)

The FE solution of (1) with numerical integration reads: fifids §(Q2, 75 such
that

An(U W) = Fn(Wh) v e S5(Q, Fh), (14)
where the linear fornfy,(+) is an approximation of (5) obtained for example by using
guadrature formulas. If one uses the same quadrature fasifoi (5) as used for (11)
and if (Q2) holds, then for & q < « with ¢ > d/q, if f € W59(Q) we have

(W) —F(w")| < Ch‘]||f||WAQ(Q)HWhHH1(Q)7 W' € $(Q, %), (15)
and if f € W*19(Q), we have

Fa(W") = F (W) < CH Y| Fllyyrina o) W' lz(0), YW € SH(Q,. %), (16)

whereC is independent dfi (See [11, Sect. 29]).
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The existence of a solution of (14) (summarized in Theoreroa2) be estab-
lished using the Brouwer fixed point theorem for the nonlimeap$; : %(Q, Ih) —
S(Q, %) defined by

An(Z 2" W) = Ry (W), v € S(Q, Fh). 17)

Details can be found for example in [13] (see also [9]).

Theorem 2 Assume that the bilinear formy&"; -,-), 2' € §(Q, ), defined in(11)

is uniformly elliptic(12) and bounded13). Then, for all h> 0, the nonlinear prob-
lem (14) possesses at least one solutidhauS,(Q, 7). A solution (f is uniformly
bounded in }(Q), i.e.

Wl < Cll Flwaagey

where C is independent of h.

Remark 3Notice that there is no smallness asumptiorham Theorem 2.

The uniqueness of a solution of (14) will also be proved alaity our convergence
rate estimates.

Given a solutionu” of (14) the next task is now to estimates the etrenu” where
u is the unique solution of (8). The convergerjze— uh||H1(Q) —0forh—0ofa
numerical solution of problem (12) has been given in [17, TAM] for piecewise
linear simplicial FEs. We now state in Theorem 3 below theveogence for thé.?
norm for general simplicial and quadrilateral FEs(Q, .%). It will be used to
derive our optimal convergence rates in tifeor H! norms. It can be proved using a
compactness argument similar to [17, Thm. 2.6] or [13, p].89& the convenience
of the reader we give a short proof in the appendix.

Theorem 3 Let U be a numerical solution of14). Assume that for any sequences
(V¥)k=0, (WK )0 i SH(Q, Th) satisfying W |1 q) < C and [V |z o) < C,
where C is independent of k, we have fprh O,

|A(\Nhk;vvhk’vhk) _Ahk(vvhk;vvhk,vhk)‘ - O’ (18)
|Fr (W) — F ()| — 0, (19)

then||u— u"[| 2q), — 0forh— 0.

Remark 41n the case of linear simplicial FEs, it is shown in [17, Thng]2hat The-
orem 3 holds if one considers in the assumptions all seqsgntey-o bounded
in WHP(Q) for somep with d < p < . It is sufficient for our study to consider
sequences bounded for the broken noriéf°(Q).
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2.3 Main results
We can now state our main results: the uniqueness of the mahsplution and
optimal a priori error estimates for th¢' andL? norms.

Theorem 4 Consider u the solution of probleft), and ' one solution of(14). Let
> 1. AssumeQ@1), (Q2), (2), (3) and

ue H*Y(Q), (20)
amn € W(Q x R), vmn=1...d, (21)
f ewHa(Q), wherel < q<c,l>d/q. (22)

Then, there exists a constant @epending only on the domai® and family of FE
spaceqS,(Q, %) )n-o such that if the exact solution u satisfies

Cr/MA H|Uflz) < 1, (23)
whereAr, A are the constants if2),(3), then the following H error estimate holds
forallh > 0,

lu—u"lyz (o) < CH, (24)

where C is independent of h. If in addition to the above hygsek (9) holds, then
there exists fi> 0 such that for all h< ho, the solution 0l of (14)is unique.

Remark 5Notice that if the tensoa(x, s) is independent of, thenA; = 0 and (23) is
automatically satisfied. In that case, we retrieve in Theofehe usual assumptions
for linear elliptic problems [11]. Notice that the analygis[9, Sect. 8.7] also relies
on such a smallness assumption on the solution.

Assuming slightly more regularity on the solution and thestr and (9), we can
remove the smallness assumption (23), as illustrated irfdl@ving theorem. In
addition, we obtain an optim&F error estimate.

Theorem 5 Consider u the solution of problefth). Let/ > 1. Letu = 0or 1. Assume
(Q1), (Q2), (9), (63)and

ue HFYQ)nwWh>(Q),
amn€ WHH>(Q x R), vmn=1...d,
f e WHHA(Q), wherel < q <o,/ >d/q.

In addition to(2), (3), assume thafyamn, € WH*(Q x R), and that the coefficients
amn(X,s) are twice differentiable with | respect to s, with the first ssetond order
derivatives continuous and bounded@nx R, forallmn=1...d.
Then there existsoh> 0 such that for all h< hg, the solution 0 of (14)is unique
and the following H and L2 error estimates hold:
||u_uhHH1(_Q) SCMa foru:0717 (25)
lu— uhHLz(m <CH*l foru=1. (26)

Here, the constants C are independent of h.
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Notice that the above rates of convergence inkHeand L? norms are the same
as what is known in the absence of numerical quadrature §t3pr linear elliptic
problems with numerical quadrature [11]. The assumpti@®) {€ an hypothesis on
the adjointL* of the linearized operator corresponding to (1). This higpsts is also
required to use the Aubin-Nitsche duality argumentlférestimates in the case of
linear problems [12]. Under our assumptions on the coefftsi®f (1), (63) is for
example automatically satisfied if the domdinis a convex polyhedron.

3 Preliminaries
3.1 Useful inequalities

Based on the quadrature formulas defined in Section 2.2, n&der, forv,w scalar
or vector functions that are piecewise continuous with @éesfo the partition7, of
Q, the semi-definite inner product

J
(V,W)yh = KEZ% JZlo.ij(ij) -W(XKJ).

and the semi-norrjv||  » where for allr > 1 we define

M= (35 aqo)r)” (@)
Tt = ) K .
" Keﬂhj; : :
We have (Hblder)
W) 53] < V], plW (28)

where Yp+1/q=1.
Notice that fon/" in a piecewise polynomial spaces d;ﬁQ, h)), we have for
allr>1,
N 7,r < CIVr (), (29)

whereC depends on the degree of the (piecewise) polynomials,amd the shape
regularity but is independent &f The proof of (29), that can be obtained following
the lines of [27, Lemma 5] is based on a scaling argument amaduivalence of
norms on a finite-dimensional space.

We shall often use the estimate

[(2uW)| < (1230 IVllis (o) Wl 200y, YZE€ L3(Q), WV € L8(Q),Yw € L*(Q), (30)

which is a consequence of the Cauchy-Schwarz agldiét inequalities. Using the
continuous inclusiom*(Q) c L%(Q) for dimQ < 3, the special case=v =w in
(30) yields the so-called Gagliardo-Nirenberg [24] indiya

1/2

iy Mgy WeEHY(Q), (31)

IWles(ay < CIVIE g, VI )

A discrete version of (30) holds for continuous functions(n

| (2yw)n| < (12| 3lIVI| 7,6l1Wl[ 7.2 (32)
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If 2, v",w" are in piecewise polynomial spaces @$Q, 7)), then using (29) we
have
(W)l < CJ12 300 IVls o) Wz o) (33)

whereC depends on the degrees of the (piecewise) polynomials attteaxponent
r=2,3,6in(27) (see (29)).
The following results will be often used.

Lemma 1 Assumd9). Let k> 1and ¥ € H*"1(Q) and consider a sequen¢e’) in
S(Q, ) satisfying for all h small enough,

IV = Vlly1q) < Coh®
Then, for all h small enough,

IV lli10) + IV s @y < CUV i) +Co),
IIVhllvvks(Q) < C|V k(o)
where the constant C depends only on k, the dorftaand the finite element space
(%(Qa %))I‘DO-
Proof It follows from the inverse inequality (9) that for all integsm > n > 0 and all
p,q>1 (see[11, Thm.17.2})

C
Vhima(e) < raamrp g oV ) W ES(Q, ), (34)

whereC depends om, n, p,q, the dimensiord, the domainQ and the family of

finite element space&s(Q, %h))n-0. The triangle inequality|vhHqu < V-

FhVollka(g) + | #hVollwka o) and the inequality (38) below concludes the proof.
0

3.2 Error bounds oA, — A
Let/ > ¢ > 1. We consider the usual nodal interpolant [11, Sect.42]C°(Q) —

S(Q, %) onto the FE spac§,(Q, ) defined in (10). Then, we have the following
estimates (see [11, Thm. 16.2])

[hZlwie(q) < Cllzlwie(q): vZeW'(Q),  (35)
| 2hz— Zwre () < ChllZlwze(q), Vze W?*(Q),  (36)
17z =20 <Chfuz||H4/+1 vzeH (@), (37)

||jhz||vvé’—l,w(g)+||jhz||vvﬂ’,6(g)+||]hz|||-ﬂ’+1(g>

<ClZyera, vze H™(Q).  (38)

Q)

1 Notice that (34) remains valid fay= oo, replacing %q by 0 in the right-hand side (idem fq).
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In our analysis, we need a priori estimates for the diffeecnetween the forms
(4) and (14) (Propositions 1, 2 below). Consider for all edati € .7, the quadrature
error functional

J
E(9) = [ 90k axlx). (39)
=

defined for all continuous functioy on K. The next task is to estimate the quantity
|Ex (a(-,2")OV"- Ow")|, wherea(-,-) is the tensor given in (1). Such error estimates
have been derived for the linear case in [11, Thm. 28.2]. énntbn-linear case, it is
the purpose of the following Propositions 1, 2.

Proposition 1 Let/ > 1. Assume®2), uc H*1(Q). Then,
— forae (WH°(Q x R))99, we have for all W € §(Q, Z),
[An (s T, W) — A(IU; Fhu, W) | < CH W40, (40)

where C depends offl| .« (o «r))d-a and [[ul|ea o) butis independent of h.
— Assumd9). For ac (W*1>(Q x R))9*4, we have for all #,w" € §(Q, %),
[An(Tnus; My, W) — ACTTRU; au,w)| < (W lz ) + W lwas )
(41)
where C depends ofa||yy:+1e(qxr))d<e and|[ule+1(q) butis independent of h.

Here, #,u denoted the usual nodal interpolant of u c{jﬁ& h), while [M,u denotes
the L2-orthogonal projection of u on’&Q, Th).

The proof of Proposition 1 relies on the following lemma whgives an estimate on
each finite elemeri € §,(Q, ), with the proof postponed to the Appendix.

Lemma 2 Assume that@2) holds and a (W'*(Q x R))9*9, then, for all Ke .7,
and all zv,w € Z‘(K),

|Ex (a(-,2)Ov- Ow)| < Chic|[al] ey e | OW 2 (42)
(HVHHV(K)(1+ ||Z||€v£—1«,oo(|<)) + HZHW‘*“(K)”DVHL[*(K))a

Assume that@2) holds and as (W/+1°(Q x R))9*4, then, for all Ke ., and all
zv,we %K),

|Ex (a(-,2)0v- OW)| < CHE[al| et (e xiry o (43)

((1+ HZH\[}\TZ{Lw(K))HVHHV(K)”DW”Hl(K) + I Zlhwea ) 1OV g ey [T EW T

Fl12hyi) 1BVl La i) 1 EWIl s ) + ||Z||W4~“(K)”DVHHl(K)HDWHLB(K))
Herey=(ifve 2 (K),y=(+1ifve 2/(K),1<a,B<owithl/a+1/B=1/2.

The constants C are independent gfdnd the element K. For the caée- 1, the term
|Zllw¢-1- (k) can be omitted in the above estimates.
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Proof of Proposition 1The proof of (40) is a consequence of (42) in Lemma 2 with

a =3, =6.We have

An(ZV W) — AV W)
C

<C 3 hic 18l sy e 12 hwve ey 1OV s ey | OWP 2
Ke%,

+ Z hZK”a”(WAm(KxR))dXd(lJF”ZhH\éfol,W(K))”VhHH”l(K)”DV\PHLZ(K)
Ke

< CH[|al| weee (e (12" ey OV s o || WPl 20
+(1+ th”\émfl,oo(g)) HVh“l-THl(Q) | DWh”LZ(Q))-

for all ' V1, wh € (Q, ), where we applied for the first sum thélder inequality
and for the second sum the Cauchy-Schwarz inequality. Iifjveé takez" = V' =
Znu, and we use the bound (38) to obtain (40).

The proof of (41) is a consequence of (43) in Lemma 2 and is sienjlar to that
of (40). The main difference is we také= " = [1,u, wherefT,uis theL2-orthogonal
projection ofu on §(Q, 7). We have| Myu—ul 2o, < h'** and||Mhu—ully1 o) <
Ch’ and we use Lemma 1. O

We shall also need the following estimate where only the @iestvatives ofv"
andz" are involved in the right-hand side of (44). This is crucaltdising Proposition
4 in the proof of Lemma 5, and for showing the estimate (18) lnédrem 3 in the
proof of Theorem 5. Notice that for piecewise linear simipli&Es the result follows
from [17, Lemma 2.5].

Proposition 2 Let £ > 1. Assume ©2), a € (W>*(Q x R))4*4, We have for all
VW e S(Q, F),

[An (@5 W) — AW < CHI[OVY| 20 (| O )
+|02"La () [1OW| g ), (44)

wherel < a,B <ecowithl/a+1/8 =1/2and C is independent of h.

The proof of Proposition 2 relies on the following lemma with proof fusned to
Appendix.

Lemma 3 Let/ > 1. If (Q2) holds and ac (W*(Q x R))4*4, then, for all Ke .,
and all zv,w € Z*(K),

|Ex(a(-,2)0v- Ow)|
< Chlall e (i xcryya<a DV L2y (1 OWH ey + 1102 Lo ) [1OWH g )

wherel < a, <cowithl/a+1/8=1/2.

2 Notice that we need Proposition 2 fbpossibly larger than one. Thus, simply setting 1 in Propo-
sition 1 is not sufficient.
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Proof of Proposition 2Using Lemma 3, we have

<C > hkllallwiexryxall OVl 246 1 OW" [
Keh

+ > 1@l gz ey e | OV 2y 102 e oy || EOWP g
Ke

< ChHa”(WL‘”(QxR))dXd HDVh”LZ(Q)(H DWh”HTl(Q) +1l DZh”LO'(Q) | D\NhHLﬁ(Q))'

where we applied the Cauchy-Schwarz ariiddér inequalities. O
Similarly, we have (see the proof in Appendix)

Proposition 3 Let / > 1. Assume@2), a, € (W>*(Q x R))dxd and ue H2(_Q) -
WL*(Q). Then, for all ¥ € S5(Q, %), we H?(Q),

(u(- AhU) DU DV, W) — (@u(-, Fht) DIhu- OV, 75w) < ChIV |2 g [[Wlz o)
and for all W' € §(Q, %), ve H3(Q),
(3u(-, Zhu) DU DI W — (@ (-, Fht) DU OV, W) < Chi|V]| 2 o) W10

where C depends onaand is independent of h.

3.3 Finite element method with numerical quadrature foefimdte linear elliptic
problems

In this section, we generalize to the case of numerical quady a result of Schatz
[28,29] for the finite element solution of non-symmetric éfidite linear elliptic
problems of the form

Zp="FfonQ, ¢=0o0ndQ, (45)

where ¢ = —0- (a(x)d¢) + b(x) - O¢ + c(x)¢, with a € (WL=(Q))9*d, b ¢
(L®(Q))9, c € L°(Q). We assume that the tensafx) is uniformly elliptic and
bounded, i.e. satisfies (3). We consider the associateaehiliform onH(Q) x
HY(Q),

B(v,w) = (a(x)0v, Ow) 4 (b(x) - Ov+ c(x)v,w), Yv,w € H1(Q). (46)

Using the Cauchy-Schwarz and Young inequalities, we haaeBitv, w) satisfies the
so-called Girding inequality (wittA1, A, > 0)

MIVIEyq) — A2lVIIEz o) < B(WY), W e HG(Q), (47)
and (\o > 0)
BV, W)| < Ao|Vly1(0) W1y YW e HY(Q). (48)

The proof of the error estimate given in Proposition 4 belonHEM relies on the
Aubin-Nitsche duality argument. The use of such dualityuargnt is instrumental in
deriving the error estimates (26) (see Lemmas 5, 6).
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Proposition 4 Let ¢ > ¢’ > 1. Consider B-,-) defined in(46) and a bilinear form
Bn(-,-) defined on §Q, %) x §,(Q, %), satisfying also a @Grding inequality

MIVE ) = A2V IZ2 ) < BV V), W e SH(Q, Fh), (49)
and for all ve H/*1(Q), w" € §(Q, %),
BV W") = Bn(AvW")| < CH V] W'l ), (50)
[BOW", Av) = Bn(w", )| < CH Wl Vil -

Assume that for all £ H=1(Q), the solutionp € H}(Q) of problem(45)is unique.
For a fixed f, assume that the solution @b) exists with regularityp € H +1(Q).
Then, for all h small enough, the finite element problem

Bn(¢" V") = (V") W' e §(Q, %) (51)

possesses a unique solutiph %(Q, h); and ¢" satisfies the estimate

16" — ¢ |12() < CH 10104100 (52)
where C is independent of h.

Proof Due to the finite dimension of the linear system (51), to prilneuniqueness
of ¢", it suffices to show that the homogeneous system has a unituténs. This
will be proved if we can show the a priori estimate (52).

We definef" = ¢" — #,¢ and claim (as proved below) that for gll> 0 there exists
ho > 0 such that for alh < hg, we havé

||Eh||L2( <nlig" IH1(a +Ch€ 101010 (53)

whereC is independent oh. We choosen such thatA; — 2n2A, > 0. Using the
Garding inequality (49) and (53), we obtain

1€ 1 q <C(h”||¢IIH4/+1 +Bn(E" €M)
Using (48) and (50) we obtain

Bn(EMEM) = B(¢ — S, EM) + (B(Sn$,EM) — Bn(d,EM)
< CH (1]l e1(0) 1€ 2o

where we used also (37). Applying the Young inequality, weude for all > O,
1E"Z(0) < C(L+1/m)h||¢ HH1’+1 +CHIIE“HE|1(Q>

We chooseu such that - Cp > 0, and using the triangular inequality and (37), we
deduce (52).

3 Notice that one cannot simply let the parameteend to zero in (53) becausg depends om.



14 Assyr Abdulle, Gilles Vilmart

It remains to prove the above claim (53). Since by assumiekernel of the opera-
tor £ : H}(Q) — H~1(Q) is zero, using the &ding inequality (47), it follows from
the Fredholm alternative (see [21]) that the adjoint opmerat” : H3(Q) — H1(Q)
is an isomorphism and for ajj € H=%(Q), the adjoint problem

B<V7¢'*) = (g7V), e H(':JL(-Q>7 (54)

has a unique solutioth* € Hj(Q). Now, letY = {g € L*(Q) ; [|gll 2o, = 1} and
recall that

1€ 20 :gggfh,g). (55)

ForgeY, we considemwy € H&(Q) the unique solution of the adjoint problem (54)
with right-hand sideg. We take in (54) the test function= £" and using (48), (50),
we observe fo € H'*1(Q) that
(&".9) = B(&",wy)

= B(&" Wy — FhX) + (B(", Fhx) — Bn(¢", X))

+ (Bn(¢", Ahx) — B(§, 7hX)) +B( — Iho. IhX)

< C[[&" s ) IWg — FhX lz(e) +CH 1"l I X o1 )

+ Cll¢ — Ahd o) X hq)-

Using|\¢h||H1<Q) < ||Eh||H1(Q) +[[#h¢ [l41(q) and (37), we obtain for a}f H/*1(Q),

(&Mg) < CHEhHHl(Q)(”WQ — IhXllhy) + h ||X||Hﬂ+1(g))
+ CH X g1 1942 ) (56)

Since the injection.?(Q) c H=(Q) is compact, the seét is compact itH=1(Q).
Using that?* : H3(Q) — H~1(Q) is an isomorphism, we obtain that the set

Z:={zeH§(Q); B(v,2) = (9,V), W € H3(Q), g€ Y},

is compact irH(Q). For a fixedn > 0, the seZ is therefore contained in the union
of a finite family of balls with centerg < Z and radiusy /3 for theH(Q) norm.
Taking anyz € Z, there existso such that|z— z||y1q) < /3. SinceH/*1(Q) is

dense irH(Q), for alli there existg; € H*1(Q) such that|z — 2|1q) < n/3.
Then, we have

12— InZipllnia) < 12— Zollnro) + 120 — Zollnio) + 1o — hZislln10)
< ’7/3+ ’7/3+Ci0h€/”20”|—|/ﬁ’+l(g)

where we use (37). We take := z,. Notice that||X||H[/+1(Q) < C(n) with C(n)
independent of, iy andh. Takingh small enough so tha;h’C(n) < n/3 for all i,
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we obtain that for allj > 0 there existd > 0 such that for alh < hg and for all
zeZ,

there existsy € H*(Q) such that|X|y41.g) < C(N), [|2— FhX [l i) < 1.
(57)
Using (55), (56), and (57) with= wg, we deduce that (53) holds for &ll< hg. O

Remark 61n Proposition 4, notice that we did not use neither an assompf the
form (63) on the adjointZ* of the operatorZ in (45), nor the inequality (9). In fact,
we will use Proposition 4 in the proof of Lemma 5 only for theesjal case¢’’ = 1.

If for the casel’ = 1, we add the regularity assumption (63) ¢fi* (or e.g., the
assumption tha® is a convex polyhedron) then the end of the proof of Propmsiti
4 can be simplified as follows: for ajj € Y we havewg € H?(Q) with [Wollh2(q) <
Cllgll2(q); thus, in (56) one can simply consider= wg and use (37).

4 A priori analysis

Lemma 4 If the hypotheses of Theorem 5 are satisfied, then for iy
||U—Uh||H1(Q) SC(h€+||U—UhHL2(Q))a (58)

where C is independent of h.

Proof Let &M = u" — v with V' = .4,u. Using (12), we have

A& 2 ) < An(U U =V, EM) = A (U, E") — A(uu, €M)
+ A(u;u—vh,Eh)
+ AUV, EN) — AV €M)
+ AWV, EM) — An(ViVL €M)
+ An(VEV, €M) — AUV, &),
We now bound each of the five above terms. For the first terngy8n (14) and (15)
we have

[An(u U, &) — Auu, &) = [F(€") — F(€M)] < CH.
For the second term using (7) and (37) yields

A(U; U=V, EM) < CH 1€l 0)-

For the third term using (2),(30), (37), (38) and the ine'qwa|lu—vh|||_3(9) <Cllu—
V[|1(o) We obtain

AUV, M) — AWV, EM] < (@l u) — a(- V) DV 2 ) | D2

<Clu— VhHL3(Q) ||VhHW116(Q) | DEhHLZ(Q)
< CHIE" 1 0)-



16 Assyr Abdulle, Gilles Vilmart

Similarly for the fifth term using (32) gives

An (VY EM) — AUV, EM)| < l(@( V) — &, UM) OV 7 ol DEM 2
< C|1EM| 5,3l DV| 7,6/ DEM 7,2
< CIM'lwas(o) 1€ i3y 108 2y (59)

For the fourth term we use Proposition 1. We obtain
1€ Iz (@) < CM +[1E"IL3(q)): (60)

where we used (38) in the inequality (59). Using the Gagtiairenberg inequality
(31) and the Young inequality, we have

1€ L3() < Cn M 1EMiz0) +CNIEMIka)

for all n > 0. Choosing; small enough, this together with (60) and the triangular in-
equalities|u—u"|| < [[u—#hul| + || €M), [|E"] < u—u"|| + |lu— Fhu]| (respectively
for theH! andL? norms), and (37) yields the desired estimate (58). i

Proof of Theorem 4lnspecting the proof of Lemma 4 reveals, usit‘:ﬁ“HLs(Q) <
C[I€" 41y in (60),

lu=t"lz(q) < CH +Callu— o

with C independent ofi andC; = CoA1A ~ HUHHz WhereAl,/\ are the constants

in (2),(3), and the constafk depends only o2 and the FE space)(Q, %) )n=o-
Then, if we assume th& < 1, we immediately obtain the estimate (24).

Assuming such smallness hypothesisupmve can also prove the uniqueness of
u" for all h small enough as follows. Lét") and(G") be two sequences of solutions
of (14). We show tha€" = 0" — u" is zero for allh small enough. Using (12) and
(32), we have, similarly to (59),

MIEM ) < An(@™ €M EM) = ((a(-,u") —a(-,a") 0u", 08",
< CALlIE" o) UMz 1€ s

Using Lemma 1 ang/&M llLs(o) < C||&h [H1(@) (dimQ < 3), we obtain for alh < ho,

1€ 1100y < CoMAHlullnzig) 1€ k(o)

If one assume€yN1A ~ 1||UHH2 < 1 in the above inequality, thef" = 0, which

implies the uniqueness of. O
For deriving theL? error estimate (26), we consider the operator obtained by
linearizing (4) and its adjoint

Lo = —0-(a(,u)0¢ + dpay(-,u)0u), (61)
L*¢ = —0-(a(-,u)"0¢) +ay(-,u)0u- O¢. (62)
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It has been shown in [13] that these linear operators playroitant role. We as-
sume here thdt* satisfies

1lln2(@) < CUIL @ llz(@) + 19 ln1(o)),  forall ¢ € HA(Q)NH5(Q).  (63)

We recall here that (63) is also required ESrestimates in the case of linear problems
[12], and that it is automatically satisfied if the domain isoavex polyhedron.

We consider the bilinear form correspondingltband its discrete counterpart
(linearized at#,u) obtained by numerical quadrature

B(v,w) := (a(-,u)0w, Ov) 4 (ay(-,u)0u- Ov,w), Yv,we H3(Q), (64)
Bn(V', W) := (a(-, Fhu)Ow, OV, (65)
+ (au( Fhu)OShu- DV W), vV W e §(Q, F).

—~

For& € L?(Q), we then seelp € H3(Q), ¢" € S(Q, %) such that

B(¢.w) = (§,w), VYweHg(Q), (66)
Bn(¢" W) = (£, W), Ww'e S(Q, T). (67)

Lemma 5 Assume the hypotheses of Theorem 5 are satisfied. Theh dar?(Q)
and for all h small enough, the problen(®6) and (67) have unique solutiong <
H2(Q), ¢" € S(Q, ). They satisfy

19— 8" llw1(0) < ChllEll2(q (68)
19" 72() + 10" ||wl~6(Q) SC”EHLz(Q)v (69)

where C is independent of h.

Proof We show that Proposition 4 applies with= 1 to the operatorZ = L*, with
the bilinear forms (64) and (65). Using (70) below, this @®\{68). Lemma 1 next
yields the estimate (69) fay".

Using the assumption € W*(Q) and the Cauchy-Schwarz inequality, we ob-
tain that the bilinear forns(-, -) satisfies the bound (48), and th&i@ing inequalities
(47), (49) are obtained using (35), (3) and the Young inegudlotice thatB(-,-)
is the bilinear form associated to the operdtodefined in (62). Since the operator
L:H(Q) — H Q) in (62) is in divergence form, it can be shown (see [14] and
also [20, Corollary 8.2]) thalt is injective. Since the &ding inequality (47) is satis-
fled byB( )5 usmg the Fredholm alternative, this implies (see [214} the operator

H3(Q) — H~1(Q) is an isomorphism. Next, from (63), we have the estimate

191lhz(0) < Cli&llL2(a (70)
It remains to prove (50) (witld’ = 1). Consider the following bilinear form,

By(V", W) := (a(-, Zhu)Ow", OV
+(ay(-, Fhu)0ghu- DV W), W w e SH(Q, ).



18 Assyr Abdulle, Gilles Vilmart

Using

au(-, Fhu)HAhu — au(-, u)Bu = (au(:, #hu) — au(-, u)) shu +au(-, u)O(Shu — u),
(71)
(35) and the WIder inequality (33), we obtain

[B(AV,W") = Br(AvW")| < C[ St — Ul s(0) | D-AVIILs ) Wl o)
+ Cl[Au—ully1(g)[[0AhV] 310) ||Wh||L6(Q)
< CH [Vllz(o) Wl )
< Chi|Vllz o) Wl
where we used the continuous injectidh(Q) c L8(Q) and (37). Similarly, we have
[B(V", Zhw) —Bn(V", #hw)| < C|[Fht— Ul o) V| 2() | AhWilwes )
+ C[[ AU — Ul o) IOV [yag) | AAWllLe ()
< Ch||Vh||H1(Q)HW||H2(Q)-

We finally show that (50) with?’ = 1 holds withB replaced byB;. Indeed, for the
first term inBp(-,-),Bn(-, ), we apply Proposition 2 witly = 0, 8 = 2, and the same
proposition with tensoa replaced bya', and we use (35) faz = u. For the second
term we apply Proposition 3. This proves (50) and concludesptroof of Lemma
5. O

Lemma 6 Assume the hypotheses of Theorem 5 are satisfied. Then,
— for u = 0, we have for all h small enough,
lu=tliz(g) < ClN + [lu—u"Zs ) (72)
— for u =1, we have for all h small enough,
lu—u"l 2y < SN+ u=WlZs o)) (73)
where C is independent of h.

Proof LetV' € §(Q, %) and&M =" —uM. Let ¢, ¢" be the solutions of (66), (67)
respectively, with right-hand sidg’. We have:

187172y = Bn(®".€")
= An(V5V", 0" — An(Vs U, @) + (May (- V) TV, D9 ).
A short computation using integration by parts shows that

— An(V U @)+ (EMay (-, VDV, O,
= An(ul, U ¢"M) 4 (£"a,0EM — A (EM)20VP, 0",
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where
1
0 = [ au(x 00 ~tg"09) o
Buu(X) = /O.l(l—t)auu(x,vh(x) —teh(x))dt.

Thus we obtain

1€ 172 o) = AV V1, 87) — An(u”, U1, ") + (£MauDE" — (€M) 2OV, D9 "),
(74)
Using (32), the boundednessayf, a,, on Q x R and Sobolev embeddings, we have
(E"au08" —au(E")PV", 09Mh = (A0E" —aué "DV, E"0¢"),
< C((ID8" 5,2+ 18"V 5,2) 1€"009 " 7, 2)
< C(L+ [V was(o)) 1€ o) 1€ Iy | @ hwas(q) -
The first term in (74) can be written as
:Ah(vhvvhvd)h)_Ah(uhvuha(ph) = (vhﬂvha(ph)_A(vh,Vh,(ph)
(vhvvh7¢h) _A(u’vh’d)h)
(U vh -, ¢h - ¢)
(U Vh -, ¢)
(U u7¢h) 7Ah(uh7uh7¢h)'
We now distinguish two cases to bound the above quantity
— For the casel = 0, we take/" = #,u. Using (8), (14), (37), (15), (40), (69), we

obtain similarly to the proof of Lemma 4,< C|[€"]| 2()h

— For the casegt = 1, we takev" = IMyu equal to theL2—orthogonal projection of
u on the finite element spa&(Q, ). We have]|Myu — ul 2o, < Ch'*! and

[[Mhu— Ully1(q) < Ch'. Using (68) we obtain

+ Al
+ A
+ Al

AU, Mau—u, " — ¢) < C[|Mhu—ullga) 19" = ¢ 110y < CH [ lnz(o
Using Green’s formula yields
AU, MThu—u, @) < C|[Mnu—ull2(0) 9 llnz(@) < h 1Pz
Using (8), (14), (16), (41) and (69) we deduce C|[&"[ 2 )h" 2.
Using (69) and|V"[lys(q) < CllUllz(q) for v = .Zhu or V! = Mhu, we obtain
1€ I 2(0) < Ch 4+ [1EM 2o ||5h|||_3(o))SC(hH“JerhHal(Q))

Finally the triangle inequalitjfu— u"|| < ||&M|| + ||v" — u]| with theL? andH* norms,
respectively, gives the estimates (72), (73). O
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Proof of Theorem BlVe first prove théd® estimate (25) and then theé estimate (26).
We postpone to the end of Section 4.1 the proof of the unicgseokthe numerical
solutionu”.

i) Proof of the a-priori estimaté25).

We know from Theorem 2 that a numerical solutidhexists for allh. Substituting
(72) of Lemma 6 into (58) of Lemma 4, we obtain that fortak hy any solutionu”
satisfies an inequality of the form

Ju=tlag) < CN° +[lu— 21 ),
with some constar&, or equivalently,
(1—=Cllu—=tlz(0)) u— "l ) < CH'. (75)

From Theorem 3 together with Proposition@ € 2, 3 = «) and (15), we have that
flul — Ul[ 2(g) — 0 forh — 0. Using Lemma 4, we deduce

Iu" = Uflpy2(g) — O forh— 0.

Then there existh, such that for alh < hy, 1—CJ|u" — Ul[1(q) = 1/2. Finally we
sethg = min(hz, h) and the proof of (25) is complete.

i) Proof of the a-priori estimaté26).

TheL? estimate (26) is an immediate consequence ofHthestimate (25) and (73)
in Lemma 6. O

4.1 Newton’s method

Consider for alZ" € §(Q, %) the bilinear formNy(2"; -, -) defined onSh(Q, ) x
$H(Q, %) by

Nn (250, wWh) = (a(-, 2" OV, OW)p + (Vay (-, 2") 02", Ow)p,.

The Newton method for approximating by a sequencéz)) in §(Q, %) can be
written as

No(Z A — 4 V) = (W) —AZL A V), W eSH(Q, %),  (76)

wherez) € §(Q, %) is an initial guess.

In this section, we show that under the hypotheses of The&retine Newton
method (76) can be used to compute the numerical solufiofithe nonlinear system
(14). We also prove the uniqueness of the finite elementisoluf of (14) for allh
small enough. This generalizes the results in [13] to the ohaumerical quadrature.

Consider for alh the quantity

IVl (@)

Oh = sup
Ve (Q, %) HVhHHl(Q)
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Using (9), one can show the estimates
Oh<C(1+|Inh)¥2 ford=2 ~ o, <Ch 2 ford=3,

whereC is independent ofi. The above estimates are a consequence of the inverse
inequality (34) withm=n= 0, q = c and the continuous injectidd’(Q) c LP(Q)
with p= 6 for d = 3 and with all 1< p < « for d = 2. Ford = 1, we simply have
oh < C. Notice that for all dimensiond < 3, we havehagy, — 0 forh — 0.
To prove that the Newton method (76) is well defined and cayesrthe follow-
ing lemma is a crucial ingredient.

Lemma 7 Let T > 0. Under assumptions of Theorem 5, there exisdh> 0 such
that if 0 < h < hg, and 7' € §(Q, %) with

||Zh||W16 <t and C7h||Zh thHHl <9,

then for all linear form G on QQ, h), there exists one and only one solutidhev
$(Q, %) of

Nn(Z5V W) = G(W"), v € §(Q, Fh). 77
Moreover, ¥ satisfies

IVll2(0) < ClIG]H-1 (78)

where we writé|G||y 1) = SURcg, (. %) |G( )\/HW“||H1 ,and C is a constant
independent of h and'z

Proof It is sufficient to prove (78), since it implies that the sa@utis unique and
hence exists in the finite-dimensional sp&&Q, 7). Assume that" is a solution
of (77). Using (12), (33) and (31), we have

ANy <A@V V) = GV — (Viay(,2) 02, V)
< (IGll-1() +Cllau(- 202 s o) IVl 3(0)) IV 2@)
< (IGl-1(0) + CTIV 20, IVl ) IVl )

From the Young inequality, we deduce
M) < CUIGIH-1(0) + Vll2(0))- (79)

Next, applying Lemma 5, wit§ = vin (67), let¢" be the solution foh small enough
of

Nn(Zhu;w!, 9" = (VW) v e §(Q, F);

it satisfies the bound
1910 < CIVlli2(0) (80)
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We obtain using an identity similar to (71) and the Cauchiv@rz inequality,
||VhHEZ(Q) = Nh(jhU;Vha‘Ph)
= G(®") + Nn(Fhu; V", ¢") — Na(2'3V", ¢")
< (IGlly-1(0) + ClFhu—2"lLe(0) IV"ln2(q)
+ CIVIee (o) | Zht = 22 ) 19"z
Using (80), we deduce
V2@ < CUIGHIK-1(0) + 20n[l 2wt — 2 llh1ig) IV (o))
< C(||G||H*1(Q) +0[V[2(0)
Substituting into (79), we obtain
(1-C8)[Vlly2(0) < ClIG]1-1
We choose > 0 so that - Cd > 0 which concludes the proof. O

We may now state in the following theorem that the Newton oe@{{Y6) is well
defined and converges. This results generalizes to the ¢amen®rical quadrature
the result of [13, Thm. 2].

Theorem 6 Consider @ a solution of (14). Under assumptions of Theorem 5, there
exist ky, & > 0 such that if h< hg and o |2} — U"[[,y1() < O, then the sequende))

for the Newton metho(r6) is well defined, andie= ||z{2 uh||H1 is a decreasing
sequence that converges quadraticallytfor k — oo, i.e.

&1 < Coneg, (81)
where C is a constant independent of h, k.

Proof The proof is a consequence of Lemma 7 and is obtained folfpttia lines of
the proof of [13, Thm. 2]. For the convenience of the readdgtailed proof is given
in the Appendix. O

Using Theorem 6, we may now show the uniqueness of the nuaheptutionu” of
(14) for allH small enough.

Proof of Theorem 5.

iii) uniqueness of the numerical solution.

We know from Theorem 2 that a solution of (14) exists forralConsider two solu-
tionsu", " € §(Q, Zh) of (14). Using (25), there existy > 0 (independent of the
choice ofu", ") such that

forallh<hg, [u"—ullq) <CH and||t" - ullyq) < CH.
This yields

0n||0" — Wl () < Ol1T" = Ul g) + Ghl|U” — U1 (o) < 2Caph” — 0 forh— 0.
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(a) Solutionu” with mesh size 3% 32. (b) L?—projection of the sourcé on the finite ele-
ment space with mesh size 3232.

Fig. 1 Problem (84)-(85).

Thus, we havey||T" — u"|| 1) < & for all h < hy for someh; > 0. Then, applying

Theorem 6 with initial guesa) = U, we have that the sequen@)y-o of the Newton
method is well defined by (76), arjf — u"|l41q) — O for k — . Sincez is in

fact independent dk (becausal” solves (14)), we obtaia” = u" for all h < hg :=
min(hl, hz). O

5 Numerical experiments

In this section, we present two test problems in dimensianttwillustrate numeri-
cally that theH! andL? estimates between the finite element solution and the exact
solution in Theorem 5 are sharp.

We consider the numerical resolution of non-linear proldesh the form (1),
with Dirichlet and also more general boundary conditions,tlee square domain
Q = [0,1)2 discretized by a uniform mesh with x N 21-quadrilateral elements or
a uniform mesh witiN x N couples ofZ1-triangular elements which corresponds
in both cases ta’(N?) degrees of freedom. Notice that we obtain similar results
when considering either quadrilateral or triangular eletseFor each quadrilateral
element, we consider the Gauss quadrature formuladwitid nodes, while for trian-
gular elements we consider the quadrature formula Withl node at the baricenter.

Evaluating 12 and H! errors. The L2 andH? relative errors between the finite ele-
ment solutiona" and the exact solutionare approximated by quadrature formulas.
We compute

J
&= Ul fg Y S @i (x) —ulx )l (82)
KeZ, j=1
J
. -2 h 2
& = HDUHLzm)KEZ?h j;&k,-HDU (%; ) — O )11 (83)
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(a) Problem (84)-(85)2-quadrilateral FEs. (b) Problem (88)-(87)%-triangular FEs.

Fig. 2 g2 error (solid lines) ang,1 error (dashed lines) as a function of the divef a uniformN x N
mesh.

so that . o
[u—u"l2(q) [O(u—=uMl2(0)
||UHL2(Q) HDUHLZ(Q)

Here the valuesi(xg;) and Ou(xk; ) for the exact solution are computed either ana-
lytically, or approximated using a very fine mesh. In (823)8or each quadrilateral
element, we consider the Gauss quadrature formula Jvith4 nodes, which is ex-
act on.23(K), while for triangular elements we use a quadrature formutla yv— 6
nodes on each triangle (the nodes and the middle of the eddesh is exact on
2?(K). This way, the additional numerical quadrature error iiied in (82)-(83)

is negligible compared to the accuracy of the studied fingment method.

2 &

Test problem.We first consider the non-linear problem

-0 (a(x,u(x))du(x)) = f(x) in Q (84)
u(x) =0 ondQ

with Dirichlet boundary conditions and the anisotropicsan

_ (14xgsin(7tS) 0
axs) = ( 0 2-+arctaris) /- (85)
The sourcef in (84) is adjusted analytically so that the exact solut®n i
U(X) = 85ir‘(TIX1)X2(1—X2), (86)

see the numerical solution on a 832 mesh in Figure 1(a). We also give a graphical
representation of the sourdeprojected on the finite element space in Figure 1(b).

In Figure 2(a), we plot thé2 andH? relative errors (82)-(83) for the numerical
solution compared to the analytical solution (86), as ationcof the sizeN of the
meshes made &f x N elements of quadrilateral type with size= 1/N. As predicted
by Theorem 5, we observe that the error for khenorm has siz&’(h) (line of slope
one), and for th&.2 norm, we observe an error of sizgh?) (line of slope two).



FEMs with numerical quadrature for nonmonotone nonlinegstalproblems 25

1 7N
S [N
0.2 09 - / 02
_d /

-0.4 o8 e -0.4

0.6 07 ) — ] 0.6
T T
08 06— o 0.8
e
1 £ 05 T ] 1
— o
12 0.4 — 12
o
14 03— 14
1.6 0.2 1.6
‘ 1.8 0.1 1.8
I
0 02 04 0.6 0.8 1 2 00 0.2 04 06 08 1 2
* X
(a) Level curves. Mesh sizexd4. (b) Level curves. Mesh size 2616.

S N

= e
.
SRR NIRRT
SSSaN Y
S SR RN St
TR
B R R R RN SRR
S AR RS

ST

=

0 0.2 04 06 0.8 1 ) X 0o
X1 1

(c) Level curves. Mesh size 3232. (d) Surface plot. Mesh size 1616.

Fig. 3 Porous media flow problem (88)-(87). Numerical solutions aiowes uniform meshes witN x N
couples ofZ-triangular elements.

Concerning the Newton iterations (76), using the (artifjciaitial guessz('} =
MMy (10x1(1—x1)%2(1—X2) ), we observe that it requires about 7 iterations to converge
to u" up to machine precision for all meshes considered in Fig(ag 2

Richards’ equation for porous media flow€onsider Richards’ parabolic equation
for describing the fluid pressur€x,t) in an unsaturated porous medium, with per-
meability tensor(s) and volumetric water conte®,

00(u)
ot

—0O-(a(u)Ou)) + a;)((s) =f

wherex; is the vertical coordinate, anflcorresponds to possible sources or sinks.
We consider an exponential model for the permeability teasimilar to the one in
[31], which we slightly modify to simulate an anisotropicrpas media,

)= (5 11015)- ®7)
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For our numerical simulation, we are interested only in tai@nary state (where
du/dt = 0). We therefore arrive at the following non-linear ellpproblem. For
simplicity, we let the source term be identically zefdx) = 0),

—0- (a(u(x))O(u(x) —x2)) =0 in Q. (88)
We add mixed boundary conditions of Dirichlet and Neumarpesy

u(x) =g1(x) ondQp, =[0,1] x {1},
U(X) = gZ(X) on dQDz = [07 1] X {O}a
X))O(u(x) —x2) =0 ondQn = {0} x [0,1]U {1} x [0, 1].

S
Q
—~
o
—~~

We put Neumann conditions on the left and right boundarieth@fdomain 1§ de-
notes the vector normal to the boundary). On the top boungi@gy, and the bottom
boundaryd Qp,, we take respectively

gl(X) = _Xi’
Go(x) = —2+e€ >4

Notice that (88) is not exactly of the form (1), but can be @aist this form using
the change of variable(x) := u(x) — x2. The corresponding tensor is thafx,s) =
a(s+ x2). Since no analytical formula for the solutioiix) is available, we compute
a reference a finescale solution on a uniform mesh with 30P@24 couples of?*-
triangular elements (one million degrees of freedom). Hére Newton iterations
(76) converge in about 6 iterations with the initial gué§s 0.

In Figure 3 we represent the levels curves of the the nunesidations on uni-
form meshes of various sizes. Notice that the level curvesh® finescale solution
look nearly identical to those of the solution with= 32 in Figure 3(c).

In Figure 2(b), we plot théi! andL? relative errors on various uniform meshes
with N x N couples ofZ*-triangular elements with size= 1/N. Similarly to the
previous experiment, we observe an error of gi&) in the H! norm as predicted
by Theorem 5 (line of slope 0.97 for the meshes Witk- 64, 128 256), ando'(h?)
in the L2 norm (line of slope 1.91 for the meshes with= 64, 128 256).

6 Appendix

We give here the proofs of Theorem 3, Lemmas 2, 3, Prop. 3 ardrém 6.

Proof of Theorem 3As mentioned in Remark 4 we have to make sure that Theorem
3 remains true for general simplicial and quadrilateral A8 use a compactness
argument similar to [17, Thm. 2.6] or [13, 893]. From Theor2nthe numerical
solution exists for alh, and for any choice of the numerical solution, the sequence
(uM)n-0 is bounded irH3 (Q). Since the injectiom!(Q) c L?(Q) is compact, from
any sequence ofh} tending to zero, there exists a subsequeftgg such that for
somew € H1(Q), u™ — wstrongly inL?(Q) and weakly irH%(Q). To conclude the
proof that||u" — Ul[2(g) — 0 forh — 0, itis sufficient to show that the limit is unique
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with w = u. Letv € C7(Q) andv' := %, v. Using (36) yields|v — V|1 o) — 0
for k — o andethVT,z.m(Q) < C|Vllwzw(g)- Using (8), we have

AW, w,v) — F (V) = A(w,w— uf V)—s—(A(W,uhkN)—A(uhk,uhk,v))
+ AU, UM v — V)
+ (A(u hk NULSRVAS e W T LUNTLURVAS))
+ (An (U, UV — By (V%))
+ (V) = F (V) + F (V¥ -v).

Using (18), (19) it is straightforward that the right-hardesof the above equality
tends to zero fok — o. Thus we obtain that satisfies

Aw;w,v) = F(v), W € Cg'(Q),

and hencav is solution of (8) becausgy (Q) is dense irtH}(Q). Since the solution
of (8) is unique (Theorem 1), we obtaw= u. O

Proof of Lemma 2As the functionalEx in (39) is linear, we shall get the error es-
timates for the expressioik (a(-,2)v(mW)), wherea(-,-) is a scalar function de-
noting a component of the tens@mn(X,s))1<mn<d andVvm), Wy denote the com-

ponents ovah|K, th|K. Consider a reference elemefit We use the notations
ax,-) = a(FK(x), ), 2(x) == 2(Fc (X)), Vim) (X) = V(m) (Fk (X)) @nd similarly forwy,,
whereFk : K — K is defined in Section 2.2. We have

Ex (a(-, Z)V(m)W(n)) = | detoF« ‘ EK (3(7 Z)V(m)W(n)) (89)

i) Proof of estimat€42).

We adapt the proof of [11, Thm. 28.2]. We start by applying Bramble-Hilbert
Lemma [11, Thm.28.1] to the linear for — Eg (¢ @) with ¢ a polynomial on
K. This is a linear bounded functional " (Q) which vanishes o/~ l( ) |f
J € 2'-1(K) (due to the assumptio®@) for simplicial FEs) and ifp € (2¢(K))’' 4
(due to the assumptioi®@) for quadrilateral FESs). Thus, in either cases,

Eg(B) < C| Pl 2g) Blweeg), V6 € W (K). (90)

We now takep = &(-, 2)¥m) and =Wy, wherez9,w e 2*(K) or 2¢(K) (and thus
Jisin 21(K) orin (99471(@/, respectively). We obtain

|Eg (Al 2)Y(m) Wi | < ClA(, 2)V(m lyeo ) W) [l L2 )

Using the equivalence of norms on a finite dimensional sp&gmlynomials, we
have

&(, 2)V(m) e k) <CZO\3 2) i) Vim) e k)

4 We denote by.2/(K))’ the space of all derivative of polynomials belonging &' (K))
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where we note that the sum stopstat 1 if ve 2(K). Using the Fa-di-Bruno
&+, 2)|yi=(k) can be bounded by a sum of terms of the form

107 058, 2) | o) Zwrs o) - [Ziwnem(i) (91)

wherev € NY is a multi-index andv|+r1+ ... +r¢ = j, with k > 0 andr; > 1
for all i. We recall the following inequalities [11, Theorems 15.H d5%.2], for all
0<j<t-1,

10¥ 3| o g ) < CRT10Y OkallL oy, 0< K+ V| <, (92)
Viwiag, < Chi|detdFc| Y Iviyiaq), W e WH(K), 1< q < o, (93)
Vi) < CHVwia), YW EWH(K). (94)

Using the equivalence of norms, the termkor 1, |v| = 0, j = ¢ can be bounded as

10ud(-,2) L= 2

&) VmylLe ) < Clalwre g «r) [Zwea ) Vm llLs k)

< Ch/'| detdF| 2 [alwie e xmy [Zwea <) Vim s k)

where we use (93) with=2,a,8 (1/a +1/8 = 1/2). For all other terms in (91)
we use the estimates (92) and (94). We obtain

|Eg (&(:,2)VmyW(n)| < Ch| detdFic| ™ allyyees ey [Weny 12

(110 vy (1 122 >>+\z|wz,a(K>||v<m)Hm(m),

wherey = (—1if ve 2'(K) andy=(if ve 2‘(K) (in the above estimatg]\, , ;..
can be omitted fof = 1). Finally, using (89) concludes the proof of (42).
i) Proof of estimatg43).

We adapt the proof of [12, Thm.2]. Consider the linear omerdaly : LY(

29(K) defined as
. 1 o
o) = g7 [ B%
Letd e WHL2(K) and @ € (#*(K))'. Then, we have

Ex (U9) = Eg ((Fo®) (Mod1) $2) + Eg (Mod) ($1 — Moda) §2) + Eg ( — Mod)).
(95)

where we set) := ¢1$,. We apply the Bramble-Hilbert Lemma three times, to es-

timate each of the above terms. Usi(92), the first term as a function apy is

a linear form which vanishes o/ (K) (sincello@) € #°(K)), while the second

and third terms as functions @k, ¢ respectively are linear forms which vanish on

(K))

oS

) —

5 Here we use the fact that all functionAf-(R) are Lipschitz continuous. This implies that the usual
chain rule applies for differentiating with respectxt¢he compositiora(x,z(x)) of s+ a(x,s) (wheres
evolves inR) with a smooth scalar functior{x) defined orK.
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Z'7HK). We use|Mod | 2, < Cll Pl 2y and|| @ — Fodll zg) < Cllyys k) (@p-
plying the Bramble-Hilbert Lemmato the linear forfn— ¢ — I‘Iolll which vamshes
on 2°(K)). This yields

Ex(@6)] < CUIPll 2z I Ballioe Bahwesio k)
+ 1Pl 2k |¢1IH1 Y B2lwee k) + Wl | Plwesk))-
Similarly to i), we takez = &(-,2), 1 = Yy andP = Wy, We obtain
|Eg (a(+, 2)V(m)Wim) | < C(|a
+ 1a(, 2 e () 90m) [ r) Wi ll 2 k)

+ 80 V() [yt () [Win) \Hl(K))-

(s D werreo ) IV |2 W) [l 2
2)

In the above estimate, the quantj(-, 2)V(m .-k, can be bounded exactly as in
the proof in i). It remains to bound the flrst two terms in thewabestimate. We use
again the Fa-di-Bruno formula for computing the derivatives up to arde- 1 of
a(-,2). For the case whereis differentiated/ or £+ 1 times, we obtain terms of the
form

||5u0>?ié||L°°(KxR)|2|HK(K) |\7(m)||La K ||W HLB K

mllek)

108l e (& ) [ Zwe &) Vi) [ ) I

”dué-HL”(KXR)|2‘HH1(R)” HL" K) ||W |||_B
where we use the equivalences of norms for spaces of polyt®miK . For deriva-

tives ofzof orderj < ¢, we consider the norm8lyy ;e ). Vim i ) and|[ W[l 2k
We conclude the proof using (92), (93), (94) and (89), su‘ry'lm the proofini). O

Remark 7Notice that in the above proof ii) of (43) in Lemma 2, in theeas sim-
plicial elements, instead of (95), one can simply consider

Eg (B) = Eg(MTod)§) +Ex($— o)),

then take) = W, and ¢ = a(-,2)Vy), and useVy ‘H/ = [V(mlqer1gy = 0. For

quadrilateral elements we had to use twice the projediie (95) because we have
Vimlne+a(g) # 0 in general.

Proof of Lemma 3For simplicial FEs with? = 1, the result was first shown in [17,
Lemma 2.5]. For general simplicial or quadrilateral FEs, apply the Bramble-
Hilbert Lemma [11, Thm. 28.1] to the function&k ({-) with ¢ a polynomial in
(#'(K))'. This is a linear bounded functional @ (Q) which vanishes or?°(K)
(asQ2) holds). Thus,

Ex(B9) < Cldll o) [Blwio): ¥ €WH"(K). (96)

Then we takel = ¥, and$ = &(-,2)W,). The rest of the proof is similar to i) in the
proof of Lemma 2. O
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Proof of Proposition 3We follow the lines of the proofs of Proposition 2 and Lemma
3, and take in the estimate (96) the functighs= au(-,2)znW, ¢ = Y, and$ =
au(-,2)V(mW, @ = 2, respectively. This yields for aif', ", w" € §(Q, %) the two
estimates
< ChIV (o) (14 1232w IV lI2() + 11272 ) W L)
JFHZhHWl“(Q)HWhHHl(Q))
< Ch|Zlwaeo () (14 12" lwaeo() IVl ) Wl 20
+ |\Vh||ﬁ2(g)\\“}1|\L2(Q) + ||Vh||ﬁ2(g)||VW||H1(Q))'
We conclude the proof of Proposition 3 by takidy=: .#,u, andw" := Z,w, V' :=
2wV respectively, and using (36), (38). O

Proof of Theorem 6The proof follows closely the lines of the proof of [13, Th2h.
We first show that Lemma 7 applies with= uM for all h < hg small enough. Indeed,
we have from Theorem 5 thak,||u" — Hhllj1g) < Cohh‘ — 0 forh— 0, and we

obtain from Lemma 1 thdtuhHWLe o =C WhereC is independent df.

We show that giverz] satisfyingUhHUh —Z|l1(q) < 9, the next approximation
2!, exists and is uniquely defined. Sin§gQ, %) is finite-dimensional, it is suffi-
cient to show for al\" € S(Q, %) that

Nn(Z5VwWh) =0, W' e §(Q, %) (97)
impliesv" = 0. Indeed, using (97) we have
Na(U VW) = Gwh), W' e SH(Q, %),
where

G(Wh) = ((a('>uh) _a('7ZE))DVh7DWh)h
+ (V((au (- u") —au(-,20) 0(U") — ay(- 2)0(Z — "), TW").

Then,||G|ly-1(0) < Conllu" = Z|1(0) V' ll1(q), and Lemma 7 yields
IMllz(0) < Conllu” = Fllurio) IV llnxa) < COIViq)

If & is chosen small enough, we ha®8 < 1 and thus/ = 0.
We now show (81). We have

Uz — U W) = N 20— 0w ( W) — An(Za 4w

+ Np(u ZE+1 i Wh ZE'ZE+1_ZE7Wh)
= Gi(W") + Go(W") = G(W"), W' e §(Q, ),
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where the first and second lines are equ&10G, respectively. Then, similarly as in
the proof of Lemma 6, we have

G1(w) = (Ga(d 0?00 +8(4 — o) O~ ), W)y

< CahaEHWh”Hl(Q)v
wherea,, anda, are certain averages af, anday. Similarly,

Go(W") = ((a(-,u") —a(-, Z))0(F, 1 — 2) + (Zy1 — A (@, Z) 0" — 7)), Ow)p
+ (21— 2 (-, u") —a(, 2))0u”, Ow)p
< Conllz— uhHHl(Q)(ZHZE - Uh||H1(Q) + 11— uh”Hl(Q)) ||Wh||H1(Q)
+ Con||Z — uhHHl(Q) ||Uh||w1,6(g)(||$ - Uh||H1(Q) + HZE+1 - Uh||H1(Q)) HWhHHl(Q)
< Conax(e+ 6c1) W' [y1q).-

Using Lemma 7 witl2" = u" we obtain

81 < COn(&f + ae1)

which yields
(1—Conex)aq1 < Conet

and takingd small enough, we have-1Cone > 1 —C9d > 0 and this concludes the
proof. O
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