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Coupling heterogeneous multiscale FEM with Runge-Kutta

methods for parabolic homogenization problems:

a fully discrete space-time analysis

Assyr Abdulle1 and Gilles Vilmart1,2

September 7, 2011

Abstract

Numerical methods for parabolic homogenization problems combining finite element
methods (FEMs) in space with Runge-Kutta methods in time are proposed. The space
discretization is based on the coupling of macro and micro finite element methods fol-
lowing the framework of the Heterogeneous Multiscale Method (HMM). We present a
fully-discrete analysis in both space and time. Our analysis relies on new (optimal) error
bounds in the norms L2(H1), C0(L2), and C0(H1) for the fully discrete analysis in space.
These bounds can then be used to derive fully discrete space-time error estimates for a
variety of Runge-Kutta methods, including implicit methods (e.g., Radau methods) and
explicit stabilized method (e.g., Chebyshev methods). Numerical experiments confirm
our theoretical convergence rates and illustrate the performance of the methods.

Keywords: multiple scales, fully discrete, numerical homogenization, finite elements,
Runge-Kutta methods, Chebychev methods, parabolic problems

AMS subject classification (2010): 65N30, 65M60 (74Q10, 35K15).

1 Introduction

A wide range of applications such as thermal diffusion in composite materials or water infil-
tration in porous soil are modeled by parabolic homogenization problems. In such problems,
microscopic heterogeneities are assumed to occur at a much smaller length scale than the
scale of interest, typically at a macroscopic level. Classical numerical methods for such prob-
lems need grid resolution to resolve the finest scale and become therefore quickly inefficient
due to the very large systems arising with such discretization. Yet, when there is a separation
of scales between the microscopic length scale and the macroscopic scale, numerical methods
based on macro and micro solvers can be efficient.

Numerous numerical methods based on macro and micro solvers for the solution of partial
differential equations (PDEs) with multiple scales have been developed the past few years.
For parabolic problems we mention [6, 26, 38, 41] (we note that nonlinear and stochastic
problems are considered in [38] and [26]). In this paper we consider the framework of the
heterogeneous multiscale method (HMM) introduced in [22]. Finite difference and finite
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element methods for parabolic homogenization problems in the HMM framework have been
developed in [6] and [38], respectively.

From a computational perspective, it is important to balance time and space discretization
to obtain a desired accuracy while minimizing the computational cost. Yet for multiscale
problems it is important to further balance the discretization effort at the macro and micro
levels involved in the spatial discretization. This has first been addressed in [2] for the HMM
applied to linear elliptic problems (see also [3] for a review), in [28] for nonlinear elliptic
problems of monotone type, and in [11] for nonlinear elliptic problems of nonmonotone type.
However none of the existing work for parabolic homogenization problems [6, 26, 41, 38]
discuss a fully discrete discretization in space.

Furthermore, while implicit solvers are usually chosen to integrate parabolic problems in
time, it is sometimes (in particular for large systems) desirable to avoid the use of linear
algebra for solving their implicit part. It is known that the (severe) CFL constraint leading
to (unacceptable) stepsize restriction for classical explicit solvers can be overcome by using
stabilized (Chebyshev) methods [7, 1, 31, 32]. While remaining fully explicit and straightfor-
ward to implement, Chebyshev methods free the explicit schemes from stepsize restriction,
provided an appropriate selection of the number of internal stages of the methods. As the
analysis presented in [6, 26, 38, 41] proceeds directly with a discrete scheme in space and
time, it is tailored to the specific numerical integrator used in time (usually the implicit Eu-
ler scheme) and cannot be straightforwardly generalized to classes of implicit methods or to
Chebyshev methods.

The aim of this paper is to give a fully discrete analysis in both space and time for a
variety of time integration methods including the family of (implicit) Radau type methods
as well as the family of (explicit) Chebyshev methods. Our analysis proceeds in two steps.
First, we derive new (optimal) error bounds in the L2(H1), C0(L2), and C0(H1) for the
fully discrete method in space. These error bounds, involving macro and micro meshsizes,
allow to set the optimal rate of the micro mesh refinement in function of the macro mesh
in order to have the most accurate output with the smallest computational effort. Then,
fully discrete space-time error estimates are obtained in a second step for several classes
of time integration methods as described previously. The fully discrete error bounds rely
on analytic semigroups techniques in a Hilbert space framework, following [37]. The fully
discrete bounds in space, derived in the first part of the paper, are instrumental for such
an analysis. Results of extensive numerical simulations are discussed for both periodic and
nonperiodic (e.g. random) coefficients, linear and nonlinear problems. While our analysis
focuses on linear problems, numerical tests indicate that the convergence rates derived in this
paper are also valid for a class of nonlinear problems.

The paper is organized as follows: In section 2 we introduce the homogenization problem
for parabolic problems and recall some analytical background. In section 3 we introduce
the FEM for the multiscale parabolic equation. In section 4 we present the analysis of the
method. Numerical experiments for various type of oscillating coefficients and for both linear
and nonlinear problems are given in section 5.

Notations. In what follows we consider the usual Sobolev space W s,p(Ω). For p = 2 we use
the notation Hs(Ω) and H1

0 (Ω), and we denoteW 1
per(Y ) = {v ∈ H1

per(Y );
∫

Y vdx = 0}, where
Hs
per(Y ) is defined as the closure of C∞

per(Y ) (the subset of C∞(Rd) of periodic functions in

the unit cube Y = (0, 1)d) for the Hs norm. For a domain D ⊂ Ω, |D| denotes the measure

of D. We will sometimes use the notation ∂t, ∂tt, . . . or alternatively ∂kt for ∂
∂t ,

∂2

∂t2
, . . .. For

a Banach space X with norm ‖ · ‖X , we denote by Lp(0, T ;X) = Lp(X), 1 ≤ p < ∞ the
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space of functions t → v(t) which are Lp on (0, T ) with values in X. Equipped with the

norm ‖v‖Lp(0,T ;X) =
(∫ T

0 ‖v(t)‖pXdt
)1/p

, the space Lp(X) is a Banach space. In addition,

we denote C0([0, T ], X) the Banach space of continuous functions t→ v(t) with values in X,
equipped with the norm ‖v‖C0([0,T ],X) = supt∈[0,T ] ‖v(t)‖X .

2 Model Problem

We consider a bounded, convex and polyhedral domain Ω in R
d. Let T > 0. The class of

problems considered in this paper are the following parabolic problems

∂tuε −∇ · (aε∇uε) = f in Ω× (0, T )

uε = 0 on (0, T )× ∂Ω (1)

uε(x, 0) = g(x) in Ω,

where aε(x, t) satisfies aε ∈ (L∞(Ω× (0, T )))d×d and is uniformly elliptic and bounded, i.e.,

∃λ,Λ > 0 such that λ|ξ|2 ≤ aε(x, t)ξ · ξ, ‖aε(x, t)ξ‖ ≤ Λ‖ξ‖, (2)

∀ξ ∈ R
d and a.e. x ∈ Ω, t ∈ (0, T ), ∀ε > 0.

The homogeneous Dirichlet boundary conditions are taken here for simplicity and our
analysis applies to other types of boundary conditions (e.g. Neumann, mixte, etc.). Here and
in what follows, ε represents a small scale in the problem that characterizes the multiscale
nature of the tensor aε(x). We make the following assumption on the parameters of the
problem:

f ∈ L2(0, T ;L2(Ω)), g ∈ L2(Ω), (3)

and we consider the following Banach space

E = {v; v ∈ L2(0, T ;H1
0 (Ω)), ∂tv ∈ L2(0, T ;H−1(Ω)} (4)

with the norm
‖v‖E = ‖v‖L2(0,T ;H1(Ω)) + ‖∂tv‖L2(0,T ;H−1(Ω)). (5)

Under the assumption (3), the weak form of (1) has a unique solution uε ∈ E (see for example
[36]). As we have the continuous inclusion E ⊂ C0([0, T ];L2(Ω)) (see [27, Sect. 5.9.2] or [36,
Chap. 1, Thm. 3.1]), the solution uε satisfies uε ∈ C0([0, T ];L2(Ω)). Moreover the following a
priori estimate holds

‖uε‖E + ‖uε‖C0([0,T ];L2(Ω)) ≤ C(‖f‖L2(0,T ;L2(Ω)) + ‖g‖L2(Ω)). (6)

Consider now the family of problems (1) (indexed by ε) and the family of corresponding
solutions {uε}. The estimate (6) together with standard compactness results ensure the
existence of a subsequence of {uε} (still denoted by ε) such that

uε ⇀ u0 weakly in L2(0, T ;H1
0 (Ω)), ∂tuε ⇀ ∂tu0 weakly in L2(0, T ;H−1(Ω)). (7)

The next task is to find a limiting equation for the solution u0. Asymptotic expansions can
be used to find a candidate for such a limiting equation. To show that the solution of this
latter equation is the limit (in some sense) of the oscillating family of functions {uε}, one
uses usually the notion of G or H convergence (see [42, 19, 39]), the former being restricted
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to symmetric tensors. It is then possible to show that there exist a subsequence of {uε}
(still denoted by ε) satisfying (7) and such that u0 is the solution of a so-called homogenized
parabolic problem

∂tu0 −∇ ·
(
a0∇u0

)
= f in Ω× (0, T )

u0 = 0 on (0, T )× ∂Ω (8)

u0(x, 0) = g(x) in Ω,

where the so-called homogenized tensor a0 again satisfies (2), possibly with different con-
stants. We refer to [12, 15, 20] for details. Let us note that if aε(x, t) has more structure as
for example if aε(x, t) = a(x, x/ε, t) = a(x, y, t) is Y -periodic in y then one can show that
the whole sequence {uε} weakly converges in the sense described above.

The discretization of the problem (1) with FEM is a well understood problem. Taking
a finite dimensional subspace S(Ω, Th) of the Banach space (4), we search for a piecewise
polynomial solution uh(t) ∈ S(Ω, Th) of the variational equation corresponding to (1) in
S(Ω, Th). However, the major issue is that usual convergence rates can only be obtained if
the spatial meshsize h satisfies h < ε. For multiscale problems with order of magnitude of
discrepancies between the scale of interest (for which we would like to set the spatial grid) and
ε, the restriction h < ε can be prohibitive in terms of degrees of freedom of the computational
procedure if not impossible to realize.

The idea of the multiscale method described in the next section is to rely on two grids,
and in turn on two FE methods. A macroscopic method relying on a macroscopic mesh
H > ε which does not discretize the fine scale and a microscopic mesh (defined on sampling
domains within the macroscopic mesh) which discretizes the smallest scale. Proper averaging
of the microscopic FEM on the sampling domains allows to recover macroscopic (averaged)
data related to the homogenized problem whose coefficients are unknown beforehand.

3 Multiscale method for parabolic homogenization problems

In this section we describe the numerical method under study. It is based on the finite
element heterogeneous multiscale methods, introduced an analyzed in [22, 2, 23] (see [3, 4] for
a review). In the HMM context, two approaches for the (spatial) numerical homogenization
of parabolic problems have been proposed. The method in [6] is based on finite difference
discretization techniques while the method in [38] is based on finite element discretization
techniques.

We first describe the spatial discretization in Section 3.1 based on the HMM framework,
using macro and micro FEM. We then discuss the time-discretization in Section 3.2

3.1 Spatial discretization

The numerical method is based on a macro and a micro FEM. We denote by TH a family
of (macro) partitions1 of Ω in simplicial or quadrilateral elements K. The diameter of an
element K ∈ TH is denoted by HK and we set H = maxK∈TH HK . We then consider a macro
FE space

Sℓ0(Ω, TH) = {vH ∈ H1
0 (Ω); v

H |K ∈ Rℓ(K), ∀K ∈ TH}, (9)

1By macro partition we mean that H ≫ ε is allowed.
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where Rℓ(K) is the space Pℓ(K) of polynomials on K of total degree at most ℓ if K is a
simplicial FE, or the space Qℓ(K) of polynomials on K of degree at most ℓ in each variables
if K is a rectangular FE. Crucial to the FE-HMM is the definition of a quadrature formula
on the elements K. We thus consider within each macro element K ∈ TH for j = 1, . . . , J ,

• quadrature points xKj
∈ K,

• quadrature weights ωKj
.

Quadrature formula. A proper choice must ensure the coercivity of the bilinear form (16).
Furthermore, minimizing the number of quadrature points is crucial as each quadrature
point involves the solution of a boundary value problem (the micro problem). We consider
K̂ the reference element and for every element of the triangulation the mapping FK (a C1-
diffeomorphism) such that K = FK(K̂). For every K we consider the quadrature formula
{xKj

, ωKj
}Jj=1 and we suppose that the quadrature weights and integration points are given

by xKj
= FK(x̂j), ωKj

= ω̂j |det(∂FK)|, j = 1, . . . , J, where {x̂j , ω̂j}Jj=1 is a quadrature

formula on K̂. We will make the following assumption on the quadrature formula

(Q1) ω̂j > 0, j = 1, . . . , J ,
∑J

j=1 ω̂j |∇p̂(x̂j)|2 ≥ λ̂‖∇p̂‖2
L2(K̂)

, ∀p̂(x̂) ∈ Rℓ(K̂), with λ̂ > 0;

(Q2)
∫

K̂ p̂(x̂)dx̂ =
∑

j∈J ω̂j p̂(x̂j), ∀p̂(x̂) ∈ Rσ(K̂), where σ = max(2ℓ−2, ℓ) if K̂ is a simplicial

FE, or σ = max(2ℓ− 1, ℓ+ 1) if K̂ is a rectangular FE.

These requirements on the quadrature formula ensure that the optimal convergence rates for
elliptic FEM hold when using numerical integration [17].

Based on the quadrature points, we define sampling domains

Kδj = xKj
+ δI, I = (−1/2, 1/2)d (δ ≥ ε), (10)

the “domains” of the micro FE method. We consider a (micro) partition Th of each sam-
pling domain Kδj in simplicial or quadrilateral elements Q of diameter hQ and denote

h = maxQ∈Th hQ. The sampling domains Kδj are typically of size ε, that is |Kδj | = O(εd),
and hence h < ε ≤ δ holds for the micro mesh size. For this partition we define a micro FE
space

Sq(Kδj , Th) = {zh ∈W (Kδj ); z
h|T ,∈ Rq(Q), Q ∈ Th}, (11)

where W (Kδj ) is a certain Sobolev space. Various spaces can be chosen for the micro nu-
merical method, and the choice of the particular space has important consequences in the
numerical accuracy of the method as we will see below (this choice sets the coupling condition
between macro and micro solvers). We consider here

W (Kδj ) =W 1
per(Kδj ) = {z ∈ H1

per(Kδj );

∫

Kδj

zdx = 0}, (12)

for a periodic coupling or
W (Kδj ) = H1

0 (Kδj ) (13)

for a coupling through Dirichlet boundary conditions. Essential for the definition of the
multiscale method below is the definition of the following microfunctions. Let wH ∈ Sℓ0(Ω, TH)
and consider its linearization

wHlin = wH(xKj
) + (x− xKj

) · ∇wH(xKj
)
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at the integration point xKj
. Associated to wHlin in the sampling domain Kδj we define a

microfunction wh,tKj
, depending on t, such that (wh,tKj

− wHlin) ∈ Sq(Kδj , Th) and
∫

Kδj

aε(x, t)∇wh,tKj
· ∇zhdx = 0 ∀zh ∈ Sq(Kδj , Th). (14)

Multiscale method. Find uH ∈ [0, T ]× Sℓ0(Ω, TH) → R such that

(∂tu
H , vH) +BH(t;u

H , vH) = (f(t), vH) ∀vH ∈ Sℓ0(Ω, TH)
uH = 0 on ∂Ω× (0, T ) (15)

uH(x, 0) = uH0 ,

where

BH(t;u
H , vH) :=

∑

K∈TH

J∑

j=1

ωKj

|Kδj |

∫

Kδj

aε(x, t)∇uh,tKj
· ∇vh,tKj

dx, (16)

and uH0 ∈ Sℓ0(Ω, TH) is chosen to approximate the exact initial condition g (see Remark 4.6

below). Here, uh,tKj
, vh,tKj

are the solution of the microproblems (14) constrained by uHlin, v
H
lin,

respectively. We emphasize that the above numerical method aims at capturing the homog-
enized solution of (8). A numerical corrector can be defined extending the known micro
solutions uh (defined in the sampling domains Kδj ) on the whole macro element K. With
the help of the numerical corrector, an approximation of the fine scale solution uε can be ob-
tained (see [23],[3, Chap. 3.3.2]). For nonlinear monotone elliptic problems, the convergence
of such reconstruction procedure has been proved in [24, 25] for the Multiscale Finite Element
method (MsFEM) in the stochastic case, and in [28] for both the MsFEM and HMM in the
general case of an arbitrary G-converging sequence.

3.2 Time discretization

Let UH be the column vector of the coefficients of uH in the basis {φj}Mj=1 of Sℓ0(Ω, TH), and
consider the stiffness matrices

K(t) = (BH(t;φi, φj))
M
i,j=1 M = ((φi, φj))

M
i,j=1.

This permits to rewrite (15) in the form of an ordinary differential equation

MU ′H(t) +K(t)UH(t) = FH(t), U(0) = U0,

where FH(t) corresponds to the source term and is defined in the usual manner.
With these notations, (15) can be written as

U ′H(t) = F (t, UH(t)), U(0) = U0, (17)

where F (t, UH) = −M−1K(t)UH +M−1FH(t).
The fully discrete space time method relies on the discretization of (17) by a (s-stage)

Runge-Kutta method

Un+1 = Un +∆tn

s∑

j=1

bjSnj , Uni = Un +∆tn

s∑

j=1

γijSnj , (18)

Sni = F (tn + ci∆tn, Uni), i = 1 . . . s. (19)
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where γij , bj , ci with i, j = 1 . . . s are the given coefficients of the method (with
∑s

j=1 γij = ci)
and tn =

∑n
i=0∆tn. We sometimes use the notations

Γ = (γij)
s
i,j=1, b = (b1, . . . , bs)

T , c = (c1, . . . , cs)
T = Γ1, 1 = (1, . . . , 1)T .

We recall that the order of the method is r if the following error holds after one step with
the same initial conditions for both the exact and the numerical solution

U1 − U(t1) = O
(
∆tr+1

)
, for ∆t→ 0,

for all sufficiently differentiable initial value systems of differential equations.
Two classes of time integrator will be considered in the analysis.

Implicit methods. We consider a subclass of Runge-Kutta methods which are of order r
with stage order (the accuracy of the internal stages) r − 1, and which are strongly A(θ)-
stable with 0 ≤ θ ≤ π/2. This latter condition means that I − zΓ is a nonsingular matrix
in the sector |arg(−z)| ≤ θ and the stability function 2 R(z) = 1 + zbT (I − zΓ)−1

1 satisfies
|R(z)| < 1 in |arg(−z)| ≤ θ (we refer to [31, Sect. IV.3,IV.15] for details on the stability
concepts described here).

Notice that all s-stage Radau Runge-Kutta methods satisfy the above assumptions (with
θ ≥ π/2) [31]. In particular, for s = 1, we retrieve the implicit Euler method

(M +∆tK(tn+1))U
H
n+1 =MUHn + FH(tn+1). (20)

Our analysis for implicit methods covers variable time step methods, provided that the
stepsize sequence {∆tn}0≤n≤N−1 with ∆tn = tn+1 − tn > 0 and tN = T satisfies for C, c > 0

N−1∑

n=0

|∆tn+1/∆tn − 1| ≤ C, (21)

c∆t ≤ ∆tn ≤ ∆t for all 0 ≤ n ≤ N − 1. (22)

Remark 3.1 The condition (22) may appear restrictive. However, a finite subdivision of
the interval [0, T ] into subintervals can be considered and (22) is required only on each of the
subintervals (see [37, Sect. 5]). This permits to use stepsizes of different scales.

Chebyshev methods. Chebyshev methods are a subclass of explicit Runge-Kutta methods
with extended stability domains along the negative real axis. Their favorable stability prop-
erties originate from the fact that is is possible to construct s-stage methods with stability
functions Rs(z) = 1 + zbT (I − zΓ)−1

1 satisfying

|Rs(x)| ≤ 1 for x ∈ [−Ls, 0] (23)

with Ls = Cs2, where the constant C depends on the order of the method. Such methods
have been constructed for order up to r = 4 [7, 1, 32, 35]. As eigenvalue of a parabolic
problem lie on the negative real axis, Chebyshev methods are suitable for such problems. For
first order methods, we have

Rs(x) = Ts(1 + x/s2), (24)

where Ts(·) denotes the Chebyshev polynomial of degree s and Ls = 2s2. The corresponding
Runge-Kutta method can be efficiently implemented by using the induction relation of the

2We recall that the stability function of a Runge-Kutta method is the rational function R(∆tλ) = R(z)
obtained after applying the method over one step ∆t to the scalar problem dy/dt = λy, y(0) = 1, λ ∈ C.
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Chebyshev polynomials. Higher order methods based on induction relations can also be built
[7, 1, 32]. We briefly explain why it can be advantageous to use such methods. Let ρH be
the spectrum of the discretized parabolic problem (depending on the macro spatial meshsize
H) and assume that the stepsize to achieve the desired accuracy is ∆t. Integrating the
parabolic problem with an Euler method requires to take a stepsize δt satisfying the CFL
constraints δt ≤ 2/ρH and we thus need ∆t/δt ≥ (∆tρH)/2 function evaluations (a measure
of the numerical work). With a Chebyshev method of the same order with stability function
given above, one can first choose a stepsize ∆t and then choose an s-stage method such that
∆tρH ≤ 2s2. This sets the number of stages s =

√

(∆tρH)/2, which represents the square
root of the numerical work needed by the explicit Euler method (notice that for Chebyshev
methods, there is one new function evaluation per stage). Chebyshev methods are usually
used in a “damped” form, where the stability function satisfies the strong stability condition

sup
z∈[−Ls,−γ], s≥1

|Rs(z)| < 1, for all γ > 0. (25)

For instance by changing the function (24) to

Rs(z) =
Ts(ω0 + ω1z)

Ts(ω0)
, with ω0 = 1 +

η

s2
, ω1 =

Ts(ω0)

T ′
s(ω0)

. (26)

The parameter η is called the damping parameter. Choosing any fixed η > 0 ensures that
Rs(z) satisfies (25). It also ensures that a strip around the negative real axis is enclosed in
the stability domain S := {z ∈ C; |Rs(z)| ≤ 1}. The growth on the negative real axis shrinks
a bit but remains quadratic [32],[31, Chap. IV.2]. For the analysis, we shall also need that
the stability functions are bounded in a neighbourhood of zero uniformly with respect to s,
precisely, there exist γ > 0 and C > 0 such that

|Rs(z)| ≤ C for all |z| ≤ γ and all s. (27)

This can be easily checked for the Chebyshev methods with stability functions (24), (26).

3.3 Preliminaries

In order to perform the analysis of the FE-HMM, it is convenient to introduce the following
auxiliary bilinear form

B(t; v, w) =

∫

Ω
a0(x, t)∇v(x) · ∇w(x)dx, ∀v, w ∈ H1

0 (Ω), (28)

where a0(x, t) is the homogenized tensor of (8). Consider also the associated bilinear form
for standard FEM with numerical quadrature,

B0,H(t; v
H , wH) =

∑

K∈TH

J∑

j=1

ωKj
a0(xKj

, t)∇vH(xKj
) · ∇wH(xKj

), (29)

for all vH , wH ∈ Sℓ0(Ω, TH). Of course, a0(x, t) is usually unknown, otherwise there is no need
for a multiscale method. In order to define FEM with numerical quadrature (as in the above
bilinear form), some regularity on the tensor a0(x, t) is needed. We suppose that

(H1) a0ij , ∂ta
0
ij ∈ C0([0, T ]×K) for all K ∈ TH for all i, j = 1, . . . , d.
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The following construction of a numerically homogenized tensor is usefull (see [4, 5] for
details). Let ei, i = 1, . . . , d, denote the canonical basis of R

d. For each ei and each
t ∈ [0, T ], we consider the following elliptic problem
∫

Kδj

aε(x, t)∇ψi,h,tKj
(x) · ∇zh(x)dx = −

∫

Kδj

aε(x, t)ei · ∇zh(x)dx, ∀zh ∈ Sq(Kδj , Th), (30)

where Sq(Kδj , Th) is defined in (11) with either periodic or Dirichlet boundary conditions.
We also consider the problem

∫

Kδj

aε(x, t)∇ψi,tKj
(x) · ∇z(x)dx = −

∫

Kδj

aε(x, t)ei · ∇z(x)dx, ∀z ∈W (Kδj ), (31)

where the Sobolev space W (Kδj ) is defined in (12) or (13). We then define two tensors

a0K(xKj
, t) :=

1

|Kδj |

∫

Kδj

aε(x, t)

(

I + JT
ψh,t
Kj

(x)

)

dx, (32)

where J
ψh,t
Kj

(x)
is a d× d matrix with entries

(

J
ψh,t
Kj

(x)

)

iℓ

= (∂ψi,h,tKj
)/(∂xℓ) and

ā0K(xKj
, t) :=

1

|Kδj |

∫

Kδj

aε(x, t)

(

I + JTψt
Kj

(x)

)

dx, (33)

where Jψt
Kj

(x) is a d× d matrix with entries

(

Jψt
Kj

(x)

)

ik

= (∂ψi,tKj
)/(∂xk).

Using the numerically homogenized tensors (32) or and the results of [5] (see also Lemmas
11 and 12 of [4]) we obtain the following reformulation of the bilinear form BH(·, ·) of (16)
which will be useful for the analysis.

Lemma 3.2 The bilinear form BH(·, ·) defined in (16) can be written as

BH(t; v
H , wH) =

∑

K∈TH

J∑

j=1

ωKj
a0K(xKj

, t)∇vH(xKj
) · ∇wH(xKj

). (34)

Using (33) we can also define a bilinear form useful for the subsequent analysis

B̄H(t; v
H , wH) =

∑

K∈TH

J∑

j=1

ωKj
ā0K(xKj

, t)∇vH(xKj
) · ∇wH(xKj

). (35)

Solving the parabolic problem (15) with the bilinear form B̄H amounts to neglecting the
micro errors, as the micro functions in (31) are exact.
Coercivity and boundedness of the bilinear forms. We shall also consider the bilinear
forms B′(t; v, w), B′

H(t; v
H , wH) defined as the time differentiations of (28), (34), respectively,

B′(t; v, w) =

∫

Ω

(
∂ta

0(x, t)
)
∇v(x) · ∇w(x)dx,

B′
H(t; v

H , wH) =
∑

K∈TH

J∑

j=1

ωKj

(
∂ta

0
K(xKj

, t)
)
∇vH(xKj

) · ∇wH(xKj
).
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In view of (2) and (H1), we have for some positive constants γ1, γ2,

γ1‖v‖2H1(Ω) ≤ B(v, v), (36)

|B(t; v, w)|+ |B′(t; v, w)| ≤ γ2‖v‖H1(Ω)‖w‖H1(Ω),

for all v, w ∈ H1
0 (Ω) and all t. Assuming that the quadrature formula satisfies (Q1) and that

(2) and (H1) hold, then (29) is coercive and bounded (see [16]). It can also be shown that
the bilinear forms BH(·, ·) defined in (16) is (uniformly w.r. to ε) coercive and bounded (see
[2],[23],[3, Sect. 3.3.1] for a proof). i.e.,

γ1‖vH‖2H1(Ω) ≤ BH(t; v
H , vH), (37)

|BH(t; vH , wH)|+ |B′
H(t; v

H , wH)| ≤ γ2‖vH‖H1(Ω)‖wH‖H1(Ω), (38)

for all vH , wH ∈ Sℓ0(Ω, TH) and all t. The same bounds (37),(38) can be shown for the
bilinear form B̄H(t; v

H , wH). No spatial structure assumption (as e.g. periodicity, random
homogeneity) on the small scale tensor aε is required to prove coercivity and boundedness
(only (2) and (Q1) are needed).

We quantify the discrepancy between the bilinear forms B0,H(t; ·, ·) defined in (29) and
BH(t; ·, ·) defined in (16). This will account for the error done at the microscale as well as
the so-called modeling error, the error induced by artificial micro boundary conditions or
non-optimal sampling of the micro structure. Consider the quantity

rHMM := sup
K∈TH ,xKj

∈K,t∈[0,T ]
‖a0(xKj

, t)− a0K(xKj
, t)‖F (39)

+ sup
K∈TH ,xKj

∈K,t∈[0,T ]
‖∂ta0(xKj

, t)− ∂ta
0
K(xKj

, t)‖F ,

where ‖ · ‖F denotes the Frobenius norm3. Following the strategy developed in [5, 3, 4] for
the error analysis, we can further decompose rHMM into micro and modeling error terms as

rHMM =

1∑

k=0

sup
K∈TH ,xKj

∈K,t∈[0,T ]
‖∂kt a0(xKj

, t)− ∂kt ā
0
K(xKj

, t)‖F
︸ ︷︷ ︸

rMOD

+
1∑

k=0

sup
K∈TH ,xKj

∈K,t∈[0,T ]
‖∂kt ā0K(xKj

, t)− ∂kt a
0
K(xKj

, t)‖F
︸ ︷︷ ︸

rMIC

, (40)

where we have used the tensor (33).

Lemma 3.3 Let B0,H(t; ·, ·) and BH(t; ·, ·) be the bilinear forms defined in (29) and (16),
respectively. Then we have

|B0,H(t; v
H , wH)−BH(t; v

H , wH)|+ |B′
0,H(t; v

H , wH)−B′
H(t; v

H , wH)|
≤ CrHMM‖vH‖H1(Ω)‖wH‖H1(Ω)

3The Frobenius norm of a matrix M is defined as ‖M‖F =
√

trace(MTM).
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Proof. By using the continuity of the bilinear forms B0,H(·, ·) and BH(·, ·), we have using
the Cauchy-Schwarz inequality,

|B0,H(t; v
H , wH)−BH(t; v

H , wH)|

≤
∑

K∈TH

|
J∑

j=1

ωKj
(a0(xKj

, t)− a0K(xKj
, t))∇vH(xKj

)∇wH(xj)dx|

≤ sup
K∈TH ,xKj

∈K,t∈[0,T ]
‖a0(xKj

, t)− a0K(xKj
, t)‖F

√
√
√
√

∑

K∈TH

J∑

j=1

ωKj
|∇vH(xKj

)|2

·

√
√
√
√

∑

K∈TH

J∑

j=1

ωKj
|∇wH(xKj

)|2

≤ C sup
K∈TH ,xKj

∈K,t∈[0,T ]
‖a0(xKj

, t)− a0K(xKj
, t)‖F ‖vH‖H1(Ω)‖wH‖H1(Ω).

We proceed similarly for B′
0,H(v

H , wH)−B′
H(v

H , wH). �

The modeling and the micro error can be traced in the following lemma, whose proof
follows the arguments of Lemma 3.3.

Lemma 3.4 Let B0,H(t; ·, ·), BH(t; ·, ·) and B̄H(t; ·, ·) be the bilinear forms defined in (29),
(16), and (35), respectively. Then we have for all vH , wH ∈ Sℓ0(Ω, TH),

|B0,H(t; v
H , wH)− B̄H(t; v

H , wH)|+ |B′
0,H(t; v

H , wH)− B̄′
H(t; v

H , wH)|
≤ CrMOD‖vH‖H1(Ω)‖wH‖H1(Ω),

|B̄H(t; vH , wH)−BH(t; v
H , wH)|+ |B̄′

H(t; v
H , wH)−B′

H(t; v
H , wH)|

≤ CrMIC‖vH‖H1(Ω)‖wH‖H1(Ω).

Standard estimates for bilinear forms with numerical quadrature. Consider the
usual nodal interpolant IH : C0(Ω) → Sℓ0(Ω, TH) onto the FE space Sℓ0(Ω, TH) defined in (9).
The following estimates are based on the Bramble-Hilbert lemma and have first been derived
in [17, Thm. 4 and Thm. 5]. They will often be used in our analysis. Assuming (Q2) and the
regularity assumptions of Theorem 4.1 (see next section), we have for all vH , wH ∈ Sℓ0(Ω, TH)
(where µ = 0 or 1),

|B(t; vH , wH)−B0,H(t; v
H , wH)| ≤ CH‖vH‖H1(Ω)‖wH‖H1(Ω), (41)

|B(t; IHu0, wH)−B0,H(t; IHu0, wH)| ≤ CHℓ‖u0(t)‖W ℓ+1,p(Ω)‖wH‖H1(Ω), (42)

|B(t; IHu0, wH)−B0,H(t; IHu0, wH)| ≤ CHℓ+µ‖u0(t)‖W ℓ+1,p(Ω)

( ∑

K∈TH

‖wH‖2H2(K)

)1/2
. (43)

An α-accretive operator. For the time-discretization analysis, we introduce for each time
t the linear operator AH(t) : S

ℓ
0(Ω, TH) → Sℓ0(Ω, TH) defined as

(−AH(t)vH , wH) = BH(t; v
H , wH), for all vH , wH ∈ Sℓ0(Ω, TH), (44)

where BH is the bilinear form defined in (16). Consider the sector in the complex plane

Sα = {ρeiθ ; ρ ≥ 0, |θ| ≤ α}.

11



The operator AH can be extended straightforwardly to a complex Hilbert space based on
Sℓ0(Ω, TH) equipped with the complex scalar product (u, v) =

∫

Ω u(x)v(x)dx which is an
extension of the usual L2 scalar product. It can be shown that −AH is a so-called α-accretive
operator4: there exist 0 ≤ α ≤ π/2 and C > 0 such that for all z /∈ Sα, the operator
zI +AH(t) is an isomorphism and

‖(zI +AH(t))
−1‖L2(Ω)→L2(Ω) ≤

1

d(z, Sα)
for all z /∈ Sα, (45)

where d(z, Sα) is the distance between z and Sα. In general one can show α ≤ arccos(γ1/γ2)
using (37),(38). In the case of a symmetric tensor, all the eigenvalues of AH are real and
located on the negative real axis of the complex plane, and one has simply α = 0. The proof
of (45) is omitted as this is a classical result for the time discretization of parabolic PDEs.
More details can be found for instance in [18].

4 Main results

In this section we shall present our main results. We first analyze the spatial discretization
errors, and then we focus on the time discretization errors.

4.1 Fully discrete results in space

Theorem 4.1 Consider u0, u
H the solutions of (8), (15), respectively. Let µ = 0 or 1, ℓ ≥ 1

and 2 ≤ p ≤ ∞ such that ℓ > d/p. Assume (Q1),(Q2),(H1),(36),(37) and

u0, ∂tu0 ∈ L2(0, T ;W ℓ+1,p(Ω)),

a0ij , ∂ta
0
ij ∈ L∞(0, T ;W ℓ+µ,∞(Ω)), ∀i, j = 1 . . . d.

Then we have the L2(H1) and C0(L2) estimates

‖u0 − uH‖L2([0,T ];H1(Ω)) ≤ C(Hℓ + rHMM + ‖g − uH0 ‖L2(Ω)), (46)

‖u0 − uH‖C0([0,T ];L2(Ω)) ≤ C(Hℓ+1 + rHMM + ‖g − uH0 ‖L2(Ω)), if µ = 1. (47)

If in addition, the tensor is symmetric, then we have the C0(H1) estimate

‖u0 − uH‖C0([0,T ];H1(Ω)) ≤ C(Hℓ + rHMM + ‖g − uH0 ‖H1(Ω)). (48)

The constants C are independent of H, rHMM .

The first term in the right-hand side of the above estimates quantifies the error of the macro
solver. It shows that the proposed multiscale FEM gives optimal (macroscopic) convergence
rates in the C0(L2) and L2(H1) norms (and C0(H1) for symmetric tensors) of the fully discrete
FE-HMM (15). We emphasize that the above error estimates have been derived without
specific assumptions on the oscillation of the multiscale tensor. We recall that the additional
term rHMM defined in (39), that appears in the right-hand side of (46) or (47), encodes the
so-called modeling and micro error, i.e., the error due to a possible mismatch of the averaging
procedure in the FE-HMM, the boundary conditions and size of the sampling domains as well
as the discretization error done of the micro FEMs.

4Equivalently, +AH is called an α-dissipative operator.
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To quantify further the term rHMM we need some regularity and growth assumption (in
terms of ε) of the solution of the microproblems (31). Motivated by the case of periodic
tensors (e.g. the chain rule applied to aε = a(x, x/ε, t)) we consider the following regularity
assumption on the solution of problem (31)

(H2) |ψi,tKj
|Hq+1(Kδj

) + |∂tψi,tKj
|Hq+1(Kδj

) ≤ C ε−q
√

|Kδj |, where C is independent of ε, the

time t, the quadrature points xKj
, and the domain Kδj . We also suppose that the map

t→ aε(·, t) ∈ (L∞(Ω))d×d is C1 and |∂taεij(t, ·)|L∞(Ω) ≤ C, for all t ∈ (0, T ) and all ε > 0. We
make the same assumptions on the solution of the modified problem (31) where the tensor
aε is replaced by aεT (the adjoint problem).

Remark 4.2 When Dirichlet boundary conditions (13) are imposed in (30), the assump-
tion (H2) can be easily satisfied (without any further knowledge about the structure of the

oscillating tensor aε) for q = 1 as |ψi,tKj
|H2(Kδj

) ≤ Cε−1
√

|Kδj | follows from classical H2

regularity results ([34, Chap. 2.6]), provided that |aεij(·, t)|W 1,∞(Ω) ≤ Cε−1 for i, j = 1, . . . , d.

Then, following the proof of [11, Lemma 4.12], |∂tψi,tKj
|H2(Kδj

) ≤ Cε−1
√

|Kδj | holds, provided
|∂taεij(·, t)|W 1,∞(Ω) ≤ Cε−1. For periodic boundary conditions (12) in (30), (H2) can be es-
tablished for any given q, provided aε = a(x, x/ε, t) = a(x, y, t) is Y -periodic in y, δ/ε ∈ N,
and aε is sufficiently smooth, by following classical regularity results for periodic problems
(see [13, Chap. 3]). 5

We then have the following theorem.

Theorem 4.3 Consider u0, u
H the solutions of (8), (15), respectively. In addition to the

assumptions of Theorem 4.1, assume that (H2) hold. Then we have

‖u0 − uH‖L2([0,T ];H1(Ω)) ≤ C(Hℓ +

(
h

ε

)2q

+ rMOD + ‖g − uH0 ‖L2(Ω)), (49)

‖u0 − uH‖C0([0,T ];L2(Ω)) ≤ C(Hℓ+1 +

(
h

ε

)2q

+ rMOD + ‖g − uH0 ‖L2(Ω)), if µ = 1. (50)

If in addition, the tensor is symmetric, then

‖u0 − uH‖C0([0,T ];H1(Ω)) ≤ C(Hℓ +

(
h

ε

)2q

+ rMOD + ‖g − uH0 ‖H1(Ω)).

The constants C are independent of H,h, rMOD, ε.

The first term as is Theorem 4.1 quantifies the error coming from the macro solver. The second
term quantities the error coming from the micro solver – when discretizing the microproblems
by a FEM – transmitted to macroscale. This term does not appear in the analysis given in
[38], where the microsolutions uh, vh in (16) where supposed to be exact. The additional
analysis of the micro error allows to derive a macro-micro refinement strategy.
We emphasize that the remaining term rMOD defined in (40) does not depend on the macro
and micro mesh sizes H and h. In particular, any result concerning the approximation of
the homogenized tensor with artificial micro boundary conditions or modified cell problems

5We also note that ∂k
t a

ε
ij |K ∈ W 1,∞(K) ∀K ∈ TH and |∂k

t a
ε
ij |W1,∞(K) ≤ Cε−1 with k = 0 and 1 are

sufficient, if the macro mesh is aligned with the (possible) discontinuities of aε (see [5] for details).
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(e.g. [14],[23],[29],[30],[44]) could be used in our analysis. Here, we consider a class of non
uniformly periodic tensors of the form

(H3) aε = a(x, x/ε, t) = a(x, y, t) Y -periodic in y, where we set Y = (0, 1)d.

We then have the following theorem.

Theorem 4.4 Consider u0, u
H the solutions of (8), (15), respectively. In addition to the

assumptions of Theorem 4.1, assume (H2) and (H3). Assume also that ψi,tKδj
is the solution

of the cell problem (30) in the space W 1
per(Kδj ), that ε/δ ∈ N, and that the tensor a(x, x/ε, t)

is collocated at the quadrature points a(xKj
, x/ε, t) in the FE-HMM macro bilinear form (16)

and in the micro problems (14). Then we have

‖u0 − uH‖L2([0,T ];H1(Ω)) ≤ C(Hℓ +

(
h

ε

)2q

+ ‖g − uH0 ‖L2(Ω)),

‖u0 − uH‖C0([0,T ];L2(Ω)) ≤ C(Hℓ+1 +

(
h

ε

)2q

+ ‖g − uH0 ‖L2(Ω)), if µ = 1. (51)

If in addition, the tensor is symmetric, then

‖u0 − uH‖C0([0,T ];H1(Ω)) ≤ C(Hℓ +

(
h

ε

)2q

+ ‖g − uH0 ‖H1(Ω)).

The constants C are independent of H,h, ε.

Remark 4.5 If the tensor a(x, x/ε, t) is not collocated at the slow variable in the above
theorem, we get for the modeling error (see [11, Appendix],[3, Prop. 14])

rMOD ≤ C δ.

If the solution of the cell problem (30) in H1
0 (Kδj ), a resonance error contributes to rMOD.

For a tensor independent of time, the results in [23] can be readily used in the framework
developed in this paper for the analysis of parabolic problems and we have

rMOD ≤ C(δ +
ε

δ
).

This results could be extended for time-dependent tensor by following [23] and [11, Appendix].

4.2 Fully discrete estimates in space and time

In this section, we explain how fully discrete estimates in both space and time can be derived.
We focus on the one hand on implicit time discretizations (Runge-Kutta methods) with vari-
able timesteps, and on the other hand on stabilized explicit time discretizations (Chebyshev
methods). We assume that the numerical initial condition uH0 of the FE-HMM in (15) is
chosen to approximate the exact initial condition g as

‖uH0 − g‖L2(Ω) ≤ C(Hℓ+1 + rHMM ), (52)

‖uH0 − g‖H1(Ω) ≤ C(Hℓ + rHMM ). (53)

Remark 4.6 There are several natural choices for the initial condition uH0 to satisfy (52)-
(53). For instance, one can take uH0 = ΠHg, the L

2 projection of g on Sℓ0(Ω, TH), defined
as

(ΠHg − g, zH) = 0, ∀zH ∈ Sℓ0(Ω, TH), (54)

and then (52)-(53) hold without the rHMM terms6. One can also consider the elliptic projec-

6Notice that the regularity assumed on u0, ∂tu0 in Theorem 4.1 implies u0(0) = g ∈ W ℓ+1,p(Ω).
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tion uH0 = PHg with respect to the bilinear forms B in (28) and BH in (16),

BH(0;PHg, z
H) = B(0; g, zH), ∀zH ∈ Sℓ0(Ω, TH), (55)

and (52)-(53) hold (see Corollary 5.2 in Sect. 5.1 below where we notice wH(0) = ΠHg).

The first theorem treats the case of implicit methods and is obtained by combining our
fully discrete error estimates in space (Theorem 4.4) with the results of [37].

Theorem 4.7 Consider u0 the exact solution of (8) and uHn the numerical solution of a
Runge-Kutta method for (17), with variable timesteps {∆tn} satisfying (21)-(22). Given an
integer r ≥ 1, assume that the Kunge-Kutta method has order r when applied to ordinary
differential equations, that it has stage order r−1, and that it is strongly A(θ)-stable with α <
θ where α is the angle in (45) of accretivity of −AH . Assume the hypotheses of Theorem 4.4
with µ = 1. Assume further (52),

f ∈ Hr(0, T ;L2(Ω)), aε ∈ Cr([0, T ], L∞(Ω)d×d) with ‖∂kt aε‖(L∞(Ω))d×d ≤ C, k = 1 . . . r,

and
‖∂rt uH(0)‖L2(Ω) ≤ C, (56)

where uH is the solution of (15). Then, we have the C0(L2) estimate

max
0≤n≤N

‖uHn − u0(tn)‖L2(Ω) ≤ C

(

Hℓ+1 +
(h

ε

)2q
+∆tr

)

. (57)

Assuming in addition (53) and that aε is symmetric, then we have the L2(H1) estimate

N−1∑

n=0

∆tn‖uHn − u0(tn)‖2H1(Ω) ≤ C

(

Hℓ +
(h

ε

)2q
+∆tr

)2

. (58)

All the above constants C are independent of H,h, ε,∆t.

The assumption (56) can be satisfied in dimension d = dimΩ ≤ 3 as proved in Proposition
5.3 of Sect. 5.2 below. We mention that for r = 1 the symmetry assumption on the tensor
can be removed for (58) (see Sect. 5.2). The next theorem treats the case of Chebyshev
methods where we focus for simplicity on the case where tensor aε is symmetric and time-
independent. Recall from Sect. 3.2 that it is essential when considering Chebychev methods
that the eigenvalues of the differential operator of the problem remain close to the negative
real axis. This is automatically the case when the tensor is symmetric.

Theorem 4.8 Consider u0 the exact solution of (8) and uHn the numerical solution of a
Chebyshev method for (17), applied with a constant timestep ∆t = T/N , and with stability
functions {Rs(z)}s≥1. Assume that the tensor aε is symmetric and time-independent, and
that f = 0. Assume (52) and the hypotheses of Theorem 4.4 with µ = 1. Given r ≥ 1,
assume that the order of the Chebyshev method is r, precisely,

lim
z→0

∣
∣
∣
∣

ez −Rs(z)

zr+1

∣
∣
∣
∣
<∞ for all s ≥ 1. (59)

In addition to (27), assume the strong stability condition (25) holds with the number of stages
s chosen such that ρ∆t ≤ Ls, where ρ is the spectral radius of the operator AH defined in
(44). Then,

max
0≤n≤N

‖uHn − u0(tn)‖L2(Ω) ≤ C

(

Hℓ+1 +
(h

ε

)2q
+∆tr

)

. (60)
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For the sake of brevity of the analysis, we assumed in Theorem 4.8 above that the source
term f is zero. Notice that a non-zero time-independent source f(x) could also be considered
in the analysis by using a change of variable of the standard form u0(x, t) ↔ u0(x, t)− u0(x)
where u0 denotes the stationary solution of the problem, to retreive the zero source case
(we omit the details). Moreover, in the case where the strong stability condition (25) is not
satisfied (for instance if the damping is zero in the Chebyshev method (26)), we can still
show the convergence by exploiting the regularity of the initial condition, as illustrated in
Theorem 5.6 of Sect. 5.2.1.

Remark 4.9 For simplicity, we assumed rMOD = 0 in Theorems 4.7 and 4.8. If (H2) does
not hold (similarly to Theorem 4.3), then (57), (58), and (60) remain valid provided the term
rMODdefined in (40) is added in the right-hand sides of these estimates.

5 Analysis

5.1 Fully discrete analysis in space

In this section we perform the analysis of the numerical method (15).
We shall often use the following continuous embedding result [27, Sect. 5.9.2]. For all

v ∈ H1(0, T ;X) where X is a real Banach space, e.g. X = L2(Ω) or X = H1(Ω), we have
v ∈ C0([0, T ];X), v(t) = v(s) +

∫ t
s v

′(τ)dτ , for all 0 ≤ s ≤ t ≤ T and

‖v‖C0([0,T ];X) ≤ C‖v‖H1(0,T ;X) (61)

where C depends only on T and X. The macro FE space Sℓ0(Ω, TH) equipped with the H1

norm will be denoted V ℓ in the following. Let u0(t) be the solution of (8). Following an idea of
Raviart [40] for FEMs with numerical quadrature applied to (single scale) parabolic equations,
we define an elliptic projection as follows. For all t ∈ (0, T ), we let wH(t) ∈ Sℓ0(Ω, TH)
equipped with the norm of H1(Ω) be the elliptic projection of u0(t) with respect to B and
BH as

BH(t;w
H(t), zH) = B(t;u0(t), z

H), ∀zH ∈ Sℓ0(Ω, TH), t ∈ (0, T ). (62)

Using the ellipticity and continuity (37) of BH and (36), wH(t) is well defined for all t and
wH ∈ L2(0, T ;V ℓ). Differentiating (62) with respect to time, we obtain for all zH ∈ Sℓ0(Ω, TH)
and almost all t ∈ (0, T )

BH(t; ∂tw
H(t), zH) = B′(t;u0(t), z

H) +B(t; ∂tu0(t), z
H)−B′

H(t;w
H(t), zH). (63)

We deduce similarly ∂tw
H ∈ L2(0, T ;V ℓ). Using (61) with X = V ℓ we have that wH is in

fact a continuous function of time on [0, T ]. As a preparation for the derivation of Theorem
4.1 we need the following lemma.

Lemma 5.1 Let u0(t) be the solution of (8) and wH(t) be the elliptic projection defined in
(62). Assume that the hypothesis of Theorem 4.1 hold. Then we have

‖∂kt
(
wH − u0

)
‖L2(0,T ;H1(Ω)) ≤ C(Hℓ + rHMM ), k = 0, 1, (64)

‖∂kt
(
wH − u0

)
‖L2(0,T ;L2(Ω)) ≤ C(Hℓ+µ + rHMM ), k = 0, 1, µ = 0, 1. (65)
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Proof. Step 1: estimation of ‖wH − u0‖L2(0,T ;H1(Ω)).

Using (62), we get for all zH ∈ Sℓ0(Ω, TH),

BH(t;w
H − IHu0, zH) = B(t;u0 − IHu0, zH)

+ B(t; IHu0, zH)−B0,H(t; IHu0, zH)
+ B0,H(t; IHu0, zH)−BH(t; IHu0, zH)
≤ CHℓ‖u0(t)‖W ℓ+1,p(Ω)‖zH‖H1(Ω)

+ rHMM‖IHu0(t)‖H1(Ω)‖zH‖H1(Ω)

where we used (42) and Lemma 3.3. Using the ellipticity (37) of BH and taking zH =
wH(t)− IHu0 gives

γ1‖wH(t)− IHu0(t)‖H1(Ω) ≤ CHℓ‖u0(t)‖W ℓ+1,p(Ω) + rHMM‖u0(t)‖H2(Ω).

Integrating between 0 and T , and using ‖IHu0 − u0‖L2(0,T ;H1(Ω)) ≤ CHℓ gives

‖wH − u0‖L2(0,T ;H1(Ω)) ≤ C(Hℓ + rHMM ). (66)

Step 2: estimation of ‖∂t(wH − u0)‖L2(0,T ;H1(Ω)).
Using (63), we obtain

BH(t; ∂tw
H − IH∂tu0, zH) = B(t; ∂tu0 − IH∂tu0, zH) +B′(t;u0 − IHu0, zH)

+ B(t; IH∂tu0, zH)−B0,H(t; IH∂tu0, zH)
+ B0,H(t; IH∂tu0, zH)−BH(t; IH∂tu0, zH)
+ B′(t; IHu0, zH)−B′

0,H(t; IHu0, zH)
+ B′

0,H(t; IHu0, zH)−B′
H(t; IHu0, zH)

− B′
H(t;w

H − IHu0, zH)

This yields using (42) and Lemma 3.3,

BH(t; ∂tw
H − IH∂tu0, zH) ≤ CHℓ(‖u0(t)‖W ℓ+1,p(Ω) + ‖∂tu0(t)‖W ℓ+1,p(Ω))‖zH‖H1(Ω)

+ rHMM (‖IHu0(t)‖H1(Ω) + ‖IH∂tu0(t)‖H1(Ω))‖zH‖H1(Ω)

+ C‖wH − IHu0(t)‖H1(Ω)‖zH‖H1(Ω)

We take zH = ∂tw
H(t)−IH∂tu0(t). Using (66) to estimate the last term in above inequality,

we obtain the following estimate, similarly to the Step 1,

‖∂t(wH − u0)‖L2(0,T ;H1(Ω)) ≤ C(Hℓ + rHMM ). (67)

Step 3: estimation of ‖wH − u0‖L2(0,T ;L2(Ω)).
We use the classical duality argument of Aubin-Nitsche. Given v ∈ L2(0, T ;L2(Ω)), consider
for almost every t ∈ (0, T ) the solution ϕ(t) ∈ H1

0 (Ω) of the problem

B(z, ϕ(t)) = (v(t), z), ∀z ∈ H1
0 (Ω). (68)

Since a ∈ (L∞(0, T ;W 1,∞(Ω)))d×d, using the convexity of the polyhedral domain Ω, we know
that ϕ ∈ L2(0, T ;H2(Ω)) and

‖ϕ‖L2(0,T ;H2(Ω)) ≤ C‖v‖L2(0,T ;L2(Ω)). (69)
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We take z = v = wH(t)− u0(t) in (68). Using (62) we obtain for all ϕH(t) ∈ Sℓ0(Ω, TH),

(wH − u0, w
H − u0) = B(t;wH − u0, ϕ− ϕH)

+ B(t;wH − IHu0, ϕH)−BH(t;w
H − IHu0, ϕH)

+ B(t; IHu0, ϕH)−BH(t; IHu0, ϕH). (70)

We take ϕH = IHϕ(t). Using (36), (41) and (43) respectively, we deduce

(wH − u0, w
H − u0) ≤ C‖ϕ(t)‖H2(Ω)

(
(H + rHMM )‖wH(t)− u0(t)‖H1(Ω)

+ (Hℓ+µ + rHMM )‖u(t)‖Hℓ+1(Ω)

)

where we used also Lemma 3.3. We deduce with (69) and (66) that

‖wH − u0‖L2(0,T ;L2(Ω)) ≤ C(Hℓ+µ + rHMM ). (71)

Step 4: Estimation of ‖∂t(wH − u0)‖L2(0,T ;L2(Ω)).

We consider again the dual problem (68), with z = v = ∂t(w
H − u0)

(
∂t(w

H − u0), ∂t(w
H − u0)

)
= B(t; ∂t(w

H − u0), ϕ), (72)

and estimate for ϕ(t) ∈ H2(Ω) and ϕH(t) ∈ Sℓ0(Ω, TH)

B(t, ∂t(w
H − u0), ϕ) = B(t; ∂t(w

H − u0), ϕ− ϕH)

+ B(t; ∂tw
H − IH∂tu0, ϕH)−BH(t; ∂tw

H − IH∂tu0, ϕH)
+ B(t; IH∂tu0, ϕH)−BH(t; IH∂tu0, ϕH)
+ B′(t;u0 − wH , ϕ)

+ B′(t;u0 − wH , ϕH − ϕ)

+ B′(t;wH − IHu0, ϕH)−B′
H(t;w

H − IHu0, ϕH)
+ B′(t; IHu0, ϕH)−B′

H(t; IHu0, ϕH). (73)

The fourth term in the right-hand side of (73) can be bounded as

B′(t;u0 − wH , ϕ) = (u0 − wH ,Lϕ) ≤ C‖u0(t)− wH(t)‖L2(Ω)‖ϕ(t)‖H2(Ω),

where we consider the differential operator L := −∑d
i,j=1

∂
∂xi

(∂a0ji
∂t (x, t) ∂

∂xj

)
. All other terms

in the right-hand side of (73) can be bounded similarly as those in the right-hand side of
(70). From (72), using (73) with ϕH = IHϕ we obtain

‖∂t(wH(t)− u0(t))‖L2(Ω) ≤ C
(

‖u0(t)− wH(t)‖L2(Ω) +Hℓ+µ + rHMM

)

‖ϕ(t)‖H2(Ω).

Integrating this estimate between 0 and T and using the estimates (69),(66), (67), (71), we
deduce from the Cauchy-Schwarz inequality

‖∂t(wH − u0)‖L2(0,T ;L2(Ω)) = C(Hℓ+µ + rHMM ). (74)

This concludes the proof of Lemma 5.1. �
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Corollary 5.2 Under the assumption of Lemma 5.1, we have

‖wH − u0‖C0(0,T ;H1(Ω)) ≤ C(Hℓ + rHMM ) (75)

‖wH − u0‖C0(0,T ;L2(Ω)) ≤ C(Hℓ+µ + rHMM ). (76)

Proof. The results follow from (61) with X = H1(Ω) or X = L2(Ω) using (66),(67) or
(71),(74). �

We can now prove our first main result.
Proof of Theorem 4.1 In view of the triangle inequality

‖u0 − uH‖ ≤ ‖wH − u0‖+ ‖uH − wH‖

and Lemma 5.1 it remains to estimate ‖uH − wH‖ for the L2(H1), C0(L2) and the C0(H1)
norms.
Step 1: Estimation of ‖uH − wH‖L2(0,T ;H1(Ω)) + ‖uH − wH‖C0([0,T ];L2(Ω)).

We set ξH(t) = uH(t) − wH(t), t ∈ [0, T ]. A simple calculation using (8),(15) and (62) gives
for all zH ∈ Sℓ0(Ω, TH),

(∂tξ
H , zH) +BH(t; ξ

H , zH) = (∂tu0, z
H)− (∂tw

H , zH). (77)

Integrating this equality from 0 to t with zH = ξH , using the continuity of uH , wH with
respect to time, the coercivity of BH(·, ·), (36) and the Cauchy-Schwarz and the Young
inequalities, we obtain

‖ξH(t)‖2L2(Ω) + γ1

∫ t

0
‖ξH(s)‖2H1(Ω)ds ≤ ‖ξH(0)‖2L2(Ω) +

1

γ1

∫ t

0
‖∂tu0 − ∂tw

H‖2L2(Ω)ds, (78)

and thus

‖ξH‖2L2(0,T ;H1(Ω)) ≤ C
(

‖ξH(0)‖2L2(Ω) + ‖∂tu0 − ∂tw
H‖2L2(0,T ;L2(Ω))

)

.

Using the decomposition ξ(0) = (u0 − wH)(0) + (uH0 − g) and (76) yields

‖ξ(0)‖L2(Ω) ≤ C(Hℓ+µ + rHMM ) + ‖uH0 − g‖L2(Ω). (79)

By taking the supremum with respect to t in (78), using (79) and (65) we deduce

‖uH − wH‖C0([0,T ];L2(Ω)) + ‖uH − wH‖L2(0,T ;H1(Ω)) ≤ C(Hℓ+µ + rHMM + ‖uH0 − g‖L2(Ω)).

Step 2: Estimation of ‖uH − wH‖C0([0,T ];H1(Ω)).

For ξH(t) = uH(t)− wH(t), t ∈ [0, T ], we set zH = ∂tξ
H in (77). Using the symmetry of the

tensor, and integrating from 0 to t, we obtain for 0 ≤ t ≤ T

2

∫ t

0
‖∂tξH(s)‖2L2(Ω)ds+BH(t; ξ

H(t), ξH(t)) = BH(0; ξ
H(0), ξH(0)) +

∫ t

0
B′
H(s; ξ

H , ξH)ds

+ 2

∫ t

0
(∂tu0 − ∂tw

H , ∂tξ
H) ds.
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Using the coercivity of BH(·, ·), (36) and the Cauchy-Schwarz inequality, and the Young
inequality, we obtain, similarly to (78),

∫ t

0
‖∂tξH(s)‖2L2(Ω)ds+ γ1‖ξH(t)‖2H1(Ω) ≤ γ2‖ξH(0)‖2H1(Ω) + γ2

∫ t

0
‖ξH(s)‖2H1(Ω)ds

+

∫ t

0
‖∂tu0(s)− ∂tw

H(s)‖2L2(Ω)ds. (80)

Using again ξH(0) = (u0 − wH)(0) + (uH0 − g) and (75) gives

‖ξH(0)‖H1(Ω) ≤ C(Hℓ + rHMM ) + ‖uH0 − g‖H1(Ω). (81)

Taking the suppremum with respect to t in (80), and using (81), (64), we deduce

‖uH − wH‖C0([0,T ];H1(Ω)) ≤ C(Hℓ + rHMM + ‖uH0 − g‖H1(Ω)).

This together with (75) concludes the proof of (48). �

Micro and modeling errors.

Proof of Theorem 4.3 In view of (40), we have to estimate

rMIC =
1∑

k=0

sup
K∈TH ,xKj

∈K,t∈[0,T ]
‖∂kt ā0K(xKj

, t)− ∂kt a
0
K(xKj

, t)‖F . (82)

For k = 0, the estimate of the micro error rMIC was first presented in [2], generalized to high
order in [3, Lemma 10],[5, Corollary 10] (see also [4]). These results can be generalized for
nonsymmetric tensor [21] (see also [11] for a short proof). The time-dependence of the tensor
does not change the above proof and we have

sup
K∈TH ,xKj

∈K,t∈[0,T ]
‖ā0K(xKj

, t)− a0K(xKj
, t)‖F ≤ C

(
h

ε

)2q

.

To estimate the term for k = 1 we follow [11, Lemma 4.6, Lemma 7.1]. We first observe (see
[11, Lemma 4.6]) that

(ā0K(xKj
, t)− a0K(xKj

, t))mn

=
−1

|Kδj |

∫

Kδj

aε(x, t)
(

∇ψn,tKj
(x)−∇ψn,h,tKj

(x)
)

·
(

∇ψm,tKj
(x)−∇ψm,h,tKj

(x)
)

dx, (83)

where ψ
m,h,t
Kj

, ψ
m,t
Kj

are the solutions of the problems (30), (31), respectively, with aε(x, t)

replaced by aε(x, t)T (the adjoint problem). Differentiating with respect to t and using (2)
we obtain

| d
dt
(ā0Kj

(xKj
, t)− a0Kj

(xKj
, t))mn|

≤ 1

|Kδj |
(

‖∇ψn,tKj
−∇ψn,h,tKj

‖L2(Kδj
)‖∇ψ

m,t
Kj

−∇ψm,h,tKj
‖L2(Kδj

)

+‖∂t∇ψn,tKj
− ∂t∇ψn,h,tKj

‖L2(Kδj
)‖∇ψ

m,t
Kj

−∇ψm,h,tKj
‖L2(Kδj

)

+‖∇ψn,tKj
−∇ψn,h,tKj

‖L2(Kδj
)‖∂t∇ψ

m,t
Kj

− ∂t∇ψ
m,h,t
Kj

‖L2(Kδj
)

)

.
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Following the proof of [11, Lemma 7.1] one can show that

∂t∇ψm,tKj
= ∇∂tψm,tKj

, ∂t∇ψm,h,tKj
= ∇∂tψm,h,tKj

,

and similarly for ψ
m,t
Kj
, ψ

m,h,t
Kj

. Using hypothesis (H2) gives the result. �

Proof of Theorem 4.4 Under hypothesis (H3) one can show the identity a0Kj
(xKj

, t) =

ā0Kj
(xKj

, t) similarly as in [9, Appendix A] (see also [4, Theorem 17]) and the result follows.
�

5.2 Fully discrete analysis in space and time

In this section, we explain how the time discretization error can be analyzed, to derive an
error analysis that is fully discrete in both time and space.

We consider the s-stage Runge-Kutta methods based on the FE-HMM spatial discretiza-
tion as defined in (18). We assume that the method has order (at least) r, stage order r − 1
and is strongly A(θ)-stable with α < θ ≤ π/2 (see Section 3.2). The following proof combines
our fully discrete error bounds in space and results in [37, Thm. 3.2 & 5.1].
Proof of Theorem 4.7 We first show the estimate

‖∂rt uH‖E ≤ C(‖f‖Hr(0,T ;L2(Ω)) + max
k=0...r

‖∂kt uH(0)‖L2(Ω)). (84)

The assumptions on the tensor ensure that the bilinear form BH(t; ·, ·) is bounded and el-
liptic uniformly in t, i.e. (37) holds, and its derivatives up to order r are continuous and
bounded uniformly in t. In the case r = 1, the estimate (84) is shown in [27, Sect. 7.1].
We notice that the proof of this estimate in [27, Sect. 7.1] remains valid for a multidimen-
sional valued function. Applying this result to the augmented system associated to (15) and
taking as unknown the vector function (uH , ∂tu

H , . . . , ∂rt u
H), we deduce that (84) holds for

a general r. Using [37, Thm. 3.2 & 5.1] (we take the pair V = (Sℓ0(Ω, TH), ‖ · ‖H1
0 (Ω)) and

H = (Sℓ0(Ω, TH), ‖ · ‖L2(Ω))) we then have

N−1∑

n=0

∆tn‖uHn − uH(tn)‖2H1(Ω) + max
0≤n≤N

‖uHn − uH(tn)‖2L2(Ω) ≤ C(∆tr)2‖∂rt uH(t)‖2E , (85)

where ‖ · ‖E is defined in (5) and the constant C is independent of H,∆t.
The estimates (57)-(58) are then an immediate consequence of the triangle inequality

applied to the decomposition uHn −u0(tn) = (uHn −uH(tn))+ (uH(tn)−u0(tn)), Theorem 4.4,
and (84),(56) and (85). �

We next discuss (56) used in the above theorem, i.e., maxk=0...r(‖∂kt uH(0)‖L2(Ω)) ≤ C.
For the case of order r = 1, this assumption is automatically satisfied if one chooses the
initial condition uH0 = PHg defined in (55) and by assuming ∂tu0 ∈ L2(Ω). Indeed, in this
case, we have ∂tu

H
0 = ΠH∂tu0. For arbitrary r, the assumption (56) can be replaced by an

assumption on the exact solution u0 as proved in the following proposition.
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Proposition 5.3 Assume ℓ ≥ r. Assume that d = dimΩ ≤ 3 and the family of macro
meshes {TH} satisfies the inverse assumption

H

HK
≤ C for all K ∈ TH and all TH . (86)

In addition to the hypotheses of Theorem 4.7, assume for all k = 1 . . . r,

∂kt u0 ∈ C0([0, T ];W ℓ+1,p(Ω)).

In the case r > 1 assume in addition to (H2) that |∂kt ψi,tKj
|Hq+1(Kδj

) ≤ Cε−q for all k < r,

and that the homogenized tensor has the smoothness

∂kt a
0
ij ∈ L∞(0, T ;W ℓ,∞(Ω)), ∀i, j = 1 . . . d, for all k < r.

Assume further that the macro and micro mesh sizes satisfy (h/ε)2q ≤ Hr. Then (56) is
satisfied with a constant C independent of H,h, ε.

Proof. We consider first the case r = 1. Subtracting (8) and (15), we obtain

(∂tu
H − IH∂tu0, zH) = B(t;u0 − IHu0, zH) +BH(t; IHu0 − uH , zH)

+ B(t; IHu0, zH)−BH,0(t; IHu0, zH)
+ BH,0(t; IHu0, zH)−BH(t; IHu0, zH)
+ (∂tu0 − IH∂tu0, zH), ∀zH ∈ Sℓ0(Ω, TH). (87)

Taking zH = ∂tu
H − IH∂tu0, using (42) and Lemma 3.3, we deduce

‖∂tuH −IH∂tu0‖2L2(Ω) ≤ C(Hℓ+ rHMM )‖∂tuH −IH∂tu0‖H1(Ω) ≤ CH‖∂tuH −IH∂tu0‖H1(Ω).

In view of (86), using the inverse estimate ‖zH‖H1(Ω) ≤ CH−1‖zH‖L2(Ω) [16, Thm. 17.2],

we deduce ‖∂tuH − IH∂tu0‖C0([0,T ],L2(Ω)) ≤ C, which concludes the proof in the case r = 1.
The proof in the case of a general r is obtained similarly by time differentiating (87), and by
proving by induction that for all k = 1 . . . r,

‖∂kt uH − ∂kt u0‖C0([0,T ],L2(Ω)) ≤ CHr−k.

This concludes the proof. �

We conclude this section by proving that the symmetry assumption used for (58) in
Theorem 4.7 can be removed in certain situations.

Proposition 5.4 For r = 1, and for a general initial condition uH0 , assuming

‖∂2t uH(0)‖L2(Ω) ≤ C,

then (53) and the symmetry assumption on the tensor can be removed for (58) in the proof
of the Theorem 4.7.
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Proof. Using ‖∂2t uH(0)‖L2(Ω) ≤ C and the estimate (84), we deduce ‖∂tuH‖C([0,T ],L2(Ω)) ≤ C.

Then, setting e(t) = ∇uH(t)−∇u0(t), and using the inequality

∆tn‖e(tn)‖2L2(Ω) =

∫ tn+1

tn

‖e(t)‖2L2(Ω)dt− 2

∫ tn+1

tn

(tn+1 − t)(e(t), ∂te(t))dt

≤ ‖e‖2L2(tn,tn+1,L2(Ω)) +

∫ tn+1

tn

((tn+1 − t)2 + ‖e(t)‖2L2(Ω)))dt

≤ ‖e‖2L2(tn,tn+1,L2(Ω)) + (∆t3n/3 + ‖e‖2L2(tn,tn+1,L2(Ω))),

we deduce, after summation on n,

N−1∑

n=0

∆tn‖e(tn)‖2L2(Ω) ≤ C(‖e‖2L2(0,T,L2(Ω)) +∆t2).

We conclude the proof using the triangle inequality applied to the decomposition ∇uHn −
∇u0(tn) = ∇(uHn − uH(tn)) +∇(uH(tn)− u0(tn)), and applying (85) and (47). �

5.2.1 Stabilized explicit methods

The proof of Theorem 4.8 relies on the following lemma, whose proof is inspired by the
analysis in [18, Thm. 9] in the context of standard implicit Runge-Kutta methods.

Lemma 5.5 Assume the hypothesis of Theorem 4.8. Then,

max
0≤n≤N

‖uHn − uH(tn)‖L2(Ω) ≤ C∆tr‖uH0 ‖L2(Ω).

Proof. Let ϕn,s(z) = enz −Rs(z)
n. It is sufficient to show the estimate

|ϕn,s(z)| ≤ Cn−r for all z ∈ [−Ls, 0], (88)

where C is independent of n, s. Indeed, consider the operator AH in (44). Using the symmetry
of AH , there exists an orthonormal basis where the operator AH is in diagonal form, which
yields,

‖ϕn,s(∆tAH)‖L2(Ω)→L2(Ω) = sup
z∈sp(AH)

|ϕn,s(∆tz)|, (89)

where sp(AH) denotes the spectrum of AH . Using (88), (89), we deduce the estimate

‖uHn − uH(tn)‖L2(Ω) = ‖ϕn,s(∆tAH)uH0 ‖L2(Ω) ≤ Cn−r‖uH0 ‖L2(Ω),

which concludes the proof. It remains to prove (88). The order condition (59) implies that
(ez−Rs(z))/zr+1 is an analytic function in a neighbourhood of zero. Applying the maximum
principle and using the bound (27), we deduce

sup
|z|≤γ

∣
∣
∣
∣

ez −Rs(z)

zr+1

∣
∣
∣
∣
≤ sup

|z|=γ

eγ + |Rs(z)|
γr+1

≤ C0, (90)

where C0 is independent of s and γ is the constant in (27). For z ∈ [−γ, 0], we notice

|Rs(z)| = ez/2|ez/2 − e−z/2ϕ1,s(z)| ≤ ez/2(1− |z|/2 + |z|2/8 + C0|z|r+1e−z/2)
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where we use (90), which yields

|Rs(z)| ≤ ez/2 for all z ∈ [−γ, 0], (91)

where γ is chosen small enough. Using the identity

ϕn,s(z) = ϕ1,s(z)
n−1∑

k=0

ekzRs(z)
n−1−k, (92)

we deduce from (90) and (91) the bound

|ϕn,s(z)| ≤ C0|z|r+1ne(n−1)z/2 ≤ C0
n(2(r + 1)|z|)r+1

(e(n− 1)|z|)r+1
≤ C0(4(r + 1)/e)r+1

nr
,

where we use the estimate e−x ≤ ( r+1
ex )r+1 for all x ≥ 0. For the case z ∈ [−Ls,−γ], let ρ < 1

denote the quantity in the left-hand side of (25). We have

|ϕn,s(z)| ≤ e−n|z| + ρn ≤ e−nγ + e−n(1−ρ) ≤ (r/e)r(γ−r + (1− ρ)−r)

nr

where we used twice the estimate e−x ≤ ( rex)
r. This proves the estimate (88) and concludes

the proof. �

Proof of Theorem 4.8. The proof is an immediate consequence of

‖uHn − u0(tn)‖L2(Ω) ≤ ‖uHn − uH(tn)‖L2(Ω) + ‖uH(tn)− u0(tn)‖L2(Ω),

Lemma 5.5, and (51) in Theorem 4.4. �

We end this section by proving a result analogous to Theorem 4.8 but in the case where
the strong stability condition is not satisfied, i.e., when only (23) instead of (25) holds.

Theorem 5.6 Consider u0 the exact solution of (8) and uHn the numerical solution of a
Chebyshev method for (17). Assume the hypothesis of Theorem 4.8 hold for r = 1, with the
exception that the strong stability condition (25) is replaced by (23). Then,

max
0≤n≤N

‖uHn − u0(tn)‖L2(Ω) ≤ C

(

Hℓ+1 +
(h

ε

)2q
+∆t

)

.

The proof of Theorem 5.6 relies on the following lemma which takes advantage of the
regularity assumed on the initial condition g. Recall that g ∈ H2(Ω) follows from (61) and
the regularity assumed on u0, ∂tu0 in Theorem 4.1.

Lemma 5.7 Assume the hypothesis of Theorem 5.6. Then,

max
0≤n≤N

‖uHn − uH(tn)‖L2(Ω) ≤ C(∆t‖g‖H2(Ω) + ‖PHg − uH0 ‖L2(Ω)),

where PHg denotes the elliptic projection of g defined in (55).
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Proof. We consider first the case where the initial condition is uH0 = PHg. We first show

∣
∣
∣
∣

enz −Rs(z)
n

z

∣
∣
∣
∣
≤ C, for all z ∈ [−Ls, 0].

Consider the function ϕn,s(z) = (enz −Rs(z)
n)/z. For z ∈ [−γ, 0], we deduce from (23)-(90)

and an identity similar to (92) the estimate

|ϕn,s(z)| ≤ C0|z|
n−1∑

k=0

ez ≤ C0
γ

1− e−γ
.

For z ∈ [−Ls,−γ], from (23), we have |ϕn,s(z)| ≤ 2/|z| ≤ 2/γ. We deduce from

uHn − uH(tn) = ∆tϕn,s(∆tAH)AHu
H
0

and the identity (89) that

‖uHn − uH(tn)‖L2(Ω) ≤ ∆tC‖AHuH0 ‖L2(Ω).

The operator PH in (55) can be decomposed as PH = A−1
H ΠHA where A is the operator

defined by −(Av,w) = B(v, w), ∀v, w ∈ H1(Ω) (see the discrete analog (44)). This yields
AHu

H
0 = ΠHAg. Using ‖ΠHAg‖L2(Ω) ≤ ‖Ag‖L2(Ω) ≤ ‖g‖H2(Ω), this concludes the proof of

Lemma 5.7 in the case uH0 = PHg.
For a general initial condition uH0 , we use the inequality

‖uHn − uH(tn)‖L2(Ω) ≤ ‖(exp(tnAH)−Rs(∆tAH))PHu0‖L2(Ω)

+ ‖Rs(∆tAH)(PHu0 − u0)‖L2(Ω)

≤ C∆t‖g‖H2(Ω) + ‖PHu0 − uH0 ‖L2(Ω)

where the first term is bounded as previously and the second term is bounded using (23) and
the identity (89) applied with Rs instead of ϕn,s. �

Proof of Theorem 5.6. Using the estimate ‖PHg − g‖L2(Ω) ≤ C(Hℓ+1 + rHMM ) which

follows from Corollary 5.2 where we notice that wH(0) = ΠHg, we deduce

‖PHg − uH0 ‖L2(Ω) ≤ C(Hℓ+1 + rHMM ) + ‖g − uH0 ‖L2(Ω).

We conclude the proof by combining Lemma 5.7 and (51) in Theorem 4.4. �

Remark 5.8 The Theorem 5.6 can be generalized for arbitrary r provided one can bound the
second term of the following inequality

max
0≤n≤N

‖uHn − uH(tn)‖L2(Ω) ≤ C(∆tr‖Arg‖L2(Ω) + ‖A−r
H ΠHA

rg − uH0 ‖L2(Ω)),

which is obtained following the lines of the proof of Lemma 5.7. This term vanishes if one
chooses the initial condition uH0 = A−r

H ΠHA
rg which is equivalent to impose ∂rt u

H(0) =
ΠH(∂

r
t u0(0)).

25



6 Numerical experiments

In this section, we show numerically that the spatial estimates of Theorem 4.4 for linear
parabolic problems with locally periodic tensors are sharp for P1 or Q1-finite elements, and
smooth initial data. We also illustrate the time discretization error estimates of Theorem 4.7
(implicit Euler method) and Theorem 5.6 (Chebyshev method). Numerical experiments for
a class of non-linear parabolic problems are reported. The case of a non periodic tensor with
variable cell sizes is also investigated on a random problem.

6.1 Convergence rates

We recall that for a tensor of the form aε(x, t) = a(x, x/ε, t) = a(x, y, t) periodic with respect
to the y variable and collocated in the slow variable at the quadrature points, the L2(H1)
and C0(L2) errors satisfy (see Theorem 4.4 with ℓ = q = 1)

‖uH − u0‖L2(0,T,H1(Ω)) ≤ C

(

H +
(h

ε

)2
)

,

‖uH − u0‖C0([0,T ],L2(Ω)) ≤ C

(

H2 +
(h

ε

)2
)

,

where we have considered periodic boundary conditions on the micro domains and δ/ε ∈ N.
As usual, C in the above estimates is independent of H,h, ε. Here, we consider for the
numerical initial value, uH0 = ΠHg, the L

2-projection (54) on Sℓ0(Ω, TH).
In the case of a linear or non-linear periodic tensor, to be able to compare our numerical

solution with the exact homogenized solution, we consider test problems with tensors which
are simple enough so that an analytical formula for the homogenized tensor can be derived.
For the case of a random tensor, a finescale reference solution is computed.

The C0(L2) and L2(H1) relative errors between the numerical and exact homogenized
solutions are approximated by quadrature formulas. We compute7

e2C0(L2),T := ‖u0‖−2
C0([0,T ];L2(Ω))

max
n=0...N

∑

K∈TH

L∑

ℓ=1

ωKℓ
|uHn (xKℓ

)− u0(xKℓ
, tn)|2, (93)

e2L2(H1),T := ‖u0‖−2
L2(0,T ;H1

0 (Ω))

T

N

N∑

n=0

′
∑

K∈TH

L∑

ℓ=1

ωKℓ
|∇uHn (xKℓ

)−∇u0(xKℓ
, tn)|2,

so that

eC0(L2),T ≈
‖u0 − uH‖C0([0,T ];L2(Ω))

‖u0‖C0([0,T ];L2(Ω))
, eL2(H1),T ≈

‖u0 − uH‖L2(0,T ;H1
0 (Ω))

‖u0‖L2(0,T ;H1
0 (Ω))

.

The Gauss quadrature formula with L = 4 nodes is chosen for quadrilateral elements, while
the quadrature formula with L = 6 nodes (the vertices, and the middles of the edges) is
chosen for triangular elements. Here, the norms ‖u0‖2C0([0,T ];L2(Ω)) and ‖u0‖2L2(0,T ;H1

0 (Ω))
, and

also the quantities u0(xKℓ
, tn) and ∇u0(xKℓ

, tn) are computed using the analytical formulas

for the exact solution u0(x, t). The prime in
∑N

n=0

′
indicates that the first and last terms of

the sum are divided by 2 (trapezoidal rule).

7The prime in
∑N

n=0

′

indicates that the first and last terms of the sum are divided by 2 (trapezoidal rule).
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(a) Implicit Euler method.
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(b) Chebyshev method of order 1.

Figure 1: Linear problem (94)-(97). eC0(L2),T error (solid lines) and eL2(H1),T error (dashed
lines) versus the number Nsteps of timesteps. Fine macro and micro meshes (Nmacro =
Nmicro = 128).

6.2 Linear case with a (non-uniform) periodic tensor

We consider the numerical resolution of multiscale parabolic problems of the form (1), on
the domain Ω = [0, 1]2 discretized by a uniform mesh of Nmacro × Nmacro Q1-quadrilateral
elements which corresponds toMmacro = O(N2

macro) degrees of freedom. The micro sampling
domains (10) are discretized by a uniform mesh of Mmicro = Nmicro × Nmicro with Q1-
quadrilateral elements (Mmicro = O(N2

micro) DOF). On these quadrilateral elements, we
consider the Gauss quadrature formula with J = 4 nodes for the macro and micro domains.
Notice that similar results are also obtained when considering P1-simplicial elements, together
with the quadrature formula with J = 1 node at the barycenter. A detailed description of
the practical implementation and discretization of the above numerical method for elliptic
and parabolic problems is discussed in [8].

In the linear case with a (non-uniform) periodic tensor, we consider two test problems on
the time interval (0, T ) where T = 1. The first problem reads

∂tuε −∇ · (a(x, x/ε, t)∇uε) = f in Ω× (0, T )

uε = 0 on ∂Ω× (0, T ) (94)

uε(x, 0) = g(x) in Ω,

where the tensor is time-dependent, non-symmetric, and depends on the slow variables x and
on the fast variable y = x/ε in both directions,

a(x, x/ε, t) = νet
(
(2 + x2 sin(πx1))ω(x1/ε) ex1ω(x2/ε)

(1− x1x2)ω(x1/ε) (3 + x21 sin(πx2))ω(x2/ε)

)

, ν = 0.1,

g(x) = 16x1(1− x1)x2(1− x2), (95)

where we consider the periodic function

ω(y) = 2 + sin(2πy).

The homogenized tensor a0(x, t) for ε→ 0 can by computed analytically with standard formu-
las and is given by the same formula as in (95) but with the oscillating terms ω(x1/ε), ω(x2/ε)
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replaced by the constant
√
3 (see for instance [12, Sect. 1.2]). The expression for the source

f(x, t) in (94) is computed analytically using Maple (we do not reproduce it here), so that
the exact solution of the homogenized problem is

u0(x, t) = g(x) cos(πtx2/2). (96)

For the second homogenization problem, we consider again (94), but with the symmetric and
time-independent tensor

a(x, x/ε) = ν
64

9
√
17

(sin(2πx1/ε) +
9

8
)(cos(2πx2/ε) +

9

8
)I2, ν = 0.1. (97)

The coefficients for the tensor aε(x) = a(x, x/ε) are chosen so that the homogenized tensor
reduces to a0(x) = νI2 where I2 is the identity matrix (see e.g. [33, Chap. 1.2]). The source
f(x, t) in (94) is again adjusted analytically so that the exact homogenized solution is (96).

6.2.1 Time discretization errors

For problem (94)-(97), we take fine macro and micro mesh sizes with Nmacro = Nmicro = 128
and we focus on the time discretization error. We consider various constant timesteps of sizes
∆t = T/Nsteps and consider respectively the implicit Euler method (20) and the first order
Chebyshev method (see (24)). For the latter method, to make the method explicit, we use a
standard mass lumping technique and replace the mass matrix by a diagonal matrix. In Figure
1(a), we plot the L2(H1) and C0(L2) errors for many different timesteps ∆t for the implicit
Euler method (20). We observe curves of slopes 1, as predicted by Theorem 4.7 (case r = 1).
For small timesteps, the L2(H1) error becomes constant, this is due to the residual spatial
discretization error (which is in our case about two order of magnitude larger than the C0(L2)
error). In Figure 1(a), we consider the first order Chebyshev method (24). The spectral radius
of the operator AH can be approximated by ρ ∼ 6.56 · 103 ∼ 4νN2

macro. To guaranty the
stability of the method, we thus take s =

√
2∆tνNmacro + 1 stages (strictly speaking we

should choose s =
√
2∆tνNmacro; the factor one added to s is a safety factor usually taken

for Chebyshev methods [1],[7]). For Nsteps = 2, 3, 5, 7, 10, 14, 20, 28, 40, 57, 80, 113, 160 time
steps, this corresponds respectively to s = 41, 34, 27, 23, 19, 16, 14, 12, 10, 9, 7, 6, 6 stages. We
observe again lines of slopes 1 (recall that for the sake of brevity of the analysis, only the case
of a zero source f = 0 is considered in the hypothesis of Theorem 4.8). Notice that for the
explicit Euler method, we would have the severe stability CFL condition ∆t ≤ 2/ρ ∼ 3 ·10−4.

6.2.2 Space discretization errors

For problem (94)-(95), we perform N = 400 time steps of constant size ∆t = 2.5 · 10−3 using
the implicit Euler method (20). Our numerical tests indicate that for this timestep, the time
discretization error is negligible compared to the space discretization error. In Figure 2(a),
we plot the C0(L2) and L2(H1) errors for the numerical solution compared to the analytical
exact solution, versus the number Nmacro of macro elements in each space dimension. The
macro mesh size is therefore H = 1/Nmacro (recall that the number of macro elements is
Mmacro = Nmacro×Nmacro). This is done for many different values of the scaled micro mesh
size ĥ = h/ε = 1/Nmicro. When Nmacro is small, the macro error is dominant. In agreement
with Theorem 4.1, it has size O(H) for the L2(H1) error (lines of slope one), whereas its
size is O(H2) for the C0(L2) error (lines of slope two). When Nmacro gets larger, the micro
error O

(
(h/ε)2

)
becomes dominant and independent of Nmicro (horizontal lines). For the
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(b) Nonlinear problem (98)-(99).

Figure 2: eC0(L2),T error (solid lines) and eL2(H1),T error (dashed lines) versus Nmacro. The
lines correspond respectively to Nmicro = 4, 8, 16, 32.

C0(L2) error, we observe that when Nmicro is multiplied by 2, the micro error is divided by
4, which illustrates that the micro error decreases quadratically as predicted by Theorem 4.4
with q = ℓ = 1. For the L2(H1) error, one can see that the macro error dominates (when the
microstructure is reasonably sampled) indicating a smaller influence of the error originating
from the micro discretization. This is again in agreement with Theorem 4.4. (Notice that the
curves of the L2(H1) error are almost identical for Nmicro = 16, 32 in Figure 2(a)). Finally we
note that our numerical tests indicate that the C0(H1) errors behave similarly to the L2(H1)
errors, for both symmetric and non-symmetric tensors.

6.3 Non-linear problem

In this section, we investigate numerically if the error estimates derived in this paper are
still valid for a class of non-linear problems. We now consider non-linear multiscale parabolic
problems of a form similar to (1), but with a tensor a(uε(x), x, x/ε) (instead of aε(x)) which
depends non-linearly on uε. To the best of our knowledge, no numerical experiments have
been given for HMM type methods applied to nonlinear parabolic PDEs.

We consider for all uH ∈ Sℓ(Ω, TH) the bilinear form BH(u
H ; ·, ·) defined by (16) with

tensor aε(x) replaced by a(uH(xKj
), x, x/ε). Here, the micro functions vhKj

(and similarly

whKj
) are the solutions of the micro problems (14) with the modified tensor aε(uH(xKj

), x).

Details on the implementation of such a nonlinear bilinear form can be found in [11] in the
context of nonlinear elliptic problems. A similar FE-HMM method has been proposed in
[38] along with a semi-discrete analysis (in space). We investigate here the influence of the
micro discretization which has not been taken into account in [38]. We consider the following
nonlinear test problem:

∂tuε −∇ · (a(uε(x), x, x/ε)∇uε) = f in Ω× (0, T )

uε = 0 on ∂Ω× (0, T ) (98)

uε(x, 0) = g(x) in Ω,
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where the tensor depends nonlinearly on uε as

a(u, x, x/ε) = ν(1 + u2)
64

9
√
17

(sin(2πx1/ε) +
9

8
)(cos(2πx2/ε) +

9

8
)I2 ν = 0.1,

g(x) = 16x1(1− x1)x2(1− x2). (99)

In this situation, the homogenized tensor reduces to a0(u, x, y) = ν(1 + u2)I2. The source
f(x, t) in (98) is adjusted so that the exact solution is (96).

For the integration in time, we consider the implicit Euler method. We consider a time
interval of length T = 0.5 and we perform N = 20 time steps of size ∆t = 2.5 · 10−2. In
Figure 2(b), we observe that the C0(L2) and L2(H1) relative errors behave similarly to the
linear case. When Nmacro is small, the macro error is dominant, and we observe lines of slope
one for the L2(H1) error whereas the slope is two for the L2(H1) error. When Nmacro gets
large, the micro error becomes dominant, we observe in the C0(L2) error that it is divided
by 4 each time Nmicro is multiplied by 2, which illustrates that the micro error decreases
quadratically as for the linear case. These numerical experiments indicate that our fully
discrete estimates may be valid also for nonlinear problem of the type considered (a rigorous
proof of this observation remains to be done).

6.4 Linear problem with a random tensor

In practical situations, the tensor may not be periodic, or an analytic expression of the tensor
may not be available. This is the case for instance for random models involved for the pressure
equation in porous media flow [43]. We refer to [44, 14, 23, 30] for numerical homogenization
results in the case of linear problems with stochastic tensors. We consider here the parabolic
multiscale problem (1) with a random tensor as considered in [8, Sect. 4.2]. It corresponds to
a log-normal stochastic field with mean zero and variance σ = 0.01, generated by the moving
ellipse average method, as described in [43, Sect. 4.1]. The role of ε which is not available
here is played by the correlation lengths with known values εx1 = 0.01 and εx2 = 0.02. The
source term is f(x, t) = 1 and the initial condition is g(x) = 7(0.5 − x1)(0.5 + x1)(1 + x2).
Notice that the other initial conditions as e.g. g(x) = 0 yield similar conclusions in numerical
experiments.

The computational domain Ω consists of a half disk meshed using 576 (macro) triangles,
and a rectangle meshed using 784 (macro) quadrilaterals. Notice that for P1 andQ1-elements,
this mesh corresponds to about Mmacro ≈ 1100 degrees of freedom. We consider mixed
boundary conditions, with Dirichlet conditions on the three edges of the rectangular, and
Neumann conditions on the boundary of the half disk.

Then, for i = 0, 1 . . . 5, we compute the numerical solution for different sampling domain
of sizes δi = δ0/2

i where δ0 = 0.12 is six times larger than the correlation length εx2 ≥ εx1 .
For each index i, we fix the size of Nmicro,i so that the size h = δi/Nmicro,i ≈ 0.94 · 10−3 of
the micro elements remains constant for all experiments.

In all experiments, the solution of the parabolic problem is obtained using the implicit
Euler method with stepsize ∆t = 5× 10−3 on a time interval of length T = 1. The shape of
the solutions at final time for experiments i = 0 and i = 4 are plotted in Figures 3(c) and (d).
We compute a reference solution using a standard FEM with simplicial P1-elements with a
fine mesh with about 106 degrees of freedom (see the solution at final time in Figure 3(a)).
For this method, as the chosen size of the discretization does not resolve the fine scale, we
do not expect an accurate output as confirmed by the numerical experiments.
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Figure 3: Random problem of Section 6.4. Solutions at final time t = 1.

In Figure 3(b) we plot the L2 norm of the solution uHn along the time interval [0, T ]
for the different sampling domains with i = 0, 1, . . . 5. We observe that when the sampling
domains are sufficiently large compared to the correlation lengths of the random field, the
profile of the solution gets closer to the reference fine scale solution. Notice that for finite
elements close to the boundaries of Ω, the sampling domains may not be contained in Ω.
In this case, since the tensor is given only on Ω, we use for simplicity the arbitrary value
a(x) := a(argminx∈Ω‖x−x‖) for x /∈ Ω. Here, for evaluating the L2 norm, we use a quadrature
formulas as given in (93).

7 Conclusion

We have presented and analyzed a fully discrete multiscale numerical method in space and
time for parabolic homogenization problems. The analysis is valid for several classes of time
integration methods (of arbitrary order) including stabilized explicit methods. The analysis
has been obtained in two steps. The first step provides new convergence rates in the norms
L2(H1), C0(L2), and C0(H1) in term of the micro and macro discretization parameters. Such
estimates are crucial to determine (a priori) the refinement strategy of the macro and the
micro meshes so that an optimal convergence rate with a minimal computational cost can
be achieved. Recently, an a posteriori error analysis has been proposed for the FE-HMM
for elliptic problems [10]. Fully discrete analysis in space is also instrumental for such an
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posteriori error analysis (the micro mesh has appropriately refined in the macro elements
marked for refinement) has and the present work could be used to derive such an analysis
for parabolic problems. The semi-discrete error bounds also allow, in a second step, to use
semigroup techniques in Hilbert space to derive fully discrete error estimates in time and space
for various ordinary differential equation solvers. Finally, we have discussed a generalization
of the numerical method for nonlinear parabolic problems. It is proved in [11] that the error
estimates in terms of the micro and macro meshes obtained for the linear case still hold for
a class of nonlinear elliptic problems. Numerical results seem to indicate that this is also the
case for a class of nonlinear parabolic problems. The corresponding macro-micro analysis
will be reported elsewhere.
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