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Abstract—Querying and linking distributed and hetero-
geneous databases is increasingly needed, as plentiful data
resources are published over the Web. This work describes the
design of a versatile query system named KGRAM that sup-
ports (i) multiple query languages among which the SPARQL
1.1 standard, (ii) federation of multiple heterogeneous and
distributed data sources, and (iii) adaptability to various data
manipulation use cases. KGRAM provides abstractions for
both the query language and the data model, thus delivering
unifying reasoning mechanisms. It is implemented as a modular
software suite to ease architecting and deploying dedicated
data manipulation platforms. Its design integrates optimization
concerns to deliver high query performance. Both KGRAM’s
software versatility and performance are evaluated.

Keywords-Knowledge graphs; Data Mediation; Distributed
Query Processing; Modular architecture

I. INTRODUCTION

An increasing number of data sources becomes available
over the Internet, which either adopt graph-based knowledge
representation (e.g. RDF and RDFS standards), or comply
to various inherited representations, such as relational data.
Pushed by the need to federate such data sources, the
concept of a Web of Linked Data has emerged, where
data entities are uniquely identified and relations between
entities are semantically well defined. Nowadays, a growing
number of applications expect to manipulate the Linked Data
seamlessly available over the Web. Conversely, Linked Data
opens new opportunities to enrich existing applications by
exploiting enlarged, joined data and knowledge repositories.
This momentum creates the need for new tools able to query,
join, and manipulate the heterogeneous and distributed data
sources composing the Web of Linked Data.

The objective of this work is the design of a versatile
Query System that supports (i) multiple Query Languages for
the Web of Linked Data (especially, but not limited to, the
SPARQL 1.0 and 1.1 standards); (ii) query-based federation
of multiple, possibly remote, data sources; (iii) mediation of
a wide range of heterogeneous data models encountered on
the Web; and (iv) adaptability to various data manipulation
use cases. This paper introduces a semantic query distri-
bution algorithm relying on a modular mediation software
architecture to implement efficient dynamic querying over
distributed heterogeneous data sources

To simultaneously address these objectives, this Query
System abstracts both the query language used to select
and manipulate data entities, and the data models of the
connected data sources. A pivot Abstract Knowledge Graph
(AKG) model is used internally to represent data entities
and the relations between them (see Section [[I). The core
Query Engine, described in Section [[II} is founded on an
Abstract Query Language (AQL) that provides an abstract
and extended representation of the SPARQL 1.1 language
(see Section [[II-A). The system provides unifying reasoning
mechanisms for querying various knowledge graph mod-
els [S]], hence its name: Knowledge Graph Abstract Machine
(KGRAM). A novel query distribution (Section [[II-B)) and
optimization algorithm is introduced in KGRAM. It
relies on the KGRAM modular software suite based on well-
defined abstract interfaces that is described in Section
KGRAM software modules can easily be combined to ar-
chitect and deploy dedicated platforms tackling specific data
query use cases. The system design integrates optimization
concerns to deliver high query performance and improve
end-users experience. A reference implementation that cov-
ers the SPARQL 1.1 standard query language is exemplified
and evaluated in Section [V]

II. KGRAM PRINCIPLES

KGRAM is an Abstract Machine in the sense that its core
is a generic query and inference engine abstracted from the
data model and query language used. It processes Knowledge
Graphs through a graph-based knowledge representation
model (AKG) and an associated graph-based query language
(AQL) designed for abstracting and manipulating data enti-
ties extracted from heterogeneous data sources [1]. Indeed,
typed graph structures, which nodes and edges are labeled
with types that can support inferences, are multiplying on
the Web. They not only support logical reasoning but can
also be seen as metric spaces to pilot approximate reasoning
and querying, as indexes of knowledge in distributed envi-
ronments, as models to make interfaces more intelligible
to end-users, or as new frameworks for social structures
analysis. The mapping of knowledge graphs (in particular
conceptual hypergraphs and RDF graphs) to the AKG rep-
resentation is straightforward by design. Other commonly
encountered data models such as relational databases or
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Figure 1.

XML data sources can be transformed into equivalent AKG
representations as well.

A. Query Process

KGRAM’s query process principle is diagrammed in Fig-
ure I} KGRAM is decomposed into two main components:
a Query Engine (QE), capable of handling different query
languages, planning queries over multiple data sources and
joining data entities retrieved from multiple sources; and
a Data Producer capable of interfacing to heterogeneous
data sources. The QE internally uses AQL to decompose
incoming queries from any (supported) Query Language
and performs query planning through query rewriting. Input
queries can thus be transformed into as many subqueries
as deemed necessary to efficiently query multiple and het-
erogeneous data sources. AQL subqueries are transferred to
a Data Producer that acts as an abstraction for a native
data source. It rewrites inbound AQL queries into the native
query language of its associated data source, and conversely
transforms the native data entities retrieved (e.g. triples or
tuples) into KGRAM’s AKG homogeneous representation.
The AKGs retrieved while handling a query are post-
processed by KGRAM’s QE, which may filter out and join
the received AKGs to produce the final AKG query result.

B. Remote Data Federation

To enable multiple and remote data sources querying,
KGRAM’s Producers may need to be architected according
to different concerns, as illustrated in Figure 2] Multiple
sources querying (top) requires rewriting inbound AQL
subqueries into different native Query Languages. The data
entities retrieved are transformed into pivot AKG represen-
tations and can be joined before being delivered to the QE.
Remote sources querying (bottom) requires the integration of
a client, a server and a communication channel. The inbound
AQL subqueries are serialized for transfer between the client
and the server. On the server side, the query rewriting and
results transforming actions are undertaken, before AKG
resulting entities are serialized for delivery to the client.

Depending on the precise data querying infrastructure
needed, both multiple- and remote-querying capabilities may
be needed. KGRAM is architected as a versatile toolbox
facilitating the design of a specific query infrastructure by
deployment of tailored generic software components.
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Figure 2. Data producer principles. Top: multiple data sources federation.
Bottom: remote data sources access.

III. QUERY ENGINE

KGRAM query engine relies on AQL to decompose
input queries into homogeneous subqueries and a planner
to efficiently evaluate query parts and join results.

A. Abstract Query Language (AQL)

To query and manipulate knowledge graphs, KGRAM
searches for homomorphisms in oriented labelled hyper-
graphs through a comparator of graph node and edge labels.
AQL, which grammar and semantics are detailed in [3], is
a SPARQL 1.1 extension. SELECT-WHERE clauses extended
to n-ary relations are represented through labelled Nodes,
n-ary Edges, Filters defining constraints on the searched
nodes, Paths of binary relations between two nodes in a
graph, as well as conjunction, disjunction, options, negation
and existence checking of the formers. AQL models nested
sub-queries, SPARQL’s aggregates, and SERVICE clauses.
The engine supports entailment regimes and builds new
structures in the query result AKG to model CONSTRUCT,
UPDATE and INSERT clauses. Note however that updates and
insertions cause changes to the in-memory result graph, but
they are not materialized in the remote data sources. An
heterogeneous, distributed implementation of UPDATE and
INSERT clauses would imply modifying the data sources
through data producers able to transform new/changed struc-
tures into the native data sources representation and the
associated native query language. AQL encompasses various
existing query languages such as the Simple Conceptual
Graph model [4] or conceptual graphs with constraints [2].

Figure (3| gives an AQL example querying authors and
titles of documents linked through edges labelled with



‘hasCreated’ and ‘hasTitle’. The result of this query
evaluation is the binding of node variables ‘?author’ and
‘?title’ with matching values in the queried graph.

query ({node (' ?author’), node(’?title’)},
and (edge (' hasCreated’, {node(’?author’),
node (’ ?doc’) }),
edge (' hasTitle’, {node(’?doc’),
node (’ ?2title’)})))

Figure 3. Query example.

B. Query Planning and Processing

The core of KGRAM is its evaluation function. The
operationalization of AQL involves the invocation of the
connected Data Producer to fetch AKG-formatted candidate
nodes and edges. Candidates are processed through a cus-
tomizable Matcher implementing search of homomorphisms
on labelled edges, possibly with Filter constraints.

1) Query evaluation algorithm: Algorithm |l| provides a
simplified representation of the KGRAM query evaluator.
Input queries are parsed and transformed into a tree repre-
sentation which nodes contain elementary AQL expressions.
The tree structure is flatten into a queryArray so that
the recursive eval function (lines 11 and 17) can browse
the query structure depth first and iteratively process each
expression. NODE and EDGE expressions in particular invoke
the data producer connected to fetch the graph nodes and
edges to match (lines 8 and 14). The candidate AKG nodes
and edges returned by the data producer are matched against
the query expression by the matcher. The evaluation of filters
(constraints) is delegated to an abstract filter.test function.
All the other AQL expressions have been implemented by
specific blocks integrated to the backbone of this algorithm.

eval is initially called with an index ¢ pointing to the
first query expression (¢ < 0) and an empty environment
env. All along the query evaluation, KGRAM stores node
bindings and keeps track of all (partial) homomorphisms
found between the AQL expressions and the data graph in
env. The eval function processes each expression in the
context of the known environment, which is progressively
enriched so that partial matches found are taken into account
when evaluating subsequent elementary expressions in the
expressions tree. At the end of the evaluation, the homo-
morphisms are complete and returned as a list of bindings
from the environment (line 3). Consider the query given in
Figure (3| as an example. The query engine would first search
for relations between authors and documents they wrote,
returning a number of bindings for the pair of nodes author-
document in the environment. It would then query for rela-
tions between the only documents found in the previous step
and their title. In case a partial homomorphism represented
by the current environment cannot be completed, a backtrack
in the evaluation function invocation stack reverses to a

previous level in the expressions tree to enumerate new
candidates and filter them in an updated environment.

Algorithm 1: Simplified KGRAM query algorithm.

Variables: producer data producer interfaced to KGRAM engine
matcher graph homomorphisms matcher
filter filter evaluator used
Arguments: queryArray array of all query elements to be
evaluated iteratively,
4 index of the query element currently evaluated,
env environment
Result: list of bindings found

1 function eval(queryArray, i, env)

2 if (¢ = queryArray.size()) then

3 store(env) ; // accumulate bindings found
4 return;

5 exp < queryArraylil;

6 switch (exp) do

7 case EDGE

8 for (Edge e : producer.getEdges(exp, env)) do

9 if (matcher.match(exp, e)) then

10 env.bind(e) ;
eval(queryArray, i + 1, env) ;
enwv.unbind(e) ;

13 case NODE

14 for (Node n : producer.getNodes(exp, env)) do
15 if (matcher.match(exp, n)) then

16 env.bind(n) ;

17 eval(queryArray, i + 1, env) ;

18 env.unbind(n) ;

19 case FILTER

20 if (filter.test(exp, env)) then

21 L eval(queryArray, i + 1, env) ;

22

2) Querying multiple data sources: The KGRAM query
evaluation algorithm makes it easy to query multiple data
sources through multiple data producers. A meta-producer,
interfaced to KGRAM’s QE on the one side and to multiple
data producers on the other side, just forwards the graph
node and edge queries of Algorihm [I] (lines 8 and 14) to
all attached producers before merging all resulting bindings
received into the QE’s environment.

3) Remoting Producers: The implementation of the data
producer and its capability to return only the necessary AKG
components to the QE is critical regarding the performance
of KGRAM, especially in a distributed environment were
data sources are remote and the AKG components are
communicated over the network. In a naive implementation,
a remote producer can passively deliver all AKG nodes and
edges corresponding to its entire data base for matching
and filtering by the QE. However, this strategy is fairly
inefficient in case a large number of the AKG components
sent to the QE are later on discarded by the matcher or the
filter evaluator. Consequently, the interface to the producer
also includes parameters to transfer the known bindings and



the AQL filters to it. This allows for the implementation of
advanced operations such as source data filtering and partial
matching inside data producers.

C. Query optimizations

KGRAM implements various strategies to minimize the
query processing time. Some performance optimizations are
structural, related to the AQL design and the query algorithm
parallelization. Some are related to the QE planning capa-
bility. Others are related to the work locally performed by
the Data Producers. KGRAM’s QE internally implements
optimizations and its interface was designed to allow for
advanced and asynchronous Data Producer implementations.

1) Nodes search: The ability of KGRAM to evaluate
homomorphisms both by node search and edge search allows
for optimizing the process of query languages which make
use of the NODE expression.

2) Exploiting partial query results: Partial query results
may be exploited to improve the processing of subqueries
that have not yet been performed. In particular, KGRAM
implements bind joins. The QE manages an index of al-
ready known mappings between variables and values in its
environment. These already known bindings are transferred
to the data producer at query runtime for exploitation when
querying the native data source. As a consequence, the order
in which subqueries are evaluated may have a significant
impact on performance. KGRAM favors evaluation of se-
lective queries which return few candidates first to reduce
the amount of data that will be transferred and joined at the
level of the QE. The heuristics consists in considering first,
edges with fewer candidates through a pre-analysis of the
graph edges cardinality. Edges are also reordered in such a
way that, whenever possible, two consecutive edges share at
least a node.

3) Backtracking: When a partial homomorphism cannot
be completed, the recursive evaluation function call stack
is backtracked, restoring former states of the corresponding
environment. A backtrack optimization called backjump was
implemented, enabling several backtrack levels in the query
stack and the associated environment simultaneously. A
backjump returns directly to an expression whose evaluation
provides a new binding for at least one query node from the
last expression that just failed.

4) Asynchronous querying: Concurrent querying of mul-
tiple data sources is an obvious optimization when query-
ing multiple data sources, especially if these are remotely
located and each source query is processed by different
computing units. A parallel meta-producer that implements
a meta-producer connected to data sources queried simulta-
neously rather than sequentially was added to the KGRAM
software suite.

Algorithm [2| shows the simplified distributed query pro-
cessor. The algorithm consists in iterating over each NODE
or EDGE expression in the initial AQL query (line 1) and,

Algorithm 2: Simplified parallel distributed query processing.

Data: Producers set of data source endpoints,
Exp set of node and edge expressions from the AQL query,
scheduler a thread pool allowing for parallel execution.
Result: Results the set of AQL query results.

1 foreach (e € Ezp) do

2 foreach (p € Producers) do in parallel

3 L scheduler.submit(p.matchingExp(e)) ;

4 wait for scheduler ;

5 foreach (task € scheduler.getFinished()) do
6 L Results < task.getResults() ;

for each one, in concurrently querying all remote Producers
(line 3). The meta-producer then waits for all connected
endpoints to finish through a synchronization barrier (line
4). Results are finally accumulated for the current NODE
or EDGE expression (lines 5 and 6) and the iteration over
the next expression can be processed (line 1). To soften the
synchronization barrier a pipelining approach was adopted,
in which a synchronized blocking queue allows the meta-
producer to post-process results as soon as they become
available. Due to space limitation, the pipelining algorithm
is not detailed.

5) Data sources selection: KGRAM is using a cache
index dynamically created with SPARQL ASK queries,
which prevents from unnecessary communications. For each
AQL edge expression, this index stores the identified data
sources providing candidate AKG edges and thus potentially
contributing to the result set. By using its index, KGRAM
is able to send remote edge requests only to data sources
hosting candidates. This strategy is specially adapted for
Linked Data querying scenarios where each remote data
source is specialized into one kind of data.

IV. REFERENCE IMPLEMENTATION

KGRAM principles have been operationalized in several
java implementations. As a proof of concept, a first imple-
mentation was first provided with the existing CoreseE] search
engine, based on the Conceptual Graphs model. A Jena-
base(ﬂ [8] implementation has also been experimented by
creating lightweight KGRAM API adaptors for Jena objects.
The last version of KGRAM is a reference implementation
available from the Wetﬂ based on an optimized specific
implementation of the AKG model. The KGRAM software
suite is architected as a modular and versatile toolbox aimed
at covering many use cases such as heterogeneous data
sources manipulation, access to remote data stores, data
source querying and inference processing (RDFS entail-
ments and rule-based inferences) on data sources. KGRAM’s

!Corese: http://wimmics.inria.fr/corese
2Jena: http:/jena.sourceforge.net
3KGRAM: http://wimmics.inria.fr/corese
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modules deployment can easily be tailored to address dif-
ferent data querying and federation scenarios. The reference
implementation particularly focuses on SPARQL 1.1, which
is the de facto query language for knowledge graphs models
like RDF.

A. Modular Software Architecture

The KGRAM software architecture is modular with
clearly defined, decoupled interfaces and extensible com-
ponents. KGRAM’s QE and Data Producers (see Sec-
tion [[I) are implemented as decoupled modules commu-
nicating through a Producer interface to exchange AQL
queries and AKG results. The QE adapts to different input
Query Languages through a query language Parser interface.
The AQL language can be finely customized through the
Matcher and Filter interfaces. A Matcher computes edge
homomorphisms. Depending on its implementation, labels
comparison may e.g. consist in simple string equality, or take
into account class and property subsumption, compute ap-
proximate matches, etc. A Filter evaluates query constraints
by implementing the filtering dialect of the target language.

Figure [4] diagrams a KGRAM QE. The KGRAM API
defines abstract interfaces for the different KGRAM modules
to interface with each others. The engine has 4 required
interfaces and it is completely defined only when the 4
corresponding modules are connected to these interfaces: a
data source interfaced through the Producer API, a query
parser interfaced through the Query API, a graph matcher in-
terfaced through the Matcher API and a constraint evaluator
interfaced through the Filter APIL. Internally, the KGRAM
query engine manipulates a Query Stack used to decompose
complex queries into elementary AQL expressions, and
an Environment Manager used to accumulate partial AKG
results as detailed in section

Query language parser

\/ Query stack \

—» AQL

-+ AKG
— product interface
Graph matcher Filter evaluator required interface

Figure 4. KGRAM core query engine
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Producer interface

Environment
manager

[

Modules implementing the Producer interface can be
created to match the different target data sources, connect to
multiple data sources or introduce network communications
between data sources and the query server as illustrated in
Figure [5] The top row of Figure 5| (Bh) illustrates a local data
Producer adapted to a specific data model (e.g. relational,
RDF or XML data). It implements the Producer API and
internally connects to the target data source through its
native API (e.g. an SQL client interface).
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Figure 5. KGRAM Producers. Top: regular data source producer. Bottom
left: meta-producer. Bottom right: producer towards remote data sources.
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B. KGRAM Software Suite

The core QE included in the KGRAM software suite
comes with a Parser implementing the SPARQL 1.1 query
language, a Matcher exploiting RDFS entailments, and a
Filter implementing SPARQL operators and XML Schema
datatypes.

Several base Producer implementations are included in
the software suite (Figure Eh): for RDF datasets in raw
RDF/XML files, N3 text files or Jena databases. The bottom
row of Figure [5] also shows three other specific Producer
implementations available. The Meta-Producer (5p) is a
module enabling the connection to multiple data sources.
It exposes a Producer interface and requires multiple other
Producer components to be connected through the same
interface. It simply forwards input AQL queries to the
connected Producers and conversely merges all AKG results
delivered by all subsequent Producers before delivering
them to the QE. The Producer client (3f) is an interface to
any SPARQL remote endpoint. It transforms inbound AQL
queries into SPARQL queries that are sent over HTTP to
any SPARQL-compliant endpoint. The entities returned by
the endpoint are then transformed into AKG results. Since
AQL extends SPARQL 1.1, KGRAM can connect to any
SPARQL endpoint. However, some AQL queries may not
be fully interpreted by a regular SPARQL endpoint as they
contain non-SPARQL expressions. KGRAM software suite
therefore contains a KGRAM-enabled endpoint as illustrated
in Figure (3d). The producer client communicates queries to
the KGRAM endpoint using AQL rather than SPARQL. The
endpoint uses a local KGRAM instance to parse and evaluate
the inbound AQL queries.

KGRAM interfaces are designed in order to minimize
the glue code necessary to interface to external software
components. As a result, Corese’s and Jena’s portings to
KGRAM required very few source lines of code. Corese’s
porting was almost immediate because KGRAM was partly
designed as an abstraction of Corese principles. Jena’s



porting has required less than 1000 lines of source code.

C. KGRAM Extensibility Examples

Many different deployment scenarios can be implemented
taking advantage of the KGRAM component-based architec-
ture. Both the query language and the knowledge representa-
tion language can be customized to different needs through
the implementation of various Parsers, data Filters and
graph Matchers. Furthermore, any kind of data source can
be queried simultaneously, given that a Producer interface
can be developed for it. The meta-producer combined with
the scalable query algorithm allow for the integration of
multiple data sources. To illustrate the versatility of KGRAM
architecture, two complex deployments inspired by real data
federation platforms are presented below.

Figure [6] illustrates an implementation that was exper-
imented in the context of the ISICIL projecﬂ In this
scenario, RDF data is distributed over three servers, each
of them in charge of inferences on a specific type of data:
(1) social network and user profiles, online communities,
activity tracking and trust model; (2) tag model, document
metadata, terminologies, thesaurus; (3) Web resource model
with low level data such as MIME type, production context,
format, duration, etc. Some of the Web applications devel-
oped in this context require to query data distributed over
these three servers. A KGRAM core component is therefore
instantiated with a SPARQL Parser, a Matcher exploiting
RDEFS entailments, and a Filter supporting XSD datatypes.
A Meta-Producer component is connected to this engine to
interface to the three data sources, each of them interfaced
through an instance of RDF Producer.

Producer

SPARQL
parser

Meta-

producer Producer

Hit}

Graph || Filter Producer

matcher ||evaluator

4

ource 3

Figure 6. ISICIL data query architecture federating 3 RDF stores.

Another complex deployment, inspired by the NeuroLOG
collaborative platform for neurosciencesﬂ is illustrated in
Figure|/| The use case is the joint querying of two heteroge-
neous data sources (an SQL and an RDF repository) located
at different places, using the SPARQL query language.
Similarly to the previous case, a SPARQL-enabled KGRAM
query engine interfaced to a meta-producer is deployed.
To access remote data sources, KGRAM endpoints and
their associated Producer clients are used. Each endpoint

4ISICIL: http://isicil.inria.fr
5NeuroLOG: http://neurolog.polytech.unice.fr

is connected to a specific Producer (SQL or RDF data
producer) adapting to the site data source.

V. EVALUATION

There are several facets of the KGRAM query system to
consider for evaluation. First, the strict compliance of the
reference implementation to standards is evaluated with the
W3C SPARQL 1.1 Query Test caseE] (with 4 failures over
465 queries). Second, AQL’s and AKG’s high expressive-
ness is illustrated (V-A). Third, KGRAM’s performance is
evaluated by comparison to a high-performance relational
databases federation product (V-B). Finally, KGRAM’s abil-
ity to implement complex Linked Data scenarios is demon-

strated (V-C).

A. Expressiveness

The seminal NeuroLOG platform (see Section [[V-C)
was federating relational databases from 5 neuroscience
centers in France. Its data federation layer was based on
the high-performance DataFederator commercial too The
platform was re-deployed using KGRAM for data federation.
KGRAM can access NeuroLOG relational databases either
directly through an ad-hoc SQL Producer, or indirectly
through its RDF Producer after conversion of the relational
database into an RDF repository with the METAMorphoses
mapping tooﬂ For this experiment, the SQL Producer is
a simple component implementing query-specific mappings
allowing to retrieve SQL entities matching the query and
transform them into AKG entities.

Query @, from Figure [] is a real use-case that searches
for image datasets (acquired with Gadolinium contrast agent)
associated to patients (join in line 4) in the context of multi-
centric studies addressing the Multiple Sclerosis pathology.
During the evaluation of this query, all types of medical
images are searched in order to match a “GADO” tag
associated to the use of the Gadolinium contrast agent.
The evaluation of this query can be considerably enhanced
by exploiting clinical knowledge represented in an RDFS
vocabulary. Indeed Gadolinium is used in the context of
magnetic resonance (MR) acquisitions (T1 or T2 weighted
MRIs for instance) but generally not in the context of
any other modality (Ultrasound for instance). By exploiting
this domain knowledge, the query time can be significantly
reduced since all non-MR datasets (such as Ultrasound
datasets) are excluded. In other words, when provided with
an implementation of its Matcher interface supporting RDFS
entailments, KGRAM performs inferences which enables it
to produce better query results.

When provided with a SPARQL 1.1 Parser, KGRAM
provides a mean to handle the intelligent distribution of

SW3C tests: http://www.w3.org/2009/sparql/docs/tests

7SAP DataFederator: http://www.sap.com/solutions/sapbusinessobjects/
large/eim/datafederator/index.epx

SMETAmorphoses: http://metamorphoses.sourceforge.net
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SELECT distinct ?patient ?study ?dataset 7dsName WHERE {
?dataset linguistic—expression:has—for—name ?dsName .
?patient examination—subject:has—for—subject—identifier ?clinID .
?patient iec:is—referred—to—by ?dataset .
?study study:involves —as—patient ?patient .
FILTER (regex(?clinID, 'MS’) && regex(?dsName, 'GADO’)) }

Figure 8. Sample SPARQL query QQ1: search for patient, study and dataset
information in the context of the Multiple Sclerosis disease.

highly expressive and graph-based semantic queries. For
instance, let us consider again query (). Line 2 and 4
of Figure [§] could be merged with the following PATH
expression:

?patient iec:is-referred-to-by / linguistic-exp:has-for-name ?dsName.
KGRAM thus allows to perform this kind of graph-based
information retrieval which cannot be easily expressed in
SQL.

B. Performance Evaluation

The query processing time using the seminal NeuroLOG
relational databases federator was experimentally compared
against KGRAM'’s heterogeneous platform deployment (fed-
erating both RDF-converted and original SQL data sources).
Two queries are considered below: @)1, introduced in Sec-
tion and (Q2, a query for datasets acquired through
the T2-weighted MRI modality. It is a very selective query,
leading to 5 results only, on the data sources considered.
To be robust against variability observed in real distributed
systems, results are averaged over three query runs. The
average query execution time £ one standard deviation is
displayed in the following table. For ()1, leading to 336
remote invocations, the query times are better with the
optimized SQL federation engine than with KGRAM, but
it remains in the same order of magnitude. For the very
selective query ()2, we observe comparable query times for
both_environments.

Query KGRAM relational federator
Q1 11.76 s £ 0.05 3.03 s +£0.25
Q2 1.53 s + 0.14 1.52 s + 0.62

C. Linked Data Scenario

NeuroLex [7], supported by The Neuroscience Infor-
mation Framework and the International Neuroinformatics
Coordinating Facility, is a dynamic Neuroscience Lexicon

NeuroLOG data sharing architecture deployment example.

which describes 18,490 neuroscience terms (287 neurons
and 952 brain parts, 151 spinal cord parts and 30 other
parts of the nervous system). It aims at delivering a standard
lexicon for neuroscience entities, covering their meaning
and their classification, to address data integration issues
generally faced in the neuroscience area.

In this Linked Data experiment, neuroimaging data from
the NeuroLOG federation is linked with neuroscience
“open” knowledge capitalized through the NeuroLex ini-
tiative, allowing neuroscientists involved in the NeuroLOG
federation to benefit from the NeuroLex lexicon and its
semantic wiki interface. Thanks to KGRAM versatility, the
NeuroLOG platform is easily extended with a new data
source that exposes the NeuroLex ontology. To bridge the
two knowledge bases, an ad-hoc semantic alignment was
implemented, in which all NeuroLOG datasets are annotated
with the NeuroLex Label property corresponding to their
medical image modality.

1 SELECT ?patient ?dataset WHERE {
2 ?t property:Label \"MRI_protocol\""xsd:string .
3 ?s rdfs:subClassOfs ?t .

4 ?s property:Label ?label .

5 ?dataset property:Label ?label .

6 ?patient iec:is—referred—to—by ?dataset .}

Figure 9. Sample SPARQL query exploiting the NeuroLex taxonomy for
medical image modalities to search images for the NeuroLOG platform

Figure [J] illustrates a SPARQL query which is evaluated
by KGRAM by first listing all NeuroLEX subclasses of
MRI protocol and their associated labels, and then exploiting
these labels to search for relevant medical images, and
their corresponding patients provided by the distributed
NeuroLOG data providers. There exist many neuroscience
ontologies with different modeling objectives. Some may
focus on particular pathologies while others may focus
on neuro-data processing. In that context, and beyond the
neuroscience area, the KGRAM query system provides a
transparent mean to query distributed and heterogeneous
data sources while potentially benefiting from several on-
tologies. This is possible by implementing the Producer
associated to each data source and its ontology with a
Matcher exploiting RDFS entailment.



VI. RELATED WORKS

The recent W3C working draft [9] addresses the federated
querying of distributed knowledge bases through a set of
language extensions for SPARQL 1.1 (SERVICE and VAL-
UES clauses). These clauses help implementing distributed
query processing when the content of data sources is well
partitioned and known at query design time. However, this
assumption does not hold in many real use cases. This
approach is not suitable in the context of dynamic knowl-
edge base federations in which pre-designed SPARQL 1.1
queries must be adapted to take into account the data source
availability.

Transparent federating approaches generally address per-
formance issues. For instance, DARQ [10], SPLENDID [6]
or FedX [11] propose a set of static and dynamic opti-
mizations. KGRAM implements similar strategies to exploit
value constraints at query rewriting time and to enhance
the querying at runtime through bind joins. Moreover, in
line with FEDX, KGRAM also exploits the parallelism of
both distributed data sources and modern multi-core CPUs
with a multithreaded implementation. However, there remain
several optimization opportunities for KGRAM. Query plan-
ning techniques implementing data sources selection could
be applied. Block bind joins introduced by FEDX also seem
to be an interesting optimization.

Addressing the SPARQL querying of traditional relational
databases through a declarative language, Bizer et al. high-
light in [3] the user needs for both weird mappings, and real
data federation (not directly addressed through D2RQ). In
line with these observations, KGRAM could benefit from
this approach by letting legacy database experts populate
remote producers with relational to semantic RDF mappings.

To the best of our knowledge, none of the state-of-the art
transparent federating approaches address both the issues
of efficient and heterogeneous distributed querying. The
strength of the KGRAM model is to provide a versatile
and extensible framework allowing to efficiently and dy-
namically access to multiple data sources internally using
different data representations.

VII. CONCLUSION

The KGRAM software suite is architected following a
modular approach to ease the integration of multiple, hetero-
geneous and distributed data sources. Its modules can easily
be combined to architect and deploy dedicated platforms
tackling specific data query use cases while delivering high
query performance. KGRAM’s versatility makes it a strong
candidate to tackle the challenges raised by the Web of
Linked Data.

KGRAM is an abstract machine for querying knowledge
graph models. Its Abstract Query Language covers, but is
not limited to, the SPARQL 1.1 standard graph-based query
language promoted by the W3C. It also enables querying
and reasoning through other forms of graph pattern matching

such as Conceptual Graphs Homomorphism. Through AQL,
KGRAM can easily adapt to future language evolutions and
provides an extensible framework in which new language
constructs can be experimented.

Although most SPARQL clauses, including SELECT-
WHERE and CONSTRUCT, are supported while querying
distributed heterogeneous data sources, the UPDATE clause is
more challenging and its implementation covers local RDF
sources only. This opens new data coherency challenges
to tackle when considering knowledge graph insertions,
deletions, or modifications in a distributed setup.
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