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Abstract. Neurodata repositories federation is increasingly needed to
implement multi-centric studies. Data federation is difficult due to the
heterogeneous nature of distributed data repositories and the technical
difficulties faced in addressing simultaneously multiple data sources. This
paper describes a data federation system based on a semantic mediation
layer and an advanced distributed query engine able to interface to mul-
tiple heterogeneous neurodata sources. Both performance and usability
indicators are shown, demonstrating the soundness of the approach and
its practical feasibility.

1 Introduction

Computational neurosciences are highly dependent on the availability of large
neurological datasets. An increasing effort has been invested in distributed com-
puting infrastructures to face the challenges raised by modern multi-centric neu-
roscience studies [1,2,3]. In particular, distributed neurodata federation is con-
sidered to harness the large neurodata resources available [4,5,6]. Federation of
heterogeneous data sources is a complex problem due to the need to align the
different data models used, and the lack of tools to efficiently query and process
distributed databases. The Semantic Web community has developed methodolo-
gies and tools to clearly define the semantics of data using models and computer-
interpretable metadata. This paper describes how these approaches can be ap-
plied to neurodata alignment, and introduce new methods to integrate legacy
neurodata sources in a federated platform.

An approach often considered to deliver federated data repositories is data
warehousing which consists in statically importing all data sources in a cen-
tralized repository after semantic alignment. Although simple, this solution has
many drawbacks such as the need to transform legacy data entities to different
representations, the scalability of the centralized repository, the central point of
failure thus created, etc. When considering medical data, it is often even not
possible to create a central data repository for legal and ethical reasons. The
alternative solution studied in this paper is a dynamic distributed data federa-
tion mechanism which aligns the data models and the query capability of the
heterogeneous repositories to deliver a unified view over the complete data set.
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This approach pushes queries to the distributed data sources and gathers re-
sults. From the client point of view, distributed data sources are thus virtually
integrated as if a single data source was queried. It raises new issues such as
the need for expressing queries that can be mapped to multiple data sources,
network communication overhead, coherency of distributed queries, and trans-
forming data entities on-the-fly to different representations while preserving their
semantics.

We developed the KGRAM distributed query system to align multiple neu-
rodata sources semantically and map queries to the heterogeneous federation.
System utilisability is considered by taking into account both the query language
expressiveness and performance issues. KGRAM is generic in the sense that it
does not require any prior knowledge on the data sources content, and robust in
a distributed environment as it transparently adapts to topology changes caused
by the addition or the removal of data sources.

2 Distributed data query engine

Different neurodata repositories generally use different data models and store
heterogeneous data. The dynamic data federation approach addresses simulta-
neously the problems of data source heterogeneity and data distribution. It relies
on a central federator, and a set of federated data providers. From a unique query,
the federator is responsible for the coherent sub-querying of the federated data
providers and for unifying all results found into a global result set. It avoids
consistency and synchronization issues generally observed in data warehouses
where data transformation is performed periodically.

A single main query language is needed to express federation-wide queries.
The SPARQL3 language v1.1 is considered in this work as a highly expressive,
versatile, and de facto standard semantic data query language. Semantic data is
viewed as a collection of triple patterns formalized as (s, p, o), where a subject s
is linked to an object o through a predicate p, and usually represented as RDF
triples4. A collection of triples constitutes a knowledge graph. Semantic querying
through SPARQL is equivalent to the matching of a graph-based query pattern
into the complete knowledge graph.

More precisely, the SPARQL-based query engine KGRAM described below
(i) transforms a graph-based semantic query into the target data sources query
languages and (ii) combines the triple results to assemble the reply at runtime.
To efficiently perform distributed queries, the engine implements several opti-
mizations including query rewriting and intermediate results exploitation.

2.1 The KGRAM query engine

KGRAM stands for Knowledge Graph Abstract Machine [7]. It is a versatile
system aiming at representing, querying and reasoning over semantic data rep-
resented as Knowledge Graphs [8]. It enables querying different data source

3 SPARQL: http://www.w3.org/TR/rdf-sparql-query/
4 RDF: http://www.w3.org/TR/rdf-primer/
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models, provided that they are able to produce a graph view of their data, e.g.
RDF but also XML or relational databases. For the sake of generality, KGRAM
introduces a set of abstract operators manipulating abstract graph data struc-
tures (abstract Nodes and Edges forming abstract Graphs). Graphs are navigated
through so-called Producers responsible for the iteration over their Nodes and
Edges. For each data source kind, a specific Producer is needed that abstracts
its representation to answer SPARQL queries by returning data represented as
graph elements. Knowledge graphs are matched with queries through Matchers.
Depending on their implementations, the comparison may consist in simple la-
bels equality or it may take into account domain knowledge through class and
property subsumption (RDS entailment) or eventually approximate matching
based on semantic similarities. Finally, Filter operators are responsible for eval-
uating value constraints over knowledge graphs.

2.2 Distributed query processing

In KGRAM, the evaluation of SPARQL queries basically consists in searching
for matching edges in a knowledge graph delivered by a Producer. To mashup
linked data over distributed data sources, KGRAM introduces the notion of
Metaproducer responsible for the enumeration of Nodes and Edges coming from
several Producers interfaced to several data sources. All producers implement
the same query interface, receiving the same messages from the Metaproducer
and rewriting the input queries into native data source ones, to shield KGRAM
core from data source heterogeneity. To handle distributed data repositories, we
extended KGRAM implementation by providing a web service implementation
of its Producer interface. Figure 1 illustrates the main elements involved in the
semantic distributed query processing.
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Fig. 1. KGRAM distributed query architecture

Web service endpoints are queried over the standard SOAP protocol. Each
remote Producer interfaces with its database. It is responsible for enumerating
on-the-fly triples matching the SPARQL queries received. Various Producer im-
plementations enable querying various data models. The ParallelMetaProducer
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is responsible for the exploitation of service parallelism and for merging triples
coming from the distributed data sources into the resulting knowledge graph.
Algorithm 1 illustrates how the ParallelMetaProducer distributes a SPARQL
query over a set of Producers.

Algorithm 1: Naive parallel distributed query processing, with an explicit wait

condition.
Data: Producers the set of SPARQL endpoints,

TriplePatterns the set of triple patterns forming a basic graph pattern
in the initial SPARQL query,
scheduler a thread pool allowing for parallel execution.

Result: Results the set of SPARQL results.

1 foreach (tp ∈ TriplePatterns) do
2 foreach (p ∈ Producers) do in parallel
3 scheduler.submit(p.matchingTriples(tp)) ;

4 while (not scheduler.isFinished()) do
; // synchronization barrier

5 foreach (task ∈ scheduler.getFinished()) do
6 Results← scheduler.getTask().getResults() ;

The principle of the algorithm consists in iterating over each triple pattern
forming the initial SPARQL query (line 1). For each triple pattern, all remote
Producers are queried concurrently (line 3). The federator then waits for all fed-
erated endpoints to finish through a synchronization barrier (line 4). Results are
finally accumulated for the current triple pattern (lines 5 and 6) and the next
triple pattern iteration can be processed (line 1). To soften the synchronization
barrier a pipelining strategy was implemented, in which a synchronized block-
ing queue allows the federator to post-process results as soon as they become
available. Due to space constraints, the pipelining algorithms are not detailed.

2.3 Distributed query optimization strategies

In KGRAM, the query distribution principle consists in iterating over each triple
pattern request occurring in the SPARQL query. Each triple pattern request is
dynamically wrapped into a unitary SPARQL query and pushed to remote data
sources. Resulting triples are returned back and accumulated into the KGRAM
result graph. To enhance the efficiency of distributed query processing, a set of
static and dynamic optimizations were implemented.

The filter pushing strategy consists in analyzing the initial SPARQL query
to extract value constraints expressed in FILTER clauses. When iterating over
each triple pattern request, each applicable value constraint is extracted from
the initial FILTER and propagated as a new FILTER clause added to the triple
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pattern query. This reduces drastically the communication cost since it prevents
the federator from transferring irrelevant results that would be finally filtered.

The same idea is exploited at query runtime through bind joins. The KGRAM
query processor manages an index of already known mappings between variables
and values, thus forming intermediate results. This cache is exploited at query
runtime in order to dynamically replace triple pattern variables by their associ-
ated values in the queries pushed to federated endpoints. Similarly to the filter
pushing strategy, bind joins reduce drastically the size of transferred results.

2.4 Relational data sources

In neurosciences, it is common that the underlying legacy environments rely on
traditional relational databases. KGRAM comes with a default implementation
of its Producer interface for RDF sources. To cope with relational sources, a
specific Producer that rewrites triple patterns forming the initial SPARQL query
into SQL queries is needed. Query results can then be mapped to the variables of
the original SPARQL query to build result graph triples. A generic SQL Producer
is out of scope of this paper. An ad-hoc Producer implementation was considered
in the case of the NeuroLOG platform described below.

3 Experimentation in the NeuroLOG platform

The NeuroLOG platform [9] federates data and computational resources from
collaborating neuroscience centers. The prime objective of NeuroLOG is to adapt
non-invasively to the legacy environments deployed in each participating center,
so that each site remains autonomous in the management of its internal resources
and tools, while benefiting from the multi-centric medical studies support from
the middleware. The platform is federating 5 neuroscience centers spread over
France. On each site, the data source is composed of raw neuroradiology files, and
description metadata linked to these files (information on image data acquisition,
data content, neuropsychological tests associated to images, etc) [6]. The source
metadata is often represented and managed in relational databases for historical
reasons.

Blue components in Figure 2 sketches the architecture of the NeuroLOG mid-
dleware. On each neuroscience site an independently managed legacy relational
database is deployed. It is completed by a NeuroLOG middleware database. The
multi-centric studies conducted by neuroscientists may be perceived under sev-
eral facets, involving both the native relational data representation and a seman-
tic data representation enabling richer queries. The DataFederator commercial
tool5 is used to dynamically federate relational data sources into a unified view.
It can perform SQL queries that are distributed over all platform data sources.
It includes both a mediation layer that aligns heterogeneous relational databases

5 Data Federator: http://www.sap.com/solutions/sapbusinessobjects/large/

information-management/data-integration

http://www.sap.com/solutions/sapbusinessobjects/ large/information-management/data-integration
http://www.sap.com/solutions/sapbusinessobjects/ large/information-management/data-integration
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schemas, and rewrite SQL queries applying to the federated view to match the
various source schemas. The data mediation semantic alignment is based on
a domain ontology, called OntoNeuroLOG that was developed in the context
of this project. A federated relational schema is derived from OntoNeuroLOG,
serving as the federated view schema. In addition to this relational representa-
tion, a semantic representation of the same data sources was created to enable
richer querying features delivered by Semantic Web query engines. A central-
ized approach was adopted, where all relational data sources are mapped to
RDF triples (using the MetaMORPHOSES tool6) and aggregated in a unique
semantic repository. The NeuroLOG platform thus exposes a dual view of the
federation metadata, enabling both dynamic SQL querying and static SPARQL
querying.
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Fig. 2. Data management layer of the NeuroLOG platform

Although very flexible, this system is also confusing for end users due to the
dual view of all data entities. The semantic repository is also subject to limita-
tions of a static, centralized warehouse. To overcome these issues, the NeuroLOG
platform was extended with the KGRAM query engine introduced in section 2.1
(see green components in Figure 2). A KGRAM remote producer was deployed
on top of each site legacy database. This endpoint exposes the site data content
in RDF through its Producer. Depending on the site deployment option, it ei-
ther interfaces dynamically to the site native relational database (option 1© in
Figure 2), or accesses an RDF repository representation of this legacy database
(option 2©) which is periodically regenerated using MetaMORPHOSES. Con-
sequently, NeuroLOG’s centralized RDF repository (crossed over in red in Fig-
ure 2) is not needed anymore. It is replaced by a completely dynamic semantic
federation (all sites using 1©), a distributed version periodically updated (all sites
using option 2©), or a mixture of both. This setting enables the unified querying

6 MetaMORPHOSES: http://metamorphoses.sourceforge.net

http://metamorphoses.sourceforge.net
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of the RDF repositories and the platform legacy relational databases through
the SPARQL language. It solves the central repository limitation, distributing
the query load over the federation data servers. It proposes a single view over all
data. The experiments reported below demonstrate the query expressiveness and
the performance of the KGRAM engine. The NeuroLOG platform both provides
a real use case for these experiments and serves as a performance measurement
reference.

3.1 Experimental setup

Three query environments are compared. The relational federation only exposes
heterogeneous relational databases, virtually integrated through the DataFeder-
ator commercial middleware. It corresponds to the seminal NeuroLOG platform
deployment. Two other environments (semantic federations) expose heteroge-
neous data sources virtually integrated through the KGRAM framework. In the
RDF semantic federation environment, all sites are configured with option 2©.
It corresponds to a modification of the NeuroLOG platform where the central
semantic repository is spread over all participating sites but native repositories
are transformed to RDF before being accessed. In the RDF+SQL semantic fed-
eration environment, a mixture of RDF sources and SQL sources (dynamically
accessed through 1©) is used to evaluate a completely heterogeneous set up.

Figure 3 (top) illustrates a real clinical use case involving querying neurodata
distributed over several centers. It aims at searching for datasets (acquired with
Gadolinium contrast agent) associated to patients (join performed at line 4) in
the context of multi-centric studies addressing the Multiple Sclerosis pathology.
During the evaluation of this query, all types of medical images will be searched
in order to match a “GADO” tag (indicating use of the Gadolinium contrast
agent). But the evaluation of this query can be considerably enhanced by ex-
ploiting clinical knowledge represented in an RDFS vocabulary. Indeed Gadolin-
ium is only used in the context of the MR modality. By exploiting this domain
knowledge with KGRAM, the query time can be significantly reduced since all
non-MR datasets are excluded. This results from the triple pattern (?dataset rdf:type
dataset:MRDataset) added to the query which leads, under RDFS entailment, to less
intermediate results to be transferred and thus an overall faster distributed query
evaluation.

The bottom query from Figure 3 achieves the same clinical objective but
makes use of SPARQL property path expressions. This language feature aims
at representing paths between two resources by only specifying, in the form
of patterns, the sequence of mandatory, optional, reverse, or multiple repeti-
tion of properties linking the resources together. It brings a high expressivity to
SPARQL queries and it is particularly adapted in the context of graph-based
querying. This kind of query cannot be easily expressed in SQL. It is thus diffi-
cult to implement it with traditional relational databases. As a full SPARQL 1.1
interpreter, compliant with property path expressions, KGRAM allows for per-
forming this kind of graph-based information retrieval against SQL data sources,
which would not have been possible wit traditional SQL query engines.
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1 SELECT distinct ?patient ?study ?dataset ?dsName WHERE {
2 ?dataset linguistic−expression:has−for−name ?dsName .
3 ?patient examination−subject:has−for−subject−identifier ?clinID .
4 ?patient iec:is−referred−to−by ?dataset .
5 ?study study:involves−as−patient ?patient .
6 FILTER (regex(?clinID, ’MS’) && regex(?dsName, ’GADO’)) }
7

8 SELECT distinct ?patient ?study ?dsName WHERE {
9 ?patient iec:is−referred−to−by/linguistic−exp:has−for−name ?dsName .

10 ?patient examination−subject:has−for−subject−identifier ?clinID .
11 ?study study:involves−as−patient ?patient .
12 FILTER (regex(?clinID, ’MS’) && regex(?dsName, ’GADO’)) }

Fig. 3. Top: sample SPARQL query Q1, aiming at retrieving patient, study and dataset
information in the context of the Multiple Sclerosis disease. Bottom: SPARQL 1.1
property path expressions simplifying the previous query.

3.2 Qualitative evaluation

KGRAM implements the RDFS entailment regime (subsumption between classes
or properties), and other inferences based on algebraic properties like the transi-
tivity or symmetry of properties and inverse properties. It thus provides a richer
query interface to legacy databases participating into the federation. In addition,
in the context of collaborative platforms exposing legacy relational databases,
we argue that the design of queries is more intuitive through knowledge-based
languages such as SPARQL than through traditional relational languages such as
SQL. Indeed, the navigation through links between entities is explicit in SPARQL
while it is implicit in SQL and generally requires for intermediate joins. The fol-
lowing SQL query corresponds to the SPARQL query of Figure 3:

1 SELECT Subject.subject id, Subject.subject common identifier, Dataset.name
2 FROM Study, Subject, Dataset, Rel Subject Study AND
3 WHERE Rel Subject Study.Subject subject id = Subject.subject id AND
4 Rel Subject Study.Study study id = Study.study id AND
5 Dataset.Subject subject id = Subject.subject id AND
6 Subject.subject common identifier LIKE ’%MS%’ AND Dataset.name LIKE ’%GADO%’

Whereas joins are naturally expressed in the SPARQL query (line 4 of Figure 3),
it is not the case in SQL since a join table may be needed (Rel Subject Study table,
line 3) and must be explicit (line 4, 5 and 6). This definitely complicates the query
design, generally considered as complex, error-prone, and time consuming.

3.3 Quantitative evaluation

The distributed query processing times of the relational federation (using DataFed-
erator) and both semantic federations (RDF and RDF+SQL) are compared us-
ing KGRAM through two queries. Query Q1 corresponds to Figure 3 and query
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Q2 searches for datasets acquired through the T2-weighted MRI modality. Q2
leads to only 5 results and is thus, a very selective query. To be robust against
variability observed in real distributed systems, results are averaged over three
query runs. The average query execution time ± one standard deviation is dis-
played in the following table showing that for Q1, leading to 336 remote invo-
cations, the query times are lower with the optimized SQL federation engine
DataFederator than with the semantic federation, but it remains in the same or-
der of magnitude. For very selective queries such as Q2, we observe comparable
query times for all environments:

Semantic federation: RDF or RDF+SQL Relational federation
Q1 (s) 6.13 ± 0.05 11.76 ± 0.05 3.03 ± 0.25
Q2 (s) 0.60 ± 0.03 1.53 ± 0.14 1.52 ± 0.62

4 Concluding remarks

Transparent data federation approaches generally address performance issues.
For instance, DARQ [10], SPLENDID [11] or FedX [12] propose a set of static
and dynamic optimizations. KGRAM implements similar strategies to exploit
value constraints at query rewriting time and to enhance the querying at run-
time through bind joins. Moreover, in line with FedX, KGRAM also exploits the
parallelism of both distributed data sources and modern multi-core CPUs with
a multithreaded implementation. There remain other optimization opportuni-
ties for KGRAM such as data sources selection and subsequent query planning
techniques, but to the best of our knowledge, none of the state-of-the art trans-
parent federating approaches address both the issues of efficient and heteroge-
neous distributed querying. The strength of the KGRAM model is to provide an
extensible framework allowing to efficiently and dynamically access to multiple
query sources internally using different data representations. In the future, the
query rewriting capability of KGRAM is also thought to be a mean to implement
fine-grained access control to data sources.

KGRAM eases the federation of distributed and heterogeneous neurodata
repositories. Concrete examples in the context of the NeuroLOG platform, mix-
ing both semantic and relational repositories, demonstrate the feasibility and
the efficiency of this approach. Beyond performance, the query environment is
enriched by the high expressivity of semantic query language. End-users gain
from using knowledge with a well-defined semantics. Moreover, through an on-
tology and its associated entailments, the querying process can exploit domain
knowledge to implement smart queries. The current implementation of KGRAM
enables read-only access to data sources. Modifying heterogeneous distributed
data sources is a challenging problem that we intend to tackle in the future.
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