
HAL Id: hal-00746736
https://hal.science/hal-00746736v1

Submitted on 29 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RDF triples management in roStore
David Faye, Olivier Curé, Guillaume Blin, Cheikh Thiam

To cite this version:
David Faye, Olivier Curé, Guillaume Blin, Cheikh Thiam. RDF triples management in roStore. IC
2011, 22èmes Journées francophones d’Ingénierie des Connaissances, May 2012, Chambéry, France.
pp.755-770. �hal-00746736�

https://hal.science/hal-00746736v1
https://hal.archives-ouvertes.fr


RDF triples management in roStore

RDF triples management in roStore

David Faye1, Olivier Curé2, Guillaume Blin2, Cheikh Thiam1

1 LANI, Université Gaston Berger de Saint-Louis, Sénégal
{david-celestin.faye,cheikh.thiam}@ugb.edu.sn

2 Université Paris-Est, Marne-la-Vallée, LIGM - UMR CNRS 8049, France
{ocure, gblin}@univ-mlv.fr

Résumé : This paper tackles issues encountered in storing and querying services deal-
ing with information described with Semantic Web languages, e.g. OWL and RDF(S).
Our work considers RDF triples stored in relational databases. We assume that depend-
ing on the applications and queries asked to RDF triple stores, different partitioning
approaches can be considered : either storing all triples in a single relation or using a
vertical partitioning where each property is associated to a given relation. We believe
that several solutions lie in between these two approaches and we have already pro-
posed roStore has one of them. It consists of an ontology-guided, column-oriented
approach particularly efficient for ontologies containing property hierarchies. In a pre-
vious paper, we have emphasized that this approach is efficient for queries retrieving
information. Due to the adoption of a column-oriented relational approach, an obvious
question is : How does it perform on update operations ? The main contribution of this
paper is to reply to this question through an evaluation on knowledge bases generated
from LUBM. Moreover, our previous work is also extended with (i) a solution to adapt
the roStore schema when the underlying ontology is modified and (ii) a formalization
of an inference-based query translation from SPARQL to SQL for roStore.

Mots-clés : Ontology, Semantic Web, RDF triples, Reasoning, Persistent storage

1. Introduction

Scalability issues are a main concern for most application designers. This

also applies to Web applications where figures of several tera bytes of new

data per day are not uncommon (e.g. in scientific and social applications).

Some of these applications describe part of their data using a Semantic Web

language, i.e. OWL and/or RDF(S). This aspect forces Semantic Web applica-

tion designers to think about scalable storage solutions for knowledge bases.

In this work, we only consider solutions using Relational DataBase Manage-



IC 2011

ment Systems (RDBMS) to store RDF triples. In a previous paper (Curé &

Faye 2010), we argued that a spectrum of solutions are possible in this area

and that the motivation of picking one solution instead of another is motivated

by the kind of applications and queries asked to the triple store. Moreover,

we identified a particular approach, named ontology-guided, which proposes

an information partitioning based on the structure of the ontology. Our solu-

tion, namely roStore, adopts a property-based partitioning which we have

shown to be efficient for data retrieving queries (e.g. SELECT queries).

The underlying physical model of roStore consists in a column-oriented

RDBMS, i.e. storing tables as collections of columns rather than collections of

rows, which is known to be more I/O efficient for read-only queries. An obvi-

ous question is : how roStore performs on update operations, i.e. insertion,

modification and deletion of triples of the knowledge base ? This also tackles

the issue of updates at the ontology level and how it impacts the relational

database schema. This paper replies to these questions through respectively

an evaluation on some LUBM knowledge bases with an adapted set of update

queries and a presentation of a set of rules enabling an automatic transfor-

mation of the underlying relational database schema from modifications of

the ontology. Finally, our (Curé & Faye 2010) paper is also extended with

a SPARQL extension proposition supporting an inference-based approach of

SPARQL to SQL transformations.

This paper is organized as follows. In Section 2, we enrich the related work

proposed in (Curé & Faye 2010) with considerations on update operations

performed on persistent RDF storage. Section 3 presents the roStore ap-

proach and provides details about the impact of RDF Schema evolution on

the relational schema. In Section 4, we detail a set of extensions provided to

the SPARQL query language to integrate inferences at the data management

level. Section 5 proposes an evaluation on performing updates on roStore.

Finally, Section 6 concludes the paper and presents some future work.

2. Related work

In this related work section, we extend the one proposed in (Curé & Faye

2010) by concentrating on update operations. That is we consider the support

of modifications at the extensional level of the knowledge base. Due to the

large amount of solutions for the storage of RDF triples and to space lim-

itations, we concentrate on those solutions prevailing in a database context

and accepting SPARQL queries. We will provide a particular attention to the



RDF triples management in roStore

notion of indexes since it partly motivates the efficiency of update queries.

The idea of the Multiple Access Pattern (MAP) approach is the construc-

tion of indices that cover all the possible access patterns of the form 〈s,p,o,〉
where stands s for subjects , p predicates, and o for objects. All the three

positions of a triple are indexed for some permutation of s, p, and o. The in-

dexation is done by using up to six separate B+trees, corresponding to the six

possible orderings, i.e. spo, sop, pso, pos, osp, ops. Among others sys-

tems using this technique we can cite YARS (Harth & Decker 2005), Virtuoso

(Erling & Mikhailov 2007) and RDF-3X (Neumann & Weikum 2008).

The YARS system combines methods from databases and information re-

trieval to allow for better query answering performance over RDF data. It

stores RDF data persistently by using six B+ tree indices. It not only stores the

subject, the predicate and the object, but also the context information, denoted

c, about the origin of the data. Each element of the corresponding quad (i.e.

4-uplet) is encoded in a dictionary storing mappings from literals and URIs to

object IDs (OIDs – stored as number identifiers for compactness). To speed

up keyword queries, the lexicon keeps an inverted index on string literals to

allow fast full-text searches. In each B+ tree, the key is a concatenation of the

subject, predicate, object and context. The six indices constructed cover all

the possible access patterns of quads in the form 〈s, p, o, c〉. This rep-

resentation allows fast retrieval for all triple access patterns. Thus, it is also

oriented towards simple statement-based queries and has limitations for effi-

cient processing of more complex queries. The proposal sacrifices space and

insertion speed for query performance since, to retrieve any access patterns

with a single index lookup, each triple is encoded in the dictionary six times,

in different sorting order. Note that inference is not supported.

The commercial system Virtuoso (Erling & Mikhailov 2007) stores

quads combining a graph to each triple 〈s, p, o〉.Thus, it conceptually

stores the quads in a triples table expanded by one column. The columns are

g for graph, and the standard s, p, o triple. While technically rooted in

an RDBMS, it closely follows the model of YARS but with fewer indices.

The quads are stored in two covering indices, g, s, p, o and o, g, p, s, where

the URI’s are dictionary encoded. Several further optimizations are added, in-

cluding bitmap indexing. In this approach, the use of fewer indices tips the

balance slightly towards update query operation performances but it still per-

forms efficiently for retrieving queries.

RDF-3X (Neumann & Weikum 2008) is an RDF storage system with ad-

vanced indexes and query optimization that eliminates the need of physi-



IC 2011

cal database design by the use of exhaustive indexes for all permutations of

subject-property-object triples. Neumann et al. use a potentialy huge triples

table, with their own storage implementation underneath (as opposed to using

an RDBMS). They overcome the problem of expensive self-joins by creating

a suitable set of indexes. All the triples are stored in a compressed clustered

B+ tree. The triples are sorted lexicographically in the B+ tree. The triple

store is compressed by replacing long string literals in the triples IDs using a

mapping dictionary. The system supports both individual update operations

and entire batches updates.

Hexastore (Weiss & Karras 2008) is based on the idea of main-memory

indexing of RDF data in a multiple-index framework. The RDF data is in-

dexed in six possible ways, one for each possible ordering of the three RDF

elements by individual columns. The representation is based on any order of

significance of RDF resources and properties and can be seen as a combina-

tion of vertical partitioning (Abadi & Marcus 2007) and multiple indexing ap-

proaches (Harth & Decker 2005). Two vectors are associated with each RDF

element, one for each of the others two RDF elements (e.g., [subject,property]

and [subject,object]). Moreover, lists of the third RDF element are appended

to the elements in these vectors. Hence, a sextuple indexing schema is created.

As Weiss et al. point out in (Weiss & Karras 2008), the values for o in pso

and spo are the same. So in reality, even though six tables are created only

five copies of the data are really computed, since the object columns are du-

plicated. To limit the amount of storage needed for the URIs, Hexastore uses

the typical dictionary encoding of the URIs and the literals, i.e. every URI and

literal is assigned a unique numerical identifier. Hexastore provides efficient

single triple pattern lookups, and also allows fast merge-joins for any pair of

two triple patterns. However, space requirement of Hexastore is five time

the space required for storing statement in a triples table. Hexastore favors

query performance over insertion time passing over applications that require

efficient statement insertion. Updates and insertions operations affect all six

indices, hence can be slow. Note that Hexastore does not provide inference

support. Recently, in (Weiss & Karras 2008), Weiss et al. proposed an on-disk

index structure/storage layout so that Hexastore performance advantages

can be preserved. Additionally to their experimental evaluations, they show

empirically that, in the context of RDF storage, their vector storage schema

provides significantly lower data retrieval times compared to B trees.

The RDFJoin (McGlothlin & Khan 2009) project provides several new

features built on top of previous cutting edge research including vertical parti-



RDF triples management in roStore

tioning (Abadi & Marcus 2007) and sextuple indexing (Weiss & Karras 2008).

RDFJoin proposes a persistent column-store database storage for these ta-

bles with the primary goal to reduce the need and cost of joins and unions

in query implementations. Indeed, it also use the six possible indexes on

〈s, p, o〉 using three tables : ps-o, so-p and po-s. These tables are

indexed on both the first two columns so they provide all possible six indexes,

while insuring that only one copy of the third column is stored. By keep-

ing three separate triples tables and normalizing the identification numbers,

RDFJoin allows subject-object and object-object joins to be implemented as

merge joins as well. RDFJoin uses conversion tables closely matching the

dictionary encoding of the vertical partitioning. All the third column tuples

are sotred in a bit vector, and hash indexing based on the first two columns

is provided. This reduces space and memory usage and improves the perfor-

mance of both joins and lookups. For example, the ps-o table has columns

Property, SubjectID and ObjectBitV ector where ObjectBitV ector is a

bit vector with the bits corresponding to all the object ID that appears in a

triple with this property and subject. This also applies for the so-p and the

po-s tables. Thus, all of the RDF triples in the dataset can be rendered from

any of these tables. Additionally, execution of subject-subject, subject-object

and object-object joins are done and stored as binary vectors into tables called

join tables. This task is performed one time for any RDF dataset during the

preprocessing stage to avoid overhead. Then, the results are stored in the re-

lational database where they are quickly accessible. Indeed, RDFJoin stores

much of its data as binary vectors and implements joins and conditions as

binary set operations. This implementation provides significant performance

improvement over storing each triple as a unique tuple. Let us remark that

RDFJoin does support insertion of new RDF triples, but does not allow direct

updates or deletions of triples in the database. Moreover, there is no suppport

for inference in RDFJoin.

The storage and indexing strategies used by each proposal may depend if

the tool is concerned with query performance of adding or updating knowl-

edge to the database. Considering update queries, we note the following limi-

tations ; (i) information about a piece of data can appear in multiple locations,

possibly spanning several different data structures. ,(ii) redundant storage, e.g.

each B+tree in a MAP scheme contains a separate copy of essentially the same

set of data , (iii) locating all triples related to some data requires lookups in

three different data structures : increased query processing costs (e.g. per-

forming a join on an atom can require multiple independent index lookups).



IC 2011

Note that none of these solutions uses inference for update queries.

3. roStore

3.1. Approach overview

In order to grasp this paper’s contributions, we need to introduce the roStore

approach. Nevertheless, we invite the interested reader to read (Curé & Faye

2010) to get more details and a motivation of its building blocks.

The roStore approach derives from the vertically partitioned one and

extends it by clustering into a single table data related to a given top-property

of a property hierarchy. Starting from a property hierarchy, we consider that a

predicate is a top-property if it is not an rdf:subPropertyOf of another

predicate. Then, for each top-property P T , a three-columns table is created

by (1) merging all the two-columns tables corresponding to predicates being

rdf:subPropertyOf P T and (2) adding a third column indicating from

which predicate the entry (subject, object) was retrieved. This approach can

be compared to the standard approaches proposed in Example 1 and Figure 1.

In roStore, any predicate not corresponding to an rdf:subPropertyOf

of a top-property will still be stored in a two-columns table. This implies an

insignificant expense of the space complexity of this novel approach (partic-

ularly if entries are encoded using a dictionary). Moreover, in case of a hier-

archy not in the shape of a directed acyclic graph (i.e. DAG, which should be

rarely encountered), any predicate being part of a cycle will be stored in a two-

columns table (since we would not be able to define a specific top-property

among them). Considering that this top-property based approach seems to be a

natural approach, one may, depending on the topology of the hierarchy, define

other physical organizations inducing better performance for specific cases.

The major impact of merging some tables is to obtain better performance of

queries requiring joins over predicates belonging to the same “sub-hierarchy“

of the property hierarchy. This is typically the case when one wants to retrieve

all the triples associated to a set of predicates in the same property hierarchy.

In the following, we will denote by vpStore (resp. roStore) the vertically

partitioned (resp. our) approach.

Example 1 : In this example, we use the LUBM ontology (Guo & Pan & al

2005) which has been developed to facilitate the evaluation of Semantic Web

repositories in a standard and systematic way Consider the extract of Figure

1b of a LUBM dataset defined over the given property hierarchy of Figure 1a.



RDF triples management in roStore

With vpStore, the triples would be distributed over three different tables as

displayed in Figure 1c, d and e. Comparatively, in roStore, one obtains only

one table : a single relation containing subject, object and property attributes,

named after the top-property memberOf and storing all triples.

(a) property hierarchy : headOf ⊑ worksFor ⊑ memberOf

sub prop obj

a headOf b

c worksFor d

e worksFor f

(b) RDF triples

sub obj

a b

(c) headOf

sub obj

c d

e f

(d) worksFor

sub obj

(e) memberOf

FIGURE 1: Storage comparison of vpStore (sub, prop and obj denote resp.

subject, property and object of a triple.

Thus, if we consider an ontology consisting of n (e.g. 2 in our example)

property hierarchies with an average of k (e.g. 3 in our example) properties in

each hierarchy, the roStore approach will store k times less tables than a

vpStore approach. Moreover, with this approach it is very unlikely to gen-

erate tables with no tuples (e.g. memberOf with vpStore in Example 1).

The set of tuples stored is the same than in vpStore and only their distribu-

tion over database tables is modified (i.e. physical organization).

We now consider the following query : one wants to retrieve all objects

involved in a triple with a predicate of the memberOf hierarchy. Considering

vpStore’s physical design, the following SQL query is needed :

SELECT object FROM memberOf UNION (SELECT object

FROM worksFor UNION (SELECT object FROM headOf));

while the same query is answered far more efficiently considering roStore’s

physical design with : SELECT object FROM memberOf;

Such a simple example already emphasizes the improvement one can get

from using a physical organization such as roStore over vpStore when

property hierarchies are present in the ontology, e.g. the OpenGalen ontology

contains a property hierarchy of depth 6.

3.2. RDF Schema evolution

The roStore system handles the creation of database relations given an

ontology represented in OWL or RDF Schema but it also deals with its evo-



IC 2011

lution (e.g. creations of a new property or extensions of an existing property

hierarchy).

This evolution is handled by a set of rules enabling to adapt the database

schema given modification patterns on the ontology schema. These patterns

concern update operations at the terminological level of an ontology and can

thus can only impact its sets of concepts and properties. Since roStore does

not map ontology concepts to database relations, the database schema is not

modified by insertions or deletions of concepts. For ontology properties (ei-

ther datatype or object), the database schema needs to be updated. In order

to present the different possible situations, we need to distinguish between

different types of properties : a stand-alone property corresponds to a top

property with no sub properties, a top property is a top property with sub

properties and a subsumed property denotes a property having a super prop-

erty which is already mapped to a database relation and no sub properties.

The kind of update operations we are interested in are limited to insertion,

deletion and renaming of ontology properties. That is, we do not consider

updates of a property’s domain or range since it does not impact the table

organization of the relational database. Moreover, we do not describe the se-

mantics of modification operations (e.g. modification of the top property of

a given hierarchy with an already existing property) since it can be specified

in terms of the semantics of insertion and deletion operations. Nevertheless,

for optimization reasons, this is not the operational semantics implemented in

roStore.

We now detail the operations associated to evolution scenarios :

1. insertion of a stand-alone property P1 : a new relation named P1 is

created in the database schema and this relation has only subject

and object attributes.

2. insertion of subsumed property P2 (with P1 has a super property) : sub-

jects and objects involved in triples containing P2 as a property will be

inserted in the existing P1 relation with P2 stored in the property

attribute. Note that if P1 was a stand-alone property, a property at-

tribute needs to be inserted in this relation and P1 is the value associated

to all tuples before insertions of triples involving P2 otherwise this at-

tribute was already present.

3. insertion of a top property P3 on top of an existing property hierarchy

(with former top property P1) : the relation P1 is renamed after P3.

4. insertion of a top property P4 which is the top property of a hierarchy



RDF triples management in roStore

together with another property P3. This corresponds to multiple inheri-

tance case and can be handle as follows : it is the end-user’s decision to

rename P3 after P4 or leave the schema unmodified.

5. removal of a stand-alone property P5 : the relation corresponding to this

property is deleted.

6. removal of a subsumed property P6 : all tuples in relation P with property

attribute equal to P6 are deleted from the database.

7. removal of a top property P7 : if P7 has a single direct descendant, then

relation P7 is renamed after it. Otherwise, the end-user selects one of

the descendants to rename relation P7.

8. renaming of a stand-alone property P8 into P9 : the database relation P8

is renamed into P9.

9. renaming of a top property P10 onto P11 : the database relation P10 is

renamed into P11 and all labels P10 in the property attribute of the

relation are modified to the label P11.

10. renaming of a subsumed property P12 into P13 : no database relation

renaming is necessary, only the transformation of the label P12 into P13

in the property attribute of the relation is necessary.

4. Inference-based data management

Agents, i.e. applications or end-users, provide the roStore system with

SPARQL queries (Prud’hommeaux & Seaborn 2008). The system then goes

through a translation step to generate automatically a set of SQL queries

which are going to be executed on the underlying RDBMS. A large body of

work has already been done on the SPARQL to SQL translation topic but our

contributions are tailored toward the specificities of both the vertically par-

titioned (VP) and roStore layouts. Moreover, it supports several semantic

query rewriting techniques to enable TBox inferences.

In a nutshell, SPARQL is a graph-matching query language for RDF which

has been released by the W3C. A query is composed of a pattern-matching

part taking the form of triples. Natively, SPARQL does not support any form

of inference hence it must rely on inferences performed by an external rea-

soner, e.g. Pellet. Most frequently, it results in generating a set of SPARQL

queries integrating the inferred results. In the section, we present an approach

based on this principle and which is extended with features for (i) ensuring a



IC 2011

declarative approach of specifying and processing queries and (ii) optimizing

the set of generated SQL queries.

4.1. SPARQL extensions and translation to SQL

In order to propose a declarative approach for defining SPARQL queries,

we propose to extend this query language with several operators. These oper-

ators can be attached to any of the three positions of a triple. Intuitively, they

specify the inference mechanisms which can be associated to concepts and

properties found in SPARQL triple patterns. These inferences are related to

concept and property hierarchies and enforce the generation of SQL queries.

These operators correspond to :

– @subConcept and @superConcept which enforce to compute the

sub(respectively super) concept hierarchy of a given concept.

– @subProperty and @superProperty which enforce to compute

the sub (respectively super) property hierarchy of a given concept.

Of course, these operators can be combined over a single SPARQL query

and chained together, e.g. worksFor@subProperty@superProperty

to retrieve all the properties of the property hierarchy containing worksFor

(evidently this query extract is equivalent to memberOf@subProperty).

The following example presents a concrete example over the LUBM ontology.

Example 2 : Suppose we would like to retrieve all subjects involved in

triples with a property of the memberOf property hierarchy and whose (RDF)

type is any of the concepts of the Professor concept hierarchy. This SPARQL

query takes the following form :

SELECT?s WHERE {?s memberOf@subProperty?o.

?s rdf:type Professor@subConcept.}

which enables to generate the following SQL query :

SELECT subject FROM memberOf m JOIN type t

ON (t.subject=m.subject) WHERE t.object

IN (’Professor’,’FullProfessor’,..);

4.2. Domain and range based inferences

The SPARQL extensions we have presented involve Description Logics

(DL) standard inferences, namely concept subsumption, to enhance data re-

trieval and update. In this section, we present another form of reasoning based

on the types associated to the domain and range of a given property. Intu-

itively, the main idea is (i) to test the satisfiability of a given SPARQL query



RDF triples management in roStore

by checking domains and ranges of involved properties and (ii) to optimize

the set of generated SQL queries by generating only satisfiable queries.

As a consequence, these mechanisms enable to detect unsatisfiable queries

(i.e. queries that return empty result sets independently of the database in-

stance) and to generate only satisfiable SQL queries when inferences on con-

cept and property hierarchies are involved. These mechanisms can have a big

impact on the query execution performance since it can avoid to perform a

complete scan over a set of property tables. To this end, this approach can be

compared to indexing techniques found in RDBMS. But our solution is dy-

namic rather than static and does not require indexes to be persistent, hence

opening perspectives for better update query performances.

5. Evaluation

5.1. Experimental settings

The experiments we are presenting in this section have been conducted

on four synthetic databases generated using LUBM. The RDF data sets have

been translated into different physical organization models. They are decom-

posed into the two approaches vpStore and roStore. In order to empha-

size the efficiency of our solution on queries needing reasoning, we had to

test these settings in a context similar to (Abadi & Marcus 2007) and also to

the setting adopted in (Curé & Faye 2010) for evaluation of SELECT queries.

More precisely, we evaluated each approach on a row-oriented and a column-

oriented RDBMS. This yields the four following approaches : vpStore

resp. on a row (vpRow) and column (vpColumn) stores and roStore resp.

on a row (roRow) and column (roColumn) stores. Hence a total of sixteen

databases have been generated (each data set is implemented on each physical

approach).

We have selected postgreSQL and MonetDB as the RDBMS resp. for the

row-oriented and the column-oriented databases. We retained MonetDB in-

stead of C-store (the column store used for evaluation in (Abadi & Marcus

2007)) essentially due to (i) the lack of maintenance of the latter one, (ii) the

open-source licence of MonetDB and (iii) the fact that MonetDB is considered

state of the art in column-oriented databases. The tests were run on MonetDB

server version 5 and postgreSQL version 8.3.1. The benchmarking system is

an Intel Pentium 4 (2.8 GHz) operated by a Linux Ubuntu 9.10, with 1 Gbytes

of memory, 1MB L2 cache and one disk of 60 Gbyte spinning at 7200rpm.



IC 2011

The disk can read cold data at a rate of approximatively 55MB/sec.

For the vpRow, there is a clustered B+ tree index on the subject and an

unclustered B+ tree on the object. Similarly, for the roRow, a clustered B+

tree index is created on the property column and unclustered B+ trees on the

subject and object. As noted in (Sidirourgos & Goncalves 2008), MonetDB

does not include user defined indices. Hence, we relied on the ordering of the

data on property, subject and object values. More precisely, any two columns

table of roColumn and vpColumn is ordered on subject and object ; while

any three columns table (of roColumn) is ordered on property, subject and

object. This evaluation does not consider structures common to vpStore and

roStore, i.e. relations composed of only two attributes. Hence all queries

executed in this evaluation section consider relations generated for property

hierarchies.

In this evaluation we are only interested in how update queries perform

considering vpStore and roStore. We consider that this particularly rel-

evant at the time when SPARQL 1.1, which integrates update facilities, is at

the W3C Working Draft stage. To this end, we have defined a set of 7 queries

considering all update forms (i.e. delete, update and insert). The first three

queries (Q1 to Q3) operate respectively deletion, insertion and modification

of a large number of tuples on each database while queries Q4 to Q7 operate

on smaller set of tuples. All queries involve the department0 instance over

our four synthetic databases. Volumes are presented in the following table :

Universities ’Department0’ instances Total number of triples

1 720 100868

2 1158 236336

5 2814 643435

10 5633 1296940

Q1 : delete all instances of Department0 from the memberOf proper-

ties (i.e. headOf, worksFor and memberOf properties.

Q2 : restores all instances of Department0 of the memberOf proper-

ties. This is the same pattern as in the previous query.

Q3 : modifies all instances of DepartmentO of a given university to

Department0 to another university.

Q4 : This is an update query replacing FullProfessor9 by FullProfessor4

as the new head of Department0 at University0.

Q5 : inserts a new professor as the head of Department0 of University0.



RDF triples management in roStore

Q6 : All students of Department0 University0 are now members

of Department1 University0. This query requires inferences since all

sub classes of Student are considered.

Q7 : All persons which are member of Department0 at University0

are ’moving’ to Department0 at another University.

5.2. Experimental results

Q1 : The roStore approach is faster than vpStore since only one query

is executed on the former and three for the latter.

Q2 : Both roStore approaches are faster than the vpStore solutions.

Again, this is due to the number of queries executed.

Q3 : roStore is faster than vpStore on both column and row-oriented

databases. This is again related to the number of queries executed for each

approach (3 for vpStore and 1 for roStore). There is not much differ-

ence between the vpRow and vpColumn since the condition of the query

is performed on an attribute which is not used in an index. Remember that

the implementation of the column-oriented database we are using does not

support indexes but relies on ordering of data within a table. This may impair

performances after a large number of updates.

Q4 : On the one hand, the vpStore approach requires two queries since a

DELETE operation is required on the worksFor relation and an INSERT op-

eration is needed on the headOf relation. On the second hand, the roStore

approach needs a single UPDATE query since on the memberOf relation. This

justifies the better performances of roStore over vpStore. This query

also emphasizes the impact of indexed attributes. For the vpStore databases,

the row version exploits an index and is much faster than its column counter-

part. The UPDATE query of the roStore approach selects precisely a given

tuple with a selection over the three attributes of the memberOf relation.

Since this relation is ordered on the column version, the differences are not

that important between the column and row approaches.

Q5 : the roStore and vpStore approaches both contain a single query.

The vpStore query accesses the headOf relation which contains a subset

of the memberOf relation accessed by the roStore approach. But to ana-

lyze the query results, it is also important to consider the index maintenance

of row stores which is not necessary for column stores at the cost of degrading

performances since the relation will not be sorted after many updates.

Q6 : Both vpStore and roStore need a single UPDATE query with in-



IC 2011

FIGURE 2: Queries involving large volumes of data

ferences (retrieving all sub concepts of the Student class). Unsurprisingly,

all query performances are very close with a slight advantage of vStore

other roStore (since no selection is required on the property attribute for

vpStore)

Q7 : The vpStore version requires 3 queries (one for each property of

memberOf property hierarchy) while the roStore version requires a single

query since it only accesses the memberOf relation. The same form of infer-

ences is required on all queries, i.e. inferring all sub concepts of the Person

concept.

6. Conclusion

As a logical data model, RDF does not propose a preferred physical storage

approach. Depending on the queries asked by applications and the structure

of the underlying ontology, several data models and physical organizations

are possible. Our roStore system, originally presented in (Curé & Faye

2010), corresponds to an ontology-guided solution which exploits property

hierarchies to partition the RDF triples into several relations. This approach



RDF triples management in roStore

FIGURE 3: Queries involving few tuples

has been shown to be particularly efficient when implemented on top of a col-

umn oriented RDBMS (as opposed to row oriented one). An obvious ques-

tion related to the characteristics of column oriented RDBMS is : how is it

performing on update queries ? The evaluation we have conducted empha-

sizes that performances are comparable to its row oriented counterpart and

that roStore stands as a good competitor to vertical partitioning. We now

have a clear picture on two solutions of ontology-guided partitioning of RDF

triples : whenever your ontologies contain property hierarchies and your ap-

plications make an extensive use of them, the roStore approach may be

advantageous even when update operations are frequently executed. More-

over, in this paper, we have extended our previous work on roStore by

(i) proposing an extension to the SPARQL query language that enables an

inference-based generation of SQL queries and (ii) providing a set of rules to

modify automatically the relational schema when the ontology is modified.

We consider that together with (Curé & Faye 2010), this paper proposes a

clear overview of roStore with evaluations of both retrieving and updating

queries, a schema evolution approach and a semantic query rewriting solution.

In future works, we aim to tackle so called NoSQL databases to store RDF



IC 2011

triples. We are confident that hybrid solutions between standard RDBMS and

NoSQL databases will enable to design scalable Semantic Web applications.

7. References

Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K. : Scalable semantic

web data management using vertical partitioning. VLDB ’07, 411-422, 2007

Curé, O., Faye D. , Blin, G. : Towards a better insight of RDF triples Ontology-

guided Storage system abilities. 6th International Workshop on Scalable Se-

mantic Web Knowledge Base Systems (SSWS’10). Shanghai, China. 2010.

Guo Y., Pan Z., Heflin J. : LUBM : A benchmark for owl knowledge base

systems. J. Web Sem., 3(2-3) :158–182, 2005

Harris, S., Gibbins, N. : 3Store Efficient bulk RDF storage. PSSS’03, 1–20,

2003

Harth, A., Decker, S. : Optimized Index Structures for Querying RDF from

the Web. LA-WEB ’05, 71–80, 2005

Kolas, D., Emmons, I., Dean, M. : Efficient Linked-list RDF Indexing in Par-

liament. SSWS’09, 17-32, 2009

Erling, O., Mikhailov, I. : RDF Support in the Virtuoso DBMS. Conference

on Social Semantic Web 2007. 59-68

McGlothlin, J., Khan, L. : RDFJoin : A Scalable of Data Model for Persis-

tence and Efficient Querying of RDF Datasets. Technical Report UTDCS-08-

09. http ://www.utdallas.edu/ jpm083000/rdfjoin.pdf.

Neumann, T., Weikum, G. : RDF-3X : a RISC-style engine for RDF. VLDB

Endow. 2008. 647-659.

Prud’hommeaux, E., Seaborn A. : SPARQL Query Language for RDF.

http://www.w3.org/TR/rdf-sparql-query/ 2008

Sidirourgos, L., Goncalves, R., Kersten, M., Nes, N., Manegold, S. :Column-

store support for RDF data management : not all swans are white. VLDB’08,

1553-1563

Weiss, C., Karras, P., Bernstein, A. : Hexastore : sextuple indexing for seman-

tic web data management. VLDB’08, 1008-1019, 2008


