
Trace replay with change propagation impact in client/server applications

Trace replay with change propagation impact in
client/server applications

Raafat Zarka1,2, Amélie Cordier1,3, Elöd Egyed-Zsigmond1,2, Alain Mille1,3

1 Université de Lyon, CNRS
2 INSA-Lyon, LIRIS, UMR5205, F-69621, France

3 Université Lyon 1, LIRIS, UMR5205, F-69622, France
{raafat.zarka, amelie.cordier, elod.egyed-zsigmond, alain.mille}

@liris.cnrs.fr

Abstract: To help end-users mastering complex applications, it is often efficient to
enable them to “replay” what they have done so far. In some cases, it is even more
useful to enable them to modify some values of the actions they are replaying.
However, while doing so, it very important to deal with the consequences of these
changes on the remaining of the replay process. In this paper, we describe our
models to enable replay of user‟s interactions and to manage impact propagation of
changes during the replay process. These models are built upon traces, i.e. digital
objects that enable us to record user interactions and to reuse them in different ways.
We have implemented the replay process in a Web application called SAP-BO
Explorer, an application helping business users to access large amounts of
information. Our tool helps users to better understand the application.

Keywords: impact propagation, macro recording, bookmarks, replay traces, human
computer interaction.

1. Introduction

With the multiplication and the rapid development of software systems
and applications, we now have access to more and more tools, which are
usually more and more complicated. While using these tools, we are often
lost, usually because we lack time to understand applications, to get used to
them and to exploit them efficiently. In response to this problem, some
application designers came up with solutions for helping users either to
discover the application or to learn how to be more efficient while using it.
Providing a relevant assistance to users becomes a real challenge for
application designers. Among the proposals for assistance strategies, we
usually find tutorials, how-to, videos, assistants, training courses, etc.
However, all these assistance strategies rest upon a static description of the
application, hard-coded a priori. They are proposed to users in an identical
way and thus, are not always well suited to specific needs of specific users.
To overcome this issue, we have proposed, in a previous work (Zarka et al.
2010) to use interaction traces in order to provide user with a personalized
and contextualized assistance based on previous experiences.

IC 2011

Interaction traces are relatively new digital objects. An interaction trace
is a record of the actions performed by a user on a system. In other words, a
trace is a story of the user‟s actions, step by step. Hence, traces enable us to
capture users‟ experiences. Traces are recorded according to a pre-
established model, so that they can be reused in different ways: replay,
exploration, modification, modification plus replay, etc. Working with traces
raises numerous research issues. How to collect, represent, store, and
visualize traces? What mechanisms have to be implemented in order to allow
user to browse their personal traces? How to implement a replay mechanism
in a pre-existing system? How to take into account privacy issues when
working with traces?

Recent researches provide us with solutions to some of these problems

and enable us to work within an existing framework for manipulating traces
(see (Champin et al. 2004), (Cordier et al. 2009) and (Settouti et al. 2009)).
In this paper, we focus on a specific research question: how to replay a trace
in a system and which issues are raised by the replay when the initial situation
has been modified? To better understand this problem, let us consider the
following example. A user makes a sequence of manipulations to improve a
colored picture: transformation in gray-scale, selection of a scale of gray,
luminosity attenuation for the selection, blur effect on the selection. Not
satisfied with the result, he decides to go back to the initial state (the original
picture) and to replay the whole set of actions, except from the
transformation in gray-scale. The question is: “is the remaining of the actions
still possible?”

The issue we address in this paper is then: how to enable a trace replay

while monitoring the impact of a modification in the trace on the remaining
of the process? In order to address this issue, we have firstly elaborated a
mechanism enabling to do a simple replay of a trace (i.e. with no
modification) from any point in the trace. Then, we have defined a model for
impact analysis in order to manage impact propagation after a modification
of the trace. Both models are described in this paper. The trace-replay
mechanism has been implemented in the widely used SAP-BO Explorer
application (SAP 2010), a web application enabling user to load, explore,
visualize and export large quantities of data. SAP-BO needed a tool to help
their users better understand the tool and this is the solution we designed for
them. We have instrumented the initial application in order to collect
interaction traces and we have developed a graphical interface in order to
display the traces according to an ad-hoc representation. We have also
instrumented the application in order to enable replay of recorded traces. The
application is operational and a demo video is available1.

1 A demo video of trace replay and visualization is available at: https://liris.cnrs.fr/~rzarka/ReplayTraceDemo/

Trace replay with change propagation impact in client/server applications

This paper is organized as follows. In section 2, we survey related work.
Then, in section 3, we show how we use traces in order to enable replay of
user‟s interactions. In section 4, we discuss the consequences of a change
during the replay, and we propose an impact propagation model. Section 5
gives implementation details. Evaluation and discussion of our proposal are
made in section 6. The paper ends with a conclusion and a description of
future research issues.

2. Related work

In most of existing macro recording systems, users have to be proactive:
they need to start and stop macro recording. Bookmark systems are one of
the most common macro recording systems. They enable users to “replay”
web pages. With Koala (Little et al. 2007), the user can record a sequence of
actions and generate a script of keyword commands that can be replayed
later. Recorded scripts are stored automatically on a wiki, which might be
shared by a workgroup, allowing easy exchange and improvement of scripts.
CoScripter (Leshed et al. 2008) is a Firefox plug-in created by IBM
Research. It allows users to record and share interactions with websites. It
records user actions and saves them in semi-natural language scripts. The
scripts made are saved in a central wiki for sharing with other users.

WebVCR (Anupam et al. 2000) and WebMacros (Safonov et al. 2001)
record web browser actions as a low-level internal representation, which is
not editable by the user or displayed in the interface. All these systems
require planning to enable recording while Smart Bookmarks (Hupp &
Miller 2007) supports retroactive recording: it automatically captures users‟
interactions while they navigate the web and displays them through a
graphical presentation. When users want to bookmark a webpage, the system
automatically determines the sequence of commands needed to return to the
page, and saves the sequence as a bookmark. While Smart Bookmarks lets
users save or share actions from ongoing browsing sessions, ActionShot (Li
et al. 2010) enables users to share actions they have performed before by
providing them with a visual interface for browsing their entire history.
ActionShot system is built on top of the CoScripter platform. History data is
reused through the re-execution of recorded steps. Sharing also is supported
through Facebook, Twitter or via email. Both ActionShot and Smart
Bookmarks are generic, but they are implemented as Firefox extensions
which is a limit. Besides, they cannot work with dynamic pages (e.g. Ajax or
Flash based).

 In Smart Bookmarks, users can modify parameters values before the

bookmark starts running. However, these new values may affect commands
and cause inconsistent states in the application. Hence, it seems relevant to

IC 2011

study impact propagation of these changes. Impact propagation analysis is
widely studied in software engineering and database domains. In (Briand et
al. 2003), the authors propose a UML model-based approach to impact
analysis that can be applied before any implementation of the changes, thus
allowing an early decision-making and change planning process. Most
techniques to predict the effects of schema changes upon applications that
use the database can be expensive and error-prone, making the change
process expensive and difficult. In (Maule 2010), the authors present a novel
analysis for extracting potential database queries from a program, called
query analysis. The impacts of a schema change can be predicted by
analyzing the results of query analysis, using a process they call impact
calculation. Many systems also support impact analysis. One of them is
Sybase Power Designer Modeling Tool that provides powerful methods for
analyzing the dependencies between object models (Sybase 2010).

Table 1. Comparison table of related work

System Representation Simple Replay Replay with

change

Adaptation

WebMacros

WebVCR

No Proactive No No

Koala Wiki Scripts Proactive No No

CoScripter Text, Firefox

Extension

Proactive No No

Smart

bookmarks

Graphical

(screenshots),

Firefox extension

Retroactive Yes, without

impact

propagation

Classify buttons for

side-effecting

ActionShot Graphical text

explanations,

Firefox extension

Retroactive Yes, without

impact

propagation

No

Photoshop Actions list Macro and undo

command

Yes Yes

Power Designer Does not trace Undo command No Impact rules

Trace Replay

(Our approach)

M-Trace with text

explanations

Retroactive Yes Impact rules and

adapted values

Some applications allow users to replay their actions like Photoshop

(Harrington 2009), by using undo or playback commands. In Photoshop,
graphics designers and photographers have a number of processes they
frequently perform on their images. By creating macros called “actions” they
can automate many routine tasks using simple text files that are recorded in a
macro-style. Whether is the goal is to convert an image for the Web or to
transform a color photo into a black and white photo, designers can reduce
several steps to a click on a single button. Users can create their own macro
scripts which are mini recordings of commands. This is also what we would

Trace replay with change propagation impact in client/server applications

like to provide, but in our case we need to apply macro recording for
systems that do not support undo commands like most of client-server
applications. In addition, we do not want to ask the user to start or stop
recording his actions. Table 1 shows a comparison between all the presented
works according to the way they allow visualization of past actions and if
they support the replay with or without change of values.

3. Simple trace replay (go back to a previous state)

In client-server applications, simple undo commands imply data
interchange between client and server. This may take a lot of time (especially
if the undo has to be repeated many times) and can cause server overload.
Besides, such a problem may face loss of data issues. Last, it is not a scalable
solution for situations where a lot of users access the server at the same time.
For all these reasons, undo commands are hard to implement. Instead, to
enable users to go back to a previous state, we propose to implement a
“trace replay mechanism”. This mechanism enables users to replay their
interaction until they reach the expected state of the application. In order to
implement this mechanism, we have defined a trace model (see Fig. 1).

Fig. 1 Modified trace model to support trace replay

Each user‟s session is represented by a M-Trace which consists of a set of

observed elements (obsels). Each obsel has a type and two timestamps
representing its beginning and ending instants. Each obsel type has a domain

IC 2011

of attributes and indicates the values of its attributes respecting the range of
the attribute type. An obsel can affect many elements at the same time. For
example, pressing a “delete all” button can erase the values of many elements
together. By using the obsel attribute values, we can calculate the new values
for the related elements, where each obsel attribute concerns only one
element. Using this model we can get all the obsels that can modify every
element and all the elements that can be affected by an obsel. When capturing
the traces we don‟t need to store the values of elements at each time. We
only store attributes and values of each obsel. For example if a user selects a
chart, the value of the obsel will be the ID of the chart and not the whole
information about the chart, so we need an element called “selected chart”
that contains all the information about the selected chart.

3.1. Playback trace process

Our solution to go back to a previous state of the system is to playback
users‟ actions from a starting point (session start) and not by undoing last
ones. When a user chooses to go back to a past state, he can choose the
obsel that he wants to return to. The system will automatically go back to
this state by replaying all the obsels that happened from the beginning of the
session until the selected obsel; let‟s call it the triggered obsel (the obsel
where we want the system to play back to). Fig. 2 [A] shows a simple trace
replay, a list of obsels starting from A to R, where R is the replay obsel and C
is the triggered obsel. In R the user asked to replay traces to back with the
system to its state when clicking on C. We can see that all the obsels that
happened between C and R will be ignored (EDA). This replay will be done
by one command which means one call from the client to the server. After
replaying traces the system will go back to the past state and the user will
continue his usage to the system, and new obsels will be collected. An Obsel
R means that at this point a replay action happened.

Fig. 2 [A] Simple Trace Replay, [B] Trace Replay with change

Trace replay with change propagation impact in client/server applications

By replaying the obsels we can calculate the values of these elements at
the replaying point. SimpleReplay algorithm gets M-Trace and the triggered
obsel as input and goes back to a previous state. Firstly, it gets the subset of
the trace that should be replayed starting from the first obsel to the triggered
one by a chronological order. Then this trace will be optimized by using the
optimization algorithm to delete extra obsels. Each element gets its default
values and then a loop on all the obsels runs, where at each time the element
values are updated according to the attributes of the current obsel. At the
end, the new element values are updated making the system going back to
this state. The replay event is also captured as a new obsel and taken in
consideration during the analysis.

Program simpleReplay (M-Trace, TriggerredObsel)

 ReplayedTrace := getSubTrace(0, position(TriggeredObsel))

optimize(ReplayedTrace)

Elements := getDefaultValues()

For pos := 0 to getObselCount(ReplayedTrace)-1

 Obsel := ReplayedTrace[pos]

 Attributes := getAttributes(Obsel.Type)

 For each attribute in Attributes

 Value := getAttributeValue(Obsel, attribute)

 Elem := getAffectedElement(attribute)

 Elements[elem] := GenerateElementValue(value)

 End For each

End For

update(Elements)

End Program

3.2. Optimized trace replay process

As not all the obsels play a role for changing the state of the system, the
replay process can be optimized by reducing the number of replayed obsels.
In addition, in some cases many obsels can be ignored, either because they
have been canceled by other obsels or because of reset values. According to
that, we don‟t need to go through all the obsels in order to go back to the
triggered one. Analyzing the previous obsels to get the right values of the
elements enables us to optimize the replay process. We can get an optimized
chronological list of obsels from the beginning of the session to the triggered
obsel; this list will be used to generate the values for each element. Optimize
algorithm tries to delete all unnecessary obsels that induce loops in the trace,
For example, in the simple replay obsel, the subTrace from replay obsel to
triggered obsel should be deleted. The same thing is also done for a reset
obsel which means deleting all the obsels from the beginning to the reset
obsel. So we consider that there is a list of unnecessary loop obsels in the
trace, and in this algorithm all these loops will be deleted as shown in Fig. 3.

IC 2011

Fig. 3 Trace Replay Optimization

4. Replay traces with impact propagation

In this section we describe how we can replay traces after modifying an
obsel by handling the consequences of changes on elements before actually
performing these changes. This is illustrated on Fig. 2 [B]. R is a replay
obsel that triggers a replay of the trace after doing a change on the values of
the triggered obsel C. Because of a change in one of the attribute values of
C, the values of some other obsels could be inconsistently modified, like E
and A, while other obsels may remain consistent, like D. We need to
calculate the new values, in order to take into account this modification.
Then the trace can be replayed with these new values. After that the user can
continue to use the system. We face many questions like: how can we
determine the elements affected by a change? Can we be proactive and
specify the appropriate new values, without asking the user to enter the new
values? How can we replay the next obsels after applying this change? To
answer these questions we propose to define impact rules of dependencies
between the elements for manipulating the consequences of a change.

4.1. Impact rules for element dependencies

Impact rules define the dependencies between the elements in the system
in order to be able to identify the elements that are affected by a change in
another element, and to specify the modifications that could be done on the
affected elements to stay consistent and valid. Each rule includes a source
element and the condition on its values that specifies the dependence with a
destination element and the condition on its values. A rule says that if
specific conditions for the values of the source element are fulfilled then
some of the values of the destination element determined by the destination
condition cannot exist, which requires replacing these values by an adapted
value.

Trace replay with change propagation impact in client/server applications

Definition: Impact rule

Let B be a set of elements. Each element has a name and some values. Let
艦 be a set of operations and 将 be a set of functions. We can define an impact
rule ブ as an implication of the form:

ブ = (ES, CS) s (ED, CD) : Æ, where ES, ED, Æ 似 B, and ES is the source
element, CS is the source condition, ED is the destination element, CD is the
destination condition, and Æ is the adapted element. CS and CD are
conditions based on operations and functions on the values of the elements.
Conditions are composed of operations (艦) and functions (将) on elements
values. Operations can be logical (and, or, not, etc), mathematical (+, -, *, /,
etc) or others. Functions can be grouping functions like (max, sum, min,
count, avg) or custom functions like (isNumber, isHoliday, etc).

For each application, system‟s experts define impact rules for the

dependencies between the elements, to determine the consequences of
modifying a past obsel. We can get all the impacted obsels for each rule from
the entity of the relations between elements and obsels. If we find impact
rules having the elements of the modified obsel as source elements and their
values satisfying the source conditions, then, for each destination element, if
its value satisfies the destination condition, we need to replace the
destination element by the adapted one. Adapted values can be specified
manually as default values or can be generated automatically using past
traces. For example, in SAP-BO Explorer, we consider an impact rule like: if
the number of selected measures is greater than one, the element “Chart”
cannot be of type “Pie”. If a user asks to replay a trace after modifying the
number of selected measures that activated this rule, and if there was a
successor obsel for changing the chart type to “Pie”, then this obsel will not
be valid anymore because of this rule, and the chart type will be
automatically changed according to the adapted value to be “Vertical Bars”.
The rule will be as following:

ES = Selected Measures CS = (Count () > 1)

 ED = Chart CD = (type = “Pie”)
Æ = (Type = “Vertical Bar”)

The user can replay a part of his session after modifying some of the

obsels values. These modifications can be of many types like shifting obsel by
changing their timestamps, thus causing a change in the order between
obsels, updating a value for an attribute of an obsel, or even deleting an
obsel. By using impact rules we can determine the consequences of a change
and the adapted values. In case of not finding an adapted value of an element
or the absence of an impact rule, the corresponding obsels will be invalid.
Then the user will have to select the suitable value manually; otherwise the
replay process will fail.

IC 2011

4.2. Retrieving adapted value from past traces

When a user adds a new impact rule, the system asks him to choose the
adapted value from a list of possible values, or to keep the system calculating
it automatically using past traces. For this purpose, we propose to use a
retrieval algorithm similar to the algorithm we presented in (Zarka et al.
2010). In the original algorithm, we tried to retrieve episodes similar to the
current one without taking obsels values in consideration because we just
wanted to know the next recommended obsels. So, in order to make this
algorithm useful for finding the adapted values, we need to make a
comparison between the values of the obsels. In addition, we want to
retrieve the adapted value for the destination element and not the next
recommended obsels

Get adapted value algorithm starts by selecting a subset of the trace from

its beginning to the modified triggered obsel. Then it retrieves all the past
similar episodes to the current one. Similarity includes values comparison.
For each similar episode, it calculates the final value of the corresponding
element (destination element in the impact rule) as we did in the simple
replay, without updating the system. If there is more than one value, we take
the one that occurs the most often and we consider it as the adapted one. If
we are not able to retrieve any episode, we keep this element as an invalid
element until another obsel modifies its value, otherwise the replay process
will fail and the system will ask the user to choose the value manually.

5. Implementation

In the previous sections, we have described the models that we have
defined to support replay of user interactions by exploiting traces. In this
section, we show how we have implemented our trace replay model into the
SAP-BO Explore application.

5.1. Trace collecting and visualization

Firstly we modified SAP-BO Explorer for being able to collect obsels.
SAP-BO Explorer is divided into two parts. Server part is implemented in
Java. The management of users‟ sessions is done in this part, thus enabling
many users to work on the system at the same time. The client part is a Flex
application; each user has a web application where he can do his exploration.
The traces are collected in the client side. Fig. 4 shows a snapshot of the
user interface. Each time a user tries to use the system, a new session is
opened. Each session contains many obsels, and each action of the user is
collected as an obsel presented in a XML format specifying the obsel type,
timestamps, and the values of this obsel. We consider that the interface of

Trace replay with change propagation impact in client/server applications

SAP-BO Explorer is divided into task-oriented blocks, where each block
contains obsels dedicated to similar kinds of tasks. The interface consists of
blocks for measures, categories, visualization, export, search, etc. For
example the measures block contains many types of obsels like select
measure, add calculation, edit calculation, etc. For example, when a user
tries to select a measure, we capture this action as an obsel of the type
“Select measure” from the second block “Measures block”. The obsel has for
value “Trade USD” and is time stamped with the current timestamp.

Fig. 4 SAP-BO Explorer user interface

Each session is presented as a M-Trace stored in XML and has a unique

ID, contains the ID of the user who did this session, and the temporal list of
obsels that happened in this session. When a user log himself in SAP-BO
Explorer, a request to the server-side is sent in order to open a new session.
This triggers the creation of a new XML output file for this session. Each
time a new obsel is collected; it is formatted in XML format and sent to the
server in order to be added to the session file. Each user can open and
manipulate many Information Spaces at the same time. An Information
Space is a collection of objects mapped to data for a specific business
operations or activities. All the obsels of a session, whatever the Information
Spaces they belong to, are stored in the same file.

We have developed a new interface to visualize users‟ traces displaying a

graphical representation of what they have done so far (see Fig. 5). Each
obsel is captured according to our model classified according the available
types and represented as colored bullets. Obsels appear on the left side of the

IC 2011

interface as a chronologically ordered list from the beginning of the session
to the most recent obsel. By clicking on an obsel, we can see its description
on the right side of the interface. Obsel‟s values are visualized in the form of
a tree of attributes and their values.

Fig. 5 Trace Visualization Interface

5.2. Trace replay implementation

If a user wants to go back to a previous state, he can at any time select
the triggered obsel from the list of captured obsels and click on replay button
(see Fig. 5). The system will automatically replay traces to go back to this
state. A new obsel will be added to the obsels list of type „Replay‟. Its values
are set according to the values of triggered obsel. This new obsel indicates
that a replay action has occurred here and has triggered a previous obsel. As
we explained before, the optimization algorithm uses replay obsels to
minimize the number of the replayed obsels by deleting the obsels that are
skipped in the replay action.

Each element has different type and number of values from other

elements. For not analyzing each element in a different way, we need to
make it more general. By using introspection we can determine the type of
an object at runtime. Introspection refers to the ability to examine something
to determine what it is, what it knows, and what it is capable of doing.
Introspection gives us a great deal of flexibility and control. To do that we
used Object as type of the values attribute of an obsel, which means that this
attribute can have any type of values. We do introspection on this attribute in
order to determine the content of it and then to manipulate it in a general
way.

Trace replay with change propagation impact in client/server applications

6. Evaluation and Discussion

We have implemented our replay method within the SAP-BO Explorer
application. However, this method can be applied in any system. To enable
trace replay, the first step is to collect traces. For this purpose, we use a
model, the M-Trace, that enables us to collect all the traces according to the
same abstract model. We have experimented with our system by using many
types of datasets and by considering all obsels types, opening many sessions
together and trying to go back to previous states many times in the same
session. We even succeeded to go back to all sessions at the same time by
one single go-back command. The execution time of the replay process is
very fast, it is like any other action in the application, which means the time
of message exchanging between the client and the server.

Systems like ours face number of challenges like replaying traces for

already closed sessions, optimizing replay after modifying past obsels and
rechecking impact rules after modifying elements values. But they also face
more general problems, as mentioned in the discussion section. For example,
in (Hupp & Miller 2007), the following issues are raise: privacy of the user
and his permission to trace him, security of the system while collecting and
visualizing traces, protection of users from undesirable side-effects triggered
by the replay, and the robustness of the replay after doing some changes in
the system.

When implementing our system, we also faced specific problems. For

example, in SAP-BO Explorer the same user can open many sessions at the
same time. We had to deal with the problem of replaying the trace of a
closed session. Our replay process can handle this case by reopening the
session, with default values and by applying all the replayed obsels until the
triggered one. As we have not implemented yet the replay with changes, we
have not faced the problem of optimizing the replay after these
modifications. Application of impact rules can be recursive; a modification
on an obsel value can have an impact on other obsel values if obsels are
related. To deal with these problems we need to develop a graph of impact
propagation to be able to solve loops problems and to know the
dependencies between different obsels and elements. This will be one of our
future works.

When the trace includes obsels that have secure and sensitive information

like passwords and credit card numbers, our system detects and obscures the
password when visualizing it. But it still needs a lot of enhancements and
rules to detect this information and secure it, by notifying the user about it or
even asking him to re-enter it again. Our system continuously collects and
records user‟s interactions which constitute a potential risk to privacy and
security. This problem is share by all the systems that record rich history

IC 2011

traces (web browsers, recommendation systems, etc.). Dealing with this issue
is out of the scope of our study. However we do notify our users that all
their interactions are recorded. Side-effects are another issue we have to deal
with. Indeed, replaying a trace may have unexpected consequences and can
damage the system or cause deletion of. In our current implementation, we
do not deal with this problem. However, we think that the proposition
described in (Hupp & Miller 2007) is relevant to solve such a problem. The
idea is to classify obsels into two classes: side-effecting and non side-
effecting. This makes easier the annotation of critical obsels. Last, we have
to face robustness issues. Indeed, we have to make sure that the trace system
is still usable after major changes either on data or on processes of the
system. This question is also out of the scope of our study because it is
mainly related to the trace collecting phase. We make the assumption that
robustness issues are handled by the trace-based system, responsible for
traces management.

7. Conclusion and future work

In this paper we have described an approach using of interaction traces to
allow users to return to a particular state of an application. This approach is
an alternative way of undoing actions in applications where undo commands
are not available (such as client-server applications). For this purpose, we
use play-back of traces. Playback can be identical to the original trace or can
introduce different action parameters. We analyze the impact propagation of
changes performed on past actions. This work has been conducted in
collaboration with SAP Business Objects and the application we used to
implement our approach is SAP-BO Explorer. The aim of our contribution
within this project was to support replay process in a client-server
application, where classical undo commands cannot be implemented. The
main contribution of this paper shows how we can playback interaction
traces, in an optimized way, in order to go back to a particular state of the
application. For that purpose, we have introduced the concept of predefined
impact rules and we have built an algorithm that discovers adapted values of
obsels affected by changes.

At the time being, the collect process and the simple replay process are
implemented. In future work, we plan to address issues mentioned in the
discussion concerning side-effects, robustness, and security. In addition, we
are interested in studying how we can extract users‟ experiences in order to
reuse them for assistance purpose.

Trace replay with change propagation impact in client/server applications

ACKNOWLEDGMENTS

We thank Francoise Corvaisier, member of SAP-BO enterprise for her
support, thoughts and for giving us the opportunity to do this work in SAP-
BO. Any opinions, findings, conclusions or recommendations expressed in
this publication are those of the authors and do not necessarily reflect the
views of the sponsors.

References

Anupam, V. et al., 2000. Automating Web navigation with the WebVCR.
Computer Networks, 33(1-6), pp.503-517. Available at:
citeseer.ist.psu.edu/anupam00automating.html.
Briand, L.C., Labiche, Y. & O誇Sullivan, L., 2003. Impact analysis and
change management of UML models. In International Conference on
Software Maintenance 2003 ICSM 2003 Proceedings. IEEE Comput. Soc,
pp. 256-265. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1235428.
Champin, P.-A., Prié, Y. & Mille, A., 2004. MUSETTE : a framework for
Knowledge from Experience. In EGC溢04, RNTI-E-2 (article court).
Cepadues Edition, pp. 129-134. Available at:
http://liris.cnrs.fr/publis/?id=1338.
Cordier, A., Mascret, B. & Mille, A., 2009. Extending Case-Based
Reasoning with Traces. In Grand Challenges for reasoning from
experiences, Workshop at IJCAI溢09. Available at:
http://liris.cnrs.fr/publis/?id=3862.
Harrington, R., 2009. Understanding Adobe Photoshop CS4 The Essential
Techniquesfor Imaging Professionals, Peachpit Press.
Hupp, D. & Miller, R.C., 2007. Smart bookmarks: automatic retroactive
macro recording on the web. Proceedings of the 20th annual ACM
symposium on User interface software and technology, pp.81-90. Available
at: http://portal.acm.org/citation.cfm?doid=1294211.1294226.
Leshed, G. et al., 2008. CoScripter: automating & sharing how-to
knowledge in the enterprise. CHI 08 Proceeding of the twentysixth annual
SIGCHI conference on Human factors in computing systems, pp.1719-1728.
Available at: http://portal.acm.org/citation.cfm?id=1357054.1357323.
Li, I. et al., 2010. Here誇s what i did: sharing and reusing web activity with
ActionShot. In Proceedings of the 28th international conference on Human
factors in computing systems. ACM, p. 723–732. Available at:
http://portal.acm.org/citation.cfm?id=1753326.1753432.
Little, G. et al., 2007. Koala: capture, share, automate, personalize business
processes on the web. CHI 07 Proceedings of the SIGCHI conference on
Human factors in computing systems, pp.2-5. Available at:
http://portal.acm.org/citation.cfm?id=1240624.1240767.
Maule, A., 2010. Impact analysis of database schema changes. UCL
(University College London). Available at: http://eprints.ucl.ac.uk/19497/.

IC 2011

Safonov, A., Konstan, J.A. & Carlis, J.V., 2001. Beyond Hard-to-Reach
Pages : Interactive , Parametric Web Macros. Proc Human Factors and the
Web, pp.1-14.
SAP, 2010. SAP Business Objects Explorer: Explore your business at the
speed of thought. Available at:
http://www.sap.com/solutions/sapbusinessobjects/large/business-
intelligence/search-navigation/explorer/index.epx.
Settouti, L.S. et al., 2009. A Trace-Based Systems Framework : Models,
Languages and Semantics. Available at: http://hal.archives-ouvertes.fr/inria-
00363260/PDF/trace.pdf.
Sybase, 2010. Power Designer: Impact and Lineage Analysis. Available at:
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc3
8093.1520/doc/html/rad1232025100240.html.
Zarka, R. et al., 2010. Providing assistance by reusing episodes stored in
traces: a case study with SAP Business Objects Explorer. In F. Le Ber & J.
Renaud, eds. 18ème Atelier « Raisonnement à Partir de Cas ». Strasbourg:
hal-00497210, p. 91--103. Available at: http://hal.archives-
ouvertes.fr/docs/00/49/72/10/PDF/actesRAPC10.pdf.

