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The objective of the present paper is to characterize the interaction of a supercritical open channel

flow with an emerged, rectangular shaped obstacle. Upstream from the obstacle, two main flow

structures are observed: sid a hydraulic jump in the near-surface region and siid a horseshoe vortex
in the near-bed region. Both flow structures are detached upstream from the obstacle and two main

flow types occur regarding their relative detachment lengths. For high Reynolds numbers sturbulent
regimed, the detachment length of the hydraulic jump exceeds the one of the horseshoe vortex; this
flow type is named “breaking type.” Oppositely, for lower Reynolds numbers slaminar regimed, the
detachment length of the horseshoe vortex exceeds the one of the hydraulic jump, and the flow type

is named “separation type.” Experimental measurements based on particle deposition and colored

streamline deflection are used to detect the location and shape of the detachment curves. We showed

that for both flow types, the shape of the hydraulic jump curve is hyperbolic, constrained by two

asymptotes following the Froude angle on each side of the obstacle. On the other hand, the shape

of the horseshoe vortex curve depends on the flow type; it is hyperbolic in the separation type and

elliptic in the breaking type. The dimensional analysis reveals that three parameters can influence

the detachment curves: the upstream Froude and Reynolds numbers and the upstream water depth

normalized by the obstacle thickness. The influence of these parameters is investigated

experimentally on a water table for both flow types. © 2010 American Institute of Physics.

fdoi:10.1063/1.3505013g

I. INTRODUCTION

In the literature, many studies describing the flow pat-

terns that occur as subsonic air flows and interact with

emerging obstacles in wind tunnels are available. As the in-

coming flow approaches the obstacle, the adverse pressure

gradient between the upstream flow and the flow at the ob-

stacle leads to a boundary layer separation in the near-bottom

region. Consequently, a horseshoe vortex structure is ob-

served at the toe of the obstacle on its upstream side. If the

velocity of the incoming flow is low enough, a multiple vor-

tices structure takes place, while if the velocity sand the Rey-
nolds numberd of the flow increases, a single vortex is ob-
served; if the velocity keeps on increasing, no fully

developed vortex is observed.
1
Recently, Pattenden et al.

2

proposed a fine description of the horseshoe vortex using a

combination of oil flow visualization, particle image veloci-

metry, and surface pressure measurement. In order to char-

acterize the distance between the detachment of the boundary

layer and the obstacle, noted l herein, Baker
3
derived the

following normalized relation obtained from dimensional

analysis swith R as the obstacle typical dimension and Redp

as the Reynolds number based on the boundary layer dis-

placement length dpd:

l

R
= fSRedp,

dp

R
D . s1d

Ballio et al.
4
collected all available experimental data in

order to evaluate the influence of these parameters. They

observed that for 103,Redp ,107, the Reynolds number

Redp has no effect on the normalized horseshoe vortex de-

tachment length l /R.

Concerning open channel water flows, most studies are

dedicated to investigate the flow patterns upstream from ob-

stacles in subcritical flow regimes for bridge pier scour ap-

plication purposes. As for air flows, a horseshoe vortex is

observed at the toe of the obstacle as a consequence of the

wall boundary layer separation. Authors such as Dargahi
5

and Sahin et al.
6
showed that depending on the Reynolds

number of the inflow, a single vortex or a multiple vortices

structure is observed within the horseshoe vortex. Graf and

Yulistiyanto,
7
Ahmed and Rajaratnam,

8
and Roulund et al.

9

described the flow patterns and shear stress fields upstream

from the obstacle and within the horseshoe vortex. They

showed that the streamwise velocity decreases as the water

depth increases before reaching the obstacle, and the vertical

profile of streamwise velocity tends toward uniformity.

Moreover, reverse streamwise velocities are measured in the

near-bed region within the horseshoe vortex. Furthermore,

the measured vertical velocity is downward in the region

affected by the obstacle and its magnitude increases when

approaching the obstacle. Roulund et al.
9
and Sadeque

et al.
10
experimentally showed that the bed shear stress is

negative away from the obstacle, goes to zero, and becomes

positive when approaching the obstacle. The location where

the bed shear stress reaches a zero magnitude corresponds to

the separation point of the boundary layer and thus the up-

stream limit of the horseshoe vortex.
9
However, only few
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data related to the location of the toe of the horseshoe vortex

are available. Dargahi
5
and Roulund et al.

9
each proposed a

single measurement of such location for one flow configura-

tion.

Works on detached shock waves upstream bluff-bodies

have been undertaken for decades, essentially for aerody-

namic purposes. For instance, Shapiro
11
provided a compre-

hensive description of shocks around slender or bluff bodies

embedded in a supersonic gas flow. For bluff bodies, a de-

tached, bow shaped, shock wave forms upstream the body.

Moeckel
12
developed an analytical model predicting the

shape and location of this detached shock. As confirmed by

experimental results, this author showed that the normalized

detachment length of the shock wave decreases as Mach

number increases. Experimental se.g. Ref. 13d or numerical
se.g., Ref. 14d investigations are still performed on this topic.

Finally, a few studies characterize the interactions be-

tween a supercritical water inflow and an obstacle. Forbes

and Schwartz
15
applied a theoretical power-series approach

to characterize the hydraulic jump in front of the obstacle for

two limiting cases: infinite and critical Froude number, but

without considering neither the presence of the horseshoe

vortex nor the jump width. Jiang and Smith
16
investigated

the case of a free surface shallow water flow over an isolated

bump using numerical modeling. For a supercritical inflow

with relatively limited Froude number, they found that facing

a sufficiently elevated obstacle, a stationary shock takes

place in front of the obstacle. The shape of the computed

shock is a bow wave near the centerline and a V-wave further

away. Near the centerline, the shock is perpendicular to the

flow axis, and past the jump, the flow becomes subcritical

and is deflected away from the centerline. Further from the

centerline, the supercritical flow experiences an oblique

jump at the trailing edge of the V-wave and the flow down-

stream from the jump remains supercritical as predicted by

Ippen.
17
Defina and Susin

18
roughly described the flow pat-

tern upstream from the obstacle and also reported the occur-

rence of a detached hydraulic jump around the obstacle.

However, in these studies, the authors did not report the pres-

ence of a horseshoe vortex and did not discuss the character-

istics of the jump swidth of the jump and distance of detach-
mentd.

An experimental study is performed at LMFA sLyon,
Franced in order to quantitatively investigate the interaction
between a supercritical water inflow and an emerging ob-

stacle. In one section, we describe the observed flow types.

Then, the dimensional analysis is used to identify the param-

eters, which may influence the flow structure detachment

lengths. In another section, the experimental setup used for

measuring the location of the main flow structures is pre-

sented for each flow type. Finally, the influence of the nor-

malized parameters on the occurrence of the flow types and

on the location of the main flow structures is analyzed in

details.

II. FLOW DESCRIPTION

As a supercritical open channel flow interacts with an

obstacle deposited on the bottom and emerging above the

free surface, a complex flow structure develops. On the one

hand, the incoming flow decelerates, reaches a subcritical

regime through a hydraulic jump, and keeps on decelerating

until reaching the obstacle with no streamwise velocity. This

velocity reduction creates a discontinuous water depth in-

crease in the hydraulic jump followed by a continuous depth

increase up to the obstacle. Moreover, the adverse pressure

gradient in the streamwise direction leads to a boundary

layer separation in the near-bed region upstream from the

obstacle. This separation gives rise to a horseshoe vortex, as

discussed in the literature review. On the other hand, a trans-

verse water depth gradient appears, related to the larger wa-

ter depth in front of the obstacle than on its sides. This gra-

dient causes the flow to move around the obstacle.

To summarize, two main flow structures were observed

on our experimental setup upstream from the obstacle: a hy-

draulic jump in the near-surface region and a horseshoe vor-

tex in the near-bed region. As expected, both flow structures

are detached upstream from the obstacle, and it is observed

that their relative detachment lengths vary regarding the in-

flow and obstacle parameters. We decided to classify the

flow configurations into the three following flow types.

• For a laminar inflow, the detachment length for the toe

of the horseshoe vortex slHd is larger than for the toe
of the hydraulic jump slJd. The uniform inflow first

reaches the vortex, which acts as a positive step fFig.
1sadg. The flow remains in supercritical regime with a
water depth slightly increased fh18.h1 in Fig. 1sadg
and a velocity slightly decreased. The flow then

reaches the hydraulic jump and passes from supercriti-

cal to subcritical regime sh28d. Finally, the water depth
increases and reaches its maximum value sZod on the
upstream face of the obstacle. This flow type is named

“separation flow type.” The streak-line photograph in

Fig. 1sad shows that the oncoming flow is laminar.
• For a turbulent inflow, the detachment length for the

toe of the horseshoe vortex is lower than for the toe of

the hydraulic jump. In this case, the supercritical uni-

form flow first reaches the hydraulic jump where it

passes to subcritical regime fh2 in Fig. 1sbdg. The sub-
critical flow then reaches the horseshoe vortex and

moves over it sas over a positive stepd. Finally, the
water depth keeps on increasing until reaching the ob-

stacle. This type is named “breaking flow type.” The

streak-line photograph in Fig. 1sbd tends to show that
the oncoming flow is turbulent.

• For an inflow regime at the transition between laminar

and turbulent, the upstream flow is laminar with tur-

bulent bursts, which increase in size as they are trans-

ported along the flow. As these bursts reach the ob-

stacle region, the location of the boundary layer

separation oscillates in time, and this separation is

sometimes located upstream from the hydraulic jump

sas in the separation typed and sometimes downstream
from the jump sas in the breaking typed. When the
boundary layer separation passes from one location to

the other, the water depth at the toe of the hydraulic

jump is strongly affected sit varies between h1 and h18
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in Fig. 1 sketchesd, and the location of the jump then
also varies. Consequently, the flow pattern oscillates

between the breaking and separation types with a

finite-amplitude oscillation; this flow type is thus

named “unstable.”

It is well known that in laminar flow, the boundary layer

separation is enhanced compared to a turbulent flow. Indeed,

in turbulent regime, the Reynolds stresses can transfer mo-

mentum from rapid flow regions away from the wall toward

near-wall regions with lower velocity; this transfer prevents

excessive flow deceleration in moderate pressure gradients

and thus moves the boundary layer separation further

downstream.
19
When collecting the available boundary sepa-

ration length data upstream from obstacles in wind tunnels

with subcritical inflows, Ballio et al.,
4
in their Fig. 3, showed

that the horseshoe vortex detachment length is greater for the

laminar inflow regime than for the turbulent inflow regime.

The higher horseshoe vortex detachment lengths in separa-

tion type than in breaking type presented herein is in fair

agreement with theses observations.

The previous flow description was simplified in order to

sort the flow configurations into a typology. Secondary phe-

nomena were actually observed for some conditions. For in-

stance, a surface bow wave is present around the stagnation

point,
20
which can interact with the jump.

21

III. DIMENSIONAL ANALYSIS

Baker
3
first proposed a dimensional analysis for the de-

tachment length of the horseshoe vortex upstream from an

obstacle in wind tunnel conditions fsee Eq. s1dg. Following
this approach, in the present paper, we adapt this dimensional

analysis to the horseshoe vortex and the hydraulic jump de-

tachment lengths l in open channel conditions. The flow and

obstacle parameters that can affect l are the water density r

and dynamic viscosity m, the gravity acceleration g, the sur-

face tension s at the water/air interface, the equivalent bed

roughness ks, the inflow bulk velocity U and uniform water

depth h1, and finally the width of the obstacle R,

l = fsr,m,g,s,ks,U,h1,Rd . s2d

Equation s2d may be normalized as

l

R
= fSFr, h1

R
,Re,

ks

R
,WeD , s3d

where Fr=U / sgh1d
1/2, Re=4rUh1 /m, and We=rU2h1 /s are

the inflow Froude, Reynolds, and Weber numbers, respec-

tively. In Eq. s3d, either the Weber number We or Reynolds
number Re can be replaced by the Morton number Mo,

which is a composition of We, Re, and Fr,
22,23

Mo =
We3

Fr2sRe/4d4
=

gm4

rs3
. s4d

Toe of
Hydraulic jumpToe of horseshoe vortex

Hydraulic jump

Toe of horseshoe vortex

Hydraulic jump

a) Separation type b) Breaking type

Laminar

streak-lines

Turbulent

streak-lines

h1

h2

ZO

λλλλJ

λλλλH

bow wave

S0

h1

h2

ZO

λλλλJ

λλλλH

bow wave

S0
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h1’
h2’

λλλλJ

λλλλH
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bow wave
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h1’
h2’

λλλλJ

λλλλH
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bow wave
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FIG. 1. From top to bottom: scheme sside viewsd, photograph, and near-bed streamline photograph of a separation type flow sad and a breaking type flow sbd.
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Mo depends only on the physical properties of the fluids.

Hence, Mo does not vary with the flow characteristics such

as discharge or water depth contrary to Re and We. For given

fluids—such as water and air as in the present case—Mo

remains constant for all flow configurations. Consequently,

replacing Re or We by Mo reduces the number of dimension-

less independent parameters which must be accounted for in

our parametric study.

Observations of the influence of both Re and We on the

flow pattern, detailed in the following sections of this paper,

reveal that Re has a main influence on the flow pattern and

should be included in the dimensional analysis. We thus de-

cided to replace We by Mo, and Eq. s3d becomes

l

R
= fSFr, h1

R
,Re,

ks

R
,MoD , s5d

where Mo is fixed for a couple of fluids. Moreover, the fric-

tion velocity up may be computed using the uniform flow

condition

up = Îgh1S0 s6d

where S0 is the bed slope. The order of magnitude of the

friction velocity is about up<2–3 cm /s for all tested con-

figurations. As the bottom of the water table is made of glass,

with a typical equivalent roughness ks=10
−7 m, the rough-

ness Reynolds number ks
+=ksu

p
/n<2–3310−3. Given that

ks
+!1, our flows are in fully smooth regime, the roughness

elements are confined within the viscous sublayer, and the

roughness parameter has no influence on the flow.

Furthermore, if we consider the free surface as an inter-

face between pure water and air, the Morton number value,

which depends only on the fluid characteristics, is fixed with

Mo=2.4310−11 and will remain equal for any change of

scale. In such conditions, Eq. s5d reads

l

R
= fSFr, h1

R
,ReD . s7d

The detachment lengths of the hydraulic jump and the

horseshoe vortex normalized by the obstacle width thus de-

pend on three parameters. The next sections are dedicated to

the analysis of the influence of these parameters on the de-

tachment of the flow structures.

IV. EXPERIMENTAL SETUP

The experiments are performed in a smooth, transparent,

L=118 cm long, and b=74.5 cm wide water table with ad-

justing slope. A pump provides water to the flume from a

storage tank. The water reaches the water table through a

stilling basin and perforated plates. The channel section and

slope remain constant over the water table. The length of the

water table ensures to reach the flow uniformity before get-

ting to the test section which starts 50 cm downstream from

the stilling basin sthat is more than 100 times the upstream

water depthd according to Ranga Raju et al.
24
observations.

The combination of slope and discharge then defines the uni-

form flow depth h1. Discharge Q is measured by an electro-

magnetic flowmeter sPromag 50, Endress Hauser, Huningue,
France, uncertainty 0.01 L/sd. The uniform flow depth h1 is

measured manually using a digital limnimeter suncertainty of
0.2 mmd. The emerging obstacle is placed on the water table
at a distance of about 90 cm downstream from the stilling

basin. A referencing tape fixed on the bottom of the water

table ssee Figs. 2 and 3d ensures the obstacle alignment with
regard to the inflow axis. The obstacle is made of several 2

or 10 mm thick individual squared plastic plates maintained

together fsee Fig. 1sbdg. Changing the number of plates in-

cluded in the obstacle enables a rapid and precise modifica-

tion of the obstacle width sRd. When leaving the water table,

the flow is collected in the downstream tank where a pump

allows a recirculation of the water. The experimental setup is

then placed within an opaque tent and a light source is intro-

duced below the upstream tank in order to control the light-

ning. A 14 mm opening camera is fixed to the water table

support just below the obstacle. The camera is controlled by

a computer located outside the tent. The measurement meth-

odology is then adapted for each flow type: separation and

breaking.

A. Measurement methodology for breaking type flows

Figure 2 shows a typical photograph of a breaking type

flow obtained in the conditions described below. The method

aiming at detecting the toe of the horseshoe vortex is adapted

from the classical oil flow visualization method used to de-

tect the lines of separation and attachment in air flow condi-

tions ssee, for instance, Refs. 3, 1, and 2d. When the flow and

obstacle parameters sQ, R, and water table sloped are fixed to
their required values, the pump is stopped, the water table is

dried, and a thick transverse layer of water-base painting is

deposited on the water table upstream from the obstacle. The

pump is then switched on again. When steady conditions are

reached, the supercritical inflow carries painting along near-

bed streamlines through the hydraulic jump, and these col-

ored streamlines are deflected laterally along the toe of the

horseshoe vortex; they finally move around the obstacle ssee
Fig. 2d. Moreover, the instability of the free surface in the

hydraulic jump causes a strong water depth gradient fluctua-

tion, which creates a strong light reflection toward the cam-

era. Hence, the roller of the hydraulic jump is revealed on the

photograph by a brighter region ssee Fig. 2d. A comparison

with visual detection of the toe of the hydraulic jump con-

firmed that the upstream boundary of the bright region cor-

responds to the toe of the hydraulic jump. Photographs of the

Obstacle

Toe of

horseshoe vortex

Toe of

hydraulic jump

λλλλJ

λλλλH

FIG. 2. Typical photograph of a breaking type flow.
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flow are finally taken in order to detect both the location of

the hydraulic jump and of the horseshoe vortex.

B. Measurement methodology for separation type
flows

Figure 3 shows a typical photograph of a separation type

flow obtained in the conditions described below. On the one

hand, the methodology used to detect the hydraulic jump is

similar to the breaking flow type, the brighter region corre-

sponding to the jump appears clearly in Fig. 3. On the other

hand, solid particles sIriodin 500 “Bronze,” d=10–60 mmd
are added to the water. These particles have a density of 3.

Due to their small size, these particles act as tracers with

limited relative velocity in the supercritical inflow, but due to

their high density, they settle when the velocity reduces sig-

nificantly. At the boundary layer separation, the streamwise

velocity becomes locally damped, especially in the near-bed

region as the upstream flow intersects the return flow. The

shear stress is suddenly strongly reduced sas measured by

Roulund et al.
9d, and we reach the so-called “zero wall fric-

tion” location. The solid particles deposit forming a light

curve on the photograph referred to as “toe of horseshoe

vortex” in Fig. 3. A comparison of this detection method

with the painting colored streamline visualization method de-

scribed above confirmed the validity of this technique to de-

tect the toe of the horseshoe vortex. The interest of such

particle settling method compared to painting flow visualiza-

tion is that the flow does not have to be stopped during the

experiment. However, this particle settling method cannot be

used in breaking type flows as the horseshoe vortex takes

place downstream from the hydraulic jump and large scale

turbulent structures created by the hydraulic jump tend to

disperse the solid particles while settling.

C. Image analysis

For each flow configuration, photographs are taken in

controlled conditions. Image analysis programs are written in

order to locate semiautomatically the curves corresponding

to the toe of the horseshoe vortex and of the hydraulic jump.

As a first step, the user locates both corners of the obstacle

upstream face, and the reference frame is defined at the cen-

ter of this face. The programs then differ between both flow

types.

For the separation type, a maximum brightness gradient

method is applied in order to locate the curve corresponding

to the toe of the horseshoe vortex where particles have

started to deposit ssee Fig. 3d. Moreover, in front of the ob-

stacle, a brightness threshold is applied in order to detect the

perimeter of the hydraulic jump roller region. When filtered,

the upstream part of this perimeter corresponds to the toe of

the hydraulic jump. The uncertainty of the curve detection

estimated from photographs is the following: 2.5 mm for the

horseshoe vortex and 3.2 mm for the hydraulic jump.

For the breaking type, a computer-aided manual detec-

tion method is applied: the user is invited to click on both

curves along their development lengths. The uncertainty for

the curve detections is the following: 2.5 mm for the horse-

shoe vortex and 4 mm for the hydraulic jump.

V. OCCURRENCE OF BOTH FLOW TYPES

As a first step, a large number of flow configurations

were observed visually by varying one parameter from Eq.

s7d at a time and detecting the flow type that developed. The

condition of occurrence of the three flow types is presented

on Fig. 4 and detailed below. Figure 4 reveals that the Rey-

nolds number is the key parameter that most influences the

flow type. For high Re configurations, the streamlines lo-

cated in the near-bed region are turbulent, and the breaking

type flow is more likely to take place while for low Re con-

Obstacle Tape for referencing

Toe of

horseshoe vortex

Hydraulic jump

λλλλJ

λλλλH

FIG. 3. Typical photograph of a separation type flow. 0

0.02

0.04

0.06

0.08

0.1

1 2 3 4 5 6
Fr

h
1
/R

Re=

Re=5050

(a)

4600

0

0.02

0.04

0.06

0.08

0.1

1 2 3 4 5 6
Fr

h
1
/R

Re=7060

Re=5550

(b)

FIG. 4. sad Conditions of occurrence of separation sblack symbold and un-
stable swhite symbold flow types with s- -d=limit between both types for

Re=4600 strianglesd and Re=5050 slozengesd. sbd Conditions of occurrence
of breaking sblack symbold and unstable swhite symbold flow types with

s– d=limit between both types for Re=5550 ssquaresd and Re=7060

strianglesd. Data for the range of investigated parameter values

s1.3,Fr,6, 3000,Re,10 000, and 0.005,h1 /R,0.1d.
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figurations, these streamlines are in laminar regime and

mostly separation type takes place. We observed the follow-

ing.

• First, for Re,4600, all flow configurations are in

separation type.

• Oppositely, for Re.8000, all flow configurations are

in breaking type.

• Finally, for intermediate Reynolds numbers, three rel-

evant situations are observed: sid for 4600,Re

,5200, the flow may be in separation type or Un-

stable type regarding the value of Fr and the ratio h1 /R

fFig. 4sadg; siid for 5400,Re,8000, the flow may be

in breaking type or unstable type regarding the value

of Fr and h1 /R fFig. 4sbdg; and siiid for Re<5300,

only the unstable type was observed.

VI. MEASUREMENT OF DETACHMENT CURVES

For each flow type sS for separation and B for breakingd,
three data sets are investigated experimentally ssee Table Id
by keeping two of the normalized parameters from Eq. s7d
constant and varying the third one. For S1 and B1, Fr and Re

are kept constant, while h1 /R varies; for S2 and B2, Re and

h1 /R are kept constant, while Fr varies; and for S3 and B3,

Fr and h1 /R are kept constant, while Re varies. This permits

to investigate the influence of each normalized parameter

individually on the detachment curves.

Figure 5sad shows that in the separation type, the detach-
ment curve of the toe of the horseshoe vortex and the hy-

draulic jump can be fitted using an adapted version of the

hyperbolic curve proposed by Moeckel.
12

Indeed, the hy-

draulic jump is perpendicular to the flow axis in front of the

obstacle and reaches the Froude angle sequivalent to the well
known Mach angled far on each side. The adverse pressure

gradient caused by the water depth increase due to this hy-

draulic jump will force the boundary layer to detach slightly

upstream from this hydraulic jump along the whole jump

curve fsee Fig. 5sadg. Consequently, the general shape of the
horseshoe vortex curve will be similar to the hydraulic jump

curve. On the other hand, Fig. 5sbd confirms that for the

breaking type, the detachment curve of the toe of the hydrau-

lic jump can still be fitted using an adapted version of the

curve proposed by Moeckel.
12

However, at the toe of the

horseshoe vortex, the flow is in subcritical regime, and the

boundary layer detachment is produced by the water depth

increase from the downstream side of the hydraulic jump to

the obstacle fsee Fig. 1sbdg. This water depth increase only

exists in front of the obstacle and rapidly vanishes on its

sides. Consequently, as previously observed ssee, for in-

stance, Refs. 25 and 10d, the horseshoe vortex curve will be
perpendicular to the flow axis in front of the obstacle and

will rapidly tend to be parallel to this axis on the sides of the

obstacle fsee Fig. 5sbdg. The detachment curve of the toe of
the horseshoe vortex is “U-shaped” ssee Ref. 20d and must

then be fitted by an ellipse.

TABLE I. Experimental data for the three separation sSd and the three breaking sBd series. Values in bracket are
the intervals of nonfixed parameters values.

Case

Q

sL/sd
h1

smmd Fr Re h1 /R b=ÎFr2−1

S1 0.78 2.5 2.67 4188 f0.014; 0.042g 2.48

S2 0.61 f1.97–3.42g f1.3–2.99g 3275 0.035 f0.83–2.82g

S3 f0.306–0.862g f1.48–2.91g 2.33 f2153–4628g 0.046 2.10

B1 1.5 3.9 2.64 8054 f0.023–0.056g 2.44

B2 1.5 f2.86–4.2g f2.36–4.2g 8054 0.035 f2.14–4.08g

B3 f1.5–2.2g f4.24–5.47g 2.33 f8054–11 812g 0.046 2.10

Hydraulic
jump

Horseshoe
vortex

X (m)

(a)

Y (m)

Hydraulic
jump

Horseshoe
vortex

(b)

X (m)

Y (m)

FIG. 5. Photograph analysis for a separation type sad and breaking type sbd
flow. In sad, the white dotted lines are the fitted curve using Eq. s10d. In sbd,
the hydraulic jump white dotted line is the fitted curve using Eq. s10d, while
the horseshoe vortex white dotted line is the fitted curve using Eq. s12d.
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The hyperbolic curve equation adapted from Ref. 12 is

presented below. The shape of the fitting curve is based on

two typical characteristics of the corresponding detached

flow structures.

• They are normal to the free stream at their foremost

point, that is, facing the center of the obstacle.

The corresponding transverse asymptote is drawn on

Fig. 6.

• They are asymptotic to the free stream Mach line at

large distance from the obstacle. The corresponding

asymptote is drawn on Fig. 6; its angle snamed Froude
angled is analog to the Mach angle sequal to the semi-
angle of the Mach cone; see, for instance, Ref. 11d
with tan a=1 /b and b=ÎFr2−1.

The most simple equation, which satisfies both asymp-

totes was proposed by Moeckel
12

in the axis system

sO ,X8 ,Y8d shown in Fig. 6, where O is the intersection be-

tween the Froude line and the symmetry axis ssee Fig. 6d.
This equation reads

bY8 = ÎX8
2 − Xo

2, s8d

with Xo as the distance between O and the vertex of the flow

structure shydraulic jump or horseshoe vortexd. When nor-

malized by the obstacle width R, Eq. s8d yields

bY8

R
=ÎSX8

R
D2 − SXo

R
D2. s9d

Attention should be made that the obstacle width defined

here slightly differs from Moeckel
12
consideration: R=2ySB.

Equation s9d contains only one unknown: Xo as b and R

are known for a given flow configuration. However, the pre-

diction of location of both flow structures with regard to the

obstacle requires to define the curve equation in a reference

axis system linked to the obstacle. We then define a second

axis system sP ,X ,Yd in Fig. 6 with P as the center of the

upstream face of the obstacle. Equation s9d becomes

bY

R
=ÎSX + l + Xo

R
D2 − SXo

R
D2. s10d

In Eq. s10d, b and Xo /R govern the shape ssqueezing up
or opening upd of the detachment curve, while l /R governs

the detachment of this curve upstream from the obstacle: if

l /R increases, the curve is moved away from the obstacle; if

b increases sa decreasesd, the curve squeezes up; and if

Xo /R increases, the curve opens up. For this hyperbolic

curve, the determination of each equation curve requires the

determination of both the detachment length value l and the

curve parameter Xo.

The elliptic curve equation is presented below. The el-

lipse is symmetric with regards to the flow axis facing the

center of the obstacle. The center of the ellipse is noted as C,

with sC ,X9 ,Y9d as the associated axis system, and its axes

are noted as Xe and Ye along X9 and Y9, respectively ssee Fig.
7d. Its equation simply reads

SX9

Xe

D2 + SY9

Ye

D2 = 1. s11d

As for the previously described hyperbolic curve, the

elliptic curve equation can be normalized by R and written in

the sP ,X ,Yd axis system, and Eq. s11d becomes

SYe

Xe

D2SX − Xe + l

R
D2 + SY

R
D2 = SYe

R
D2. s12d

For this elliptic curve, the determination of each equation

curve requires the determination of three parameters: l, Xe,

and Ye.

In the following, the subscript H and J will refer to the

horseshoe vortex and hydraulic jump detachment curve, re-

spectively. Consequently, for each separation flow configura-

tion, four parameters are determined experimentally:

slH ,XoHd and slJ ,XoJd. The very fair agreement between ex-
perimental and modeled detachment curves using Eq. s10d on
Fig. 5sad for a separation type flow confirms that the hyper-

bolic shape proposed by Moeckel
12
holds not only for de-

tached jumps but also for the horseshoe vortex in supercriti-

cal regime. Similarly, for each breaking flow configuration,

five parameters are determined experimentally: slH, XeH, and

Y’

X

P

O

Xo

λλλλ

R/2

αααα

Y

X’

FIG. 6. Scheme of the hyperbolic fitting detachment curves with the ob-

stacle shatchingd, both asymptotes sdouble arrowsd, the equivalent Froude

angle a, and both axis systems sO ,X8 ,Y8d and sP ,X ,Yd.

Y’’

X

P
Xe

λλλλ

R/2

Y

X’’

C

Ye

FIG. 7. Scheme of the elliptic fitting detachment curves with the obstacle

shatchingd, both asymptotes sdouble arrowsd, and both axis systems

sC ,X9 ,Y9d and sP ,X ,Yd.
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YeHd for the elliptic horseshoe vortex curve and slJ ,XoJd for
the hyperbolic hydraulic jump curve. Figure 5sbd confirms
the very fair agreement between experimental and modeled

detachment curve of the hydraulic jump using Eq. s10d and
of the horseshoe vortex using Eq. s12d.

A. Separation flow type

In this section, the influence of the three normalized pa-

rameters of Eq. s7d on the horseshoe vortex and hydraulic

jump detachment curves is investigated for the separation

type configurations.

1. Case S1: Influence of the normalized upstream
water depth

Keeping the same inflow conditions sQ ,h1d and varying
only the obstacle width R permit to analyze the influence of

the parameter h1 /R on the detachment curves without alter-

ing the other parameters Fr and Re ssee Table Id. In such

case, b remains constant. Figure 8sad reveals that the normal-
ized detachment length for the toe of the horseshoe vortex

lH /R increases quite linearly with h1 /R. Moreover, it ap-

pears that the normalized detachment length of the toe of the

hydraulic jump lJ /R also increases but much more slightly.

These results are confirmed in Fig. 8scd, where lHA /R

,lHB /R,lHC /R and lJA /R≾lJB /R≾lJC /R. Moreover, Fig.

8sbd shows that XoH /R and XoJ /R remain more or less con-

stant at a value of about 10 for h1 /R,0.03. Oppositely,

XoH /R increases and XoJ /R decreases for higher h1 /R values.

XoH /R, XoJ /R, and b are quite similar for all configurations,

which leads to very similar normalized detachment curves on

Fig. 8scd, where only the normalized detachment lengths are
altered. Finally, Fig. 8scd confirms the hyperbolic shape of

the toe of the hydraulic jump and of the horseshoe vortex in

separation type

2. Case S2: Influence of the Froude number

Keeping Q constant while changing h1 and R permits to

vary Fr sand bd without altering Re and h1 /R. Figure 9sad
shows that increasing the Froude number tends to decrease

lH /R but does not change much lJ /R swhich remains quite
constant at an average value of 0.5d.

Moreover, Fig. 9sbd shows that XoH /R and XoJ /R remain

more or less equal to each other and increase as Fr increases.

3. Case S3: Influence of the Reynolds number

Figures 10sad and 10sbd show that the value of Re has

very little influence on the normalized detachment lengths

lH /R and lJ /R and the curve parameters XoH /R and XoJ /R.

0 0.01 0.02 0.03 0.04
0

0.5

1

1.5

h
1
/R

λ
/R

(a)

0 0.01 0.02 0.03 0.04
0

5

10

15

h
1
/R

X
0
/R

(b)

−2 −1 0 1 2
0.2

0

−0.2

−0.4

−0.6

−0.8

−1

−1.2

Y/R

X
/R

H
A

H
C

H
B J

A

J
B

J
C

(c)

FIG. 8. sad Normalized detachment lengths for the toe of the hydraulic jump
shd and the horseshoe vortex smd as a function of the normalized upstream
water depth for case S1. sbd Best fitting parameter of the hydraulic jump shd
and horseshoe vortex smd detachment curves for case S1 using Eq. s10d. scd
Toe of the jump sJd and of the horseshoe vortex sHd for R=160 mm sAd,
R=110 mm sBd, and R=60 mm sCd in case S1.
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FIG. 9. fsad and sbdg Same as Fig. 8 as a function of the upstream Froude

number for case S2 with shd for the hydraulic jump and smd for the horse-
shoe vortex.
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Consequently, as b is kept constant sFr is constantd for all
flow configurations, all curves are similar. Let us note, how-

ever, that the absolute values of lH, lJ, XoH, and XoJ are

strongly affected by the Reynolds number value; only their

normalized values remain constant.

B. Breaking flow type

In this section, the influence of the three normalized pa-

rameters of Eq. s7d on the horseshoe vortex and hydraulic

jump detachment curves is investigated for the breaking type

configurations where the hydraulic jump is fitted by Eq. s10d
and the horseshoe vortex by Eq. s12d.

1. Case B1: Influence of the normalized upstream
water depth

Figure 11sad reveals that lJ /R increases rapidly with in-

creasing h1 /R value while lH /R increases more slightly. For

the hydraulic jump, Fig. 11sbd shows that the curve param-
eter XoJ /R remains more or less constant. As b also remains

constant for all flows, the shapes of the hydraulic jump de-

tachment curves are kept constant, and only their detachment

lengths lJ /R vary. For the horseshoe vortex detachment

curves, the parameters XeH /R and YeH /R also remain quite

constant for all h1 /R values on Fig. 11scd, and Fig. 11sdd
confirms that only their detachment lengths lH /R vary. Fi-

nally, Fig. 11sdd confirms the hyperbolic shape of the toe of
the hydraulic jump and the elliptic shape of the toe of the

horseshoe vortex in breaking type.

2. Case B2: Influence of the Froude number

Figure 12sad shows that lH /R and lJ /R decrease with

increasing Froude number. For the hydraulic jump detach-
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FIG. 10. fsad and sbdg Same as Fig. 8 as a function of the Reynolds number
for case S3 with shd for the hydraulic jump and smd for the horseshoe

vortex.
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FIG. 11. sad Normalized detachment lengths for the toe of the hydraulic

jump shd and the horseshoe vortex smd as a function of the normalized

upstream water depth for case B1. sbd Best fitting XoJ /R parameter of the

hydraulic jump detachment curve for case B1 using Eq. s10d. scd Best fitting
XeH /R snd and YeH /R smd parameters of the horseshoe vortex detachment

curve for case B1 using Eq. s12d. sdd Toe of the jump sJd and of the horse-
shoe vortex sHd for R=170 mm sAd, R=130 mm sBd, and R=90 mm sCd
in case B1.
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ment curves, XoJ /R increases with increasing Fr fsee Fig.

12sbdg.For the horseshoe vortex detachment curves, the pa-

rameters XeH /R and YeH /R slightly decrease with increasing

Fr fsee Fig. 12scdg.

3. Case B3: Influence of the Reynolds number

As for the separation type, Figs. 13sad and 13sbd show
that Re has very little influence on the hydraulic jump char-

acteristics lJ /R and XoJ /R. For the horseshoe vortex curves,

Figs. 13sad and 13scd show that lH /R, XeH /R, and YeH /R

also remain quite constant for all tested Re values.

C. Discussions

The influence of the three parameters from Eq. s7d on the
detachment curves of the horseshoe vortex and the hydraulic

jump is summarized in Table II. Regarding the detachment

lengths, quite similar tendencies are encountered for separa-

tion and breaking flow types.

• Increasing the Froude number of the inflow sFrd tends
to decrease the normalized detachment length of both

the hydraulic jump slJ /Rd and the horseshoe vortex

slH /Rd.
• Increasing the normalized water depth of the inflow

sh1 /Rd tends to increase lJ /R and lH /R.

• Altering the Reynolds number sRed does not affect the
detachment lengths.

Regarding the shape of the detachment curves, the influ-

ence of the three parameters on the hydraulic jump shape

parameter XoJ /R is similar for both flow types sonly Fr has

an impact on XoJ /Rd. Similarly, for the horseshoe vortex de-
tachment curve, only Fr impacts the shape parameters Xo /R,

Xe /R, and Ye /R.

The influence of the three parameters from Eq. s7d on the
normalized detachment length of the hydraulic jump slJ /Rd
can be explained using the same approach as proposed by

Moeckel
12

for a supersonic air flow interacting with a

squared-shape obstacle. As shown in Fig. 14, Moeckel
12
ap-

plied the law of mass conservation between the supersonic
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FIG. 12. fsad–scdg Same as Fig. 11 as a function of the upstream Froude

number for case B2 with shd for the hydraulic jump and smd for the horse-
shoe vortex.

7000 8000 9000 10000 11000 12000
0

0.2

0.4

0.6

0.8

1

Re

λ
/R

(a)

7000 8000 9000 10000 11000 12000
0

5

10

15

Re

X
0
J
/R

(b)

7000 8000 9000 10000 11000 12000
0

0.2

0.4

0.6

0.8

1
x 10

−3

Re

X
e
H
/R

&
Y
e
H
/R

(c)

FIG. 13. fsad–scdg Same as Fig. 11 as a function of the Reynolds number for
case B3 with shd for the hydraulic jump and smd for the horseshoe vortex.
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flow entering the control volume with velocity U1 and den-

sity r1, reaching the subsonic conditions sr2d and leaving it

with sonic velocity U2
p and density r2

p. The angle h is defined

as the angle between the sonic line sstraight line of length L

on Fig. 14d and the direction of the obstacle face. The mass
conservation law reads

r1U1SR

2
+ L cos hD = r2

pU2
pL , s13d

where L=Lsl ,hd. Following the perfect gas assumption with
M as the incoming Mach number and T as the absolute tem-

perature, Eq. s13d reads

r1MÎT1SR

2
+ L cos hD = r2

pÎT2
pL . s14d

Finally, we obtain

L/R

1/2 + L cos h/R
=

r1

r2
p
MÎT1

T2
p
. s15d

Moreover, in Eq. s15d, r1 /r2
p and T1 /T2

p depend only on

M according to the shock relation sfrom 1 to 2d and the

isentropic flow relation sfrom 2 to 2pd, while l, h, and L are

related through the hyperbolic curve equation, which de-

pends on M following the Mach angle expression. As a con-

sequence, Eq. s15d reveals that lJ /R depends only on M, and

Moeckel
12
analytically showed that lJ /R decreases when M

increases.

Applying this analysis to our hydraulic configuration

where sid the density of the air flow srd is replaced by the

water depth shd, siid the incoming Mach number M is re-

placed by the incoming Froude number Fr, siiid the shock

wave becomes an hydraulic jump, and sivd the width of the

hydraulic jump remains infinitely thin as for the shock wave,

it reads

h1U1SR

2
+ L cos hD = h2

pU2
pL , s16d

and thus

h1
3/2FrSR

2
+ L cos hD = h2

p3/2L s17d

and

L/R

1/2 + L cos h/R
= FrSh1

h2
pD3/2

. s18d

In Eq. s18d, h1 /h2
p depends only on Fr through the ob-

lique jump water depth equation sfrom 1 to 2d and the head
conservation sbetween 2 and 2pd. As in the previous case, l,

h, and L are related through the hyperbolic curve equation,

which depends on Fr following the Froude angle expression.

As a consequence, it appears that lJ /R depends only on Fr,

and we experimentally showed that lJ /R decreases when Fr

increases ssee Table IId.
Up to now, the hydraulic jump was considered as an

infinitely thin flow structure sas it is the case for the shock
wave in Moeckel

12
analysisd. However, it is well known that

the hydraulic jump has a non-negligible width, and that for a

fixed upstream Froude number Fr, this width is strongly re-

lated to the upstream water depth h1. The change of hydrau-

lic jump width modifies the limits of the control volume in

Fig. 14, which becomes unknown and thus affects the rela-

tion between h, L, and lJ. Consequently, altering h1 /R modi-

fies lJ /R as observed on our experimental results ssee Table
IId.

As in Moeckel
12
work, the Reynolds number of the in-

flow is not involved in the mass conservation analysis as it

does not alter neither the angle h nor the shock relation and

the head conservation law. Consequently, the Reynolds num-

ber does not affect the detachment length of the hydraulic

jump lJ /R as observed in Table II.

TABLE II. Summary of the tendencies observed in the experimental analysis.

Separation flow type Breaking flow type

l /R Xo /R

R2

s%d l /R Xo /R or Xe /R , Ye /R

R2

s%d

Increasing h1 /R lH /R↑ XoH /R< 99.4 lH /R↑ XeH /R< , YeH /R< 98.8

lJ /R↑ XoJ /R< 98.3 lJ /R↑ XoJ /R< 99.7

Increasing Fr lH /R↓ XoH /R↑ 98.9 lH /R↓ XeH /R↓ , YeH /R↓ 98.3

lJ /R< XoJ /R↑ 97.0 lJ /R↓ XoJ /R↑ 99.6

Increasing Re lH /R< XoH /R< 99.4 lH /R< XeH /R< , YeH /R< 98.7

lJ /R< XoJ /R< 96.4 lJ /R< XoJ /R< 99.9

X

P

λλλλ
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η

U1

h2 (ρ2)
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h2* (ρ2*)
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Hydraulic jump
(shock wave)

L

FIG. 14. Simplified scheme of the mass conservation analysis following

Moeckel sRef. 12d works where h refers to water depths and r refers to air

density in wind tunnel configurations.
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In separation type flow configurations, the impact of the

three parameters of Eq. s7d on the detachment length of the

horseshoe vortex can be easily derived from their impact on

the hydraulic jump detachment curve discussed above. In-

deed, as explained in the text, the behavior of the horseshoe

vortex follows the hydraulic jump behavior. Nevertheless, in

breaking type flow configuration, the location of the horse-

shoe vortex depends on both the hydraulic jump location and

the backwater curve of the free surface facing the obstacle.

We showed in the text that in such breaking type, the horse-

shoe vortex curve becomes elliptic, and the previous equa-

tions based on Moeckel
12
mass conservation analysis cannot

be applied. Finally, the influence of the Morton number Mo

on both the hydraulic jump and horseshoe vortex curves was

investigated by adding soap to the water in order to decrease

the surface tension and thus increase the Morton number. We

observed that such modification of the fluid had no influence

on the location of the detached curves and thus that Mo had

no impact in Eq. s5d.
Another interesting aspect that should be discussed is the

following. With turbulent inflow conditions sbreaking typed,
the boundary layer separation occurs far downstream, in the

near obstacle region and the hydraulic jump location is gov-

erned by backwater considerations. Oppositely with laminar

inflow condition sseparation typed, the boundary layer sepa-
ration occurs much further upstream and tends to increase

the inflow water depth, which causes the hydraulic jump to

be “pushed” further downstream in the near obstacle region.

When comparing cases S3 and B3 with similar Fr and h1 /R

values on Fig. 15, it appears that the normalized detachment

lengths are opposed one to the other: lH /R for separation

type flows is of the same order of magnitude as lJ /R for

breaking type flows, and similarly lH /R for breaking type

flows is of the same order of magnitude as lJ /R for separa-

tion type flows.

VII. CONCLUSION

This paper details the flow pattern that occurs upstream

from an obstacle as a supercritical open channel flow inter-

acts with an emerging rectangular shape obstacle. An experi-

mental setup using a transparent smooth and wide water

table was deployed using rectangular shape obstacles permit-

ting a wide range of width variations. As the inflow ap-

proaches the obstacle, a transition from supercritical to sub-

critical regime occurs and the flow eventually stops at the

obstacle face. This transition is performed through a hydrau-

lic jump, which is normal to the flow axis facing the center

of the obstacle and is oblique on the sides of the obstacle.

Moreover, as the flow depth increases from uniform depth

upstream to the stagnation point on the obstacle facade, the

reverse pressure gradient leads to a boundary layer separa-

tion and a horseshoe vortex is observed. Both flow structures

sthe hydraulic jump in the near-surface region and the horse-

shoe vortex in the near-bed regiond are detached upstream

from the obstacle and their detachment length varies depend-

ing on the flow and obstacle characteristics. Two main flow

types can then be observed. First, for a fully turbulent inflow,

the detachment length of the hydraulic jump exceeds the one

of the horseshoe vortex; this flow type is named “breaking

type.” Oppositely, for a laminar inflow, the detachment

length of the horseshoe vortex exceeds the one of the hy-

draulic jump and the flow type is named “separation type.”

Experimental measurements confirmed that the Reynolds

number is the main parameter governing the occurrence of

the flow types.

Experimental methodologies were developed in order to

detect the shape and location of the curve corresponding to

the foot of both flow structures for each flow type. The mea-

surements revealed that for both types, the hydraulic jump

detachment curve is constrained by two asymptotes: one nor-

mal to the flow axis in front of the obstacle and a second on

its sides, making a specific angle sFroude angled with the

flow axis. In separation type, the horseshoe vortex takes

place in a region of supercritical flow regime and follows the

same hyperbolic shape as the hydraulic jump, while in break-

ing type, the horseshoe vortex that takes place in a region of

subcritical flow regime follows an elliptic shape.

The dimensional analysis revealed that three parameters

can influence the detachment curves: the upstream Froude

and Reynolds numbers and the upstream water depth nor-

malized by the obstacle thickness. The influence of these

parameters was investigated experimentally by keeping two

parameters constant and varying the third one. We showed

that the influence of these parameters is quite similar for both

flow structures and for both flow types: increasing the

Froude number of the inflow tends to decrease the normal-

ized detachment lengths and increasing the normalized up-

stream water depth tends to increase these lengths, while the

impact of the Reynolds number on the detachment lengths

remains very limited.

Finally, we identified two different processes responsible

for the boundary layer detachment: in breaking type, the de-

tachment is caused by the backwater effect facing the ob-

stacle with a water depth increase in subcritical flow condi-

tions, and in separation type, the detachment is caused by the

sudden water depth increase in the hydraulic jump as men-

tioned by Lennon and Hill
26
and Mignot and Cienfuegos.

27
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and breaking type sin blackd flows as a function of the Reynolds number

sfrom Figs. 10 and 13d.
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