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LOCALIZATION AND DELOCALIZATION FOR HEAVY TAILED

BAND MATRICES

FLORENT BENAYCH-GEORGES AND SANDRINE PÉCHÉ

Abstract. We consider some random band matrices with band-width Nµ whose entries
are independent random variables with distribution tail in x−α. We consider the largest
eigenvalues and the associated eigenvectors and prove the following phase transition. On

the one hand, when α < 2(1+ µ−1), the largest eigenvalues have order N
1+µ

α , are asymp-
totically distributed as a Poisson process and their associated eigenvectors are essentially
carried by two coordinates (this phenomenon has already been remarked by Soshnikov in
[28, 29] for full matrices with heavy tailed entries, i.e. when α < 2, and by Auffinger et

al in [1] when α < 4). On the other hand, when α > 2(1 + µ−1), the largest eigenvalues
have order N

µ

2 and most eigenvectors of the matrix are delocalized, i.e. approximately
uniformly distributed on their N coordinates.

Introduction

Recently some growing interest has been laid on the understanding of the asymptotic
behavior of both eigenvalues and eigenvectors of random matrices in the large size limit.
For Wigner random matrices, that is N×N Hermitian or real symmetric random matrices
with i.i.d. entries (modulo the symmetry assumption), the large-N -asymptotic behavior
is now well understood, provided the distribution of the entries has sub-exponential decay
(or at least a large enough number of moments). It is indeed known from the works of
Erdös-Schlein-Yau, Tao-Vu and Knowles-Yin ([13, 14, 15, 31, 32, 18] and see also references
therein) that :
– eigenvalues are very close to their theoretical prediction given by well-chosen quantiles
of the semi-circle distribution (the proof is based on a strong semi-circle law). This also
yields universality of local statistics in the bulk and at the edge under some appropriate
moment assumptions (see Erdös [9] e.g. for a review of the recent results).
– eigenvectors are fully delocalized in the following sense. The localization length, L, of
an eigenvector v is the typical number of coordinates bearing most of its ℓ2 norm. Then
it is proved that with very “high probability” there does not exist an eigenvector with
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localization length L ≪ N . Or roughly speaking all coordinates are in the order of N−1/2.

In this article, we want to fill in the gap of understanding the role of moments in the
delocalization properties of eigenvectors. We will be interested in a model of random
matrices that we believe to be quite rich, namely random band matrices with heavy-tailed
entries.

More precisely, the matrices under consideration in this paper are Hermitian random
matrices with at most Nµ non zero entries per row. In other words, we force some of the
entries of a Wigner matrix to be zero. This model is believed to be more complicated than
Wigner ensembles due to the fact that there is no reference ensemble: there does not exist
a “simple” band random matrix ensemble for which eigenvalue/eigenvector statistics can
be explicitly computed as for the GUE/GOE in Wigner matrices. Thus usual comparison
methods (four moments theorem, Green function comparison method) cannot be used
directly in this setting.
Such a model is also believed to exhibit a phase transition, depending on µ. On a physical
level of rigor, Fyodorov and Mirlin [17] e.g. have explained that for Gaussian entries, the
localization length of a typical eigenvector in the bulk of the spectrum shall be of order
L = O(Nmin(2µ,1)) so that eigenvectors should be localized (resp. delocalized or extended)
if µ < 1/2 (resp. > 1/2). The only rigorous result in the direction of localization is by
Schenker [23]. Therein it is proved that L ≪ Nmin(8µ,1) for all eigenvectors of random band
matrices with i.i.d. Gaussian entries on the band. On the other hand, delocalization in the
bulk is proved by Erdös, Knowles, Yau and Yin [12] when µ > 4/5. In both regimes, it is
known from Erdös and Knowles [10, 11] that typically L ≥ N7µ/6 ∧N for a certain class of
random band matrices (with sub-exponential tails and symmetric distribution). We refer
the reader to Spencer [30] and Erdös, Schlein and Yau [14] for a more detailed discussion on
the localized/delocalized regime. Regarding the edges of the spectrum, much less is known
about the typical localization length of the associated eigenvectors. The authors are not
aware of a proof that eigenvectors at the edge are fully delocalized. However, Sodin’s
statement [25] combined with Erdos-Knowles-Yau-Yin’results [12] suggest that this should
be true when µ > 5/6.

We will also allow the i.i.d. non zero entries to admit only a finite number of moments
(which can actually be zero). Allowing heavy-tailed entries allows some more localization,
especially at the edge of the spectrum, as we can infer from Wigner matrices. This is
discussed in particular in the seminal paper by Cizeau and Bouchaud [7]. It is known
that the limiting spectral measure of such Wigner matrices is the semi-circle distribution
provided that the variance of the entries is finite (otherwise another limiting distribution
has been identified by Guionnet and Ben Arous [5]). Regarding eigenvectors, it was shown
by Soshnikov [28, 29] and Auffinger, Ben Arous and Péché [1] that eigenvectors associated
to the largest eigenvalues have a localization length of order 1 if the entries do not admit a
finite fourth moment. The localization length is not so clear in the bulk but some progress
has been obtained by Bordenave and Guionnet [6]. However it is commonly believed that
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the fourth moment shall be a threshold for the localization of eigenvectors at the edge of
the spectrum of full Wigner matrices. For band matrices when the bandwidth is negligible
w.r.t. the size N of the matrix, no such threshold has been intuited. This is also a gap we
intend to fill in here.

Specifically, we prove the following phase transition, occurring when α = 2(1+µ−1), i.e.

when 1+µ
α

= µ
2
(note that N

1+µ
α is always the order of the largest entries of the matrix,

while Nµ/2 is the order of the bulk of the spectrum when α > 2). On the one hand, when
α < 2(1 + µ−1), the largest entries of the matrix give rise to isolated eigenvalues with

order N
1+µ
α and eigenvectors essentially carried by two coordinates. This phenomenon has

already been noted for full matrices (µ = 1) by Soshnikov in [28, 29] when α < 2, and
by Auffinger et al in [1] when α < 4. On the other hand, when α > 2(1 + µ−1), we have

N
1+µ
α ≪ Nµ/2, so largest entries no longer play any specific role and the matrix is from this

point of view like a matrix with non heavy tailed entries. This is why the largest eigenval-
ues have order N

µ
2 and most eigenvectors of the matrix are delocalized, i.e. approximately

uniformly distributed on their N coordinates.

The paper is organized as follows. In Section 1, we state our two main theorems : The-
orem 1.1 is the localization result mentioned above about the extreme eigenvalues and
eigenvectors in the case α < 2(1 + µ−1) and Theorem 1.5 is the delocalization result men-
tioned above about the extreme eigenvalues of the matrix and most of its eigenvectors in
the case α > 2(1 + µ−1). Sections 2, 3 and 4 are devoted to the proofs of these results
and the appendix is devoted to the proof of several technical results, including Theorem
5.3, a general result whose idea goes back to papers of Soshnikov about the surprising
phenomenon that certain Hermitian matrices have approximately equal largest eigenvalues
and largest entries.

Notation. For any functions (or sequences) f, g, we write f(x) ∼ g(x) (resp. f(x)
sl.∼ g(x))

when f(x)/g(x) −→ 1 (resp. f(x)/g(x) is slowly varying) as x → +∞. We denote by ‖v‖
the ℓ2-norm of v ∈ CN and by ‖A‖ the ℓ2 → ℓ2 operator norm of a matrix A. When A is
normal, then ‖A‖ = ρ(A) where ρ(A) is the spectral radius of A and we use equivalently
both notations.

An event AN depending on a parameter N is said to hold with exponentially high prob-
ability (abbreviated w.e.h.p. in the sequel) if P(AN) ≥ 1− e−CNθ

for some C, θ > 0.

1. The results

Let us fix two exponents α > 0 and µ ∈ (0, 1] and let, for each N , AN = [aij ]
N
i,j=1 be a real

symmetric (or complex Hermitian) random matrix satisfying the following assumptions:
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i) For all i’s in {1, . . . , N} except possibly o(N) of them,

(1)
♯{j ; aij is not almost surely zero}

Nµ
= aN ,

where aN → 1 as N → ∞. For the other i’s, (1) still holds, but with ≤ instead of =. Thus
AN is a sparse matrix when µ < 1. We denote by B(N) the set of its non a.s. zero entries:

B(N) := {(i, j) ; aij is not almost surely zero}
and set dN := aNN

µ ∼ ♯B(N)/N .

ii) The entries aij , (i, j) ∈ B(N), are i.i.d. modulo the symmetry assumption and such
that for a slowly varying function L not depending on N ,

(2) G(x) := P(|aij| > x) = L(x)x−α.

If α ≥ 1+µ−1, we also suppose that the aij ’s are symmetrically distributed. This symmetry
assumption simplifies the exposition of arguments but can be relaxed (we briefly indicate
this possible extension in Remark 2.5 below). At last, if α > 2(1+µ−1), the second moment
of the non identically zero entries of AN is equal to one. Note that for all fixed i, j, aij
might depend on N (think for example of the case where AN is a band matrix), hence
should be denoted by aij(N).

The standard example of matrices satisfying (1) is given by band matrices, i.e. matrices
with entries aij such that aij = 0 when |i − j| > Nµ/2. Another very close example is
the one of cyclic band matrices, i.e. matrices with entries aij such that aij = 0 when
|i− j| > Nµ/2 and |i− j| > N −Nµ/2.

We denote by λ1 ≥ λ2 ≥ · · · the eigenvalues of AN (they depend implicitly on N) and
we choose some unit associated eigenvectors

v1,v2, . . .

Let us also introduce a set of pairs of indices (i1 ≤ j1), (i2 ≤ j2), . . . such that for all k, |aikjk|
is the kth largest entry, in absolute value, of AN . Let θk ∈ R such that aikjk = |aikjk |e2iθk .
The eigenvectors v1,v2, . . . are chosen such that for each k,

e−iθk〈vk, eik〉 ≥ 0,

with e1, . . . , eN the vectors of the canonical basis.

As we shall see in the two following theorems, the asymptotic behavior of both the
largest eigenvalues of AN and their associated eigenvectors exhibit a phase transition with
threshold α = 2(1 + µ−1).

Theorem 1.1 (Subcritical case). Let us suppose that α < 2(1 + µ−1). Then for each fixed
k ≥ 1, we have the convergences in probability, as N → ∞,

(3)
λk

|aikjk |
−→ 1
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and

(4) vk −
1√
2

(
eiθkeik + e−iθkejk

)
−→ 0 (for the ℓ2-norm).

As a consequence of (3), for bN the sequence defined by (5) below, the random point process
∑

k ; |aikjk
|>0

δλk/bN

converges in law to the law of a Poisson point process on (0,+∞) with intensity measure
α

xα+1dx.

The sequence bN of the theorem is defined by

(5) bN := inf

{

x ≥ 0 ; G(x) ≤ 1

#{non identically zero independent entries of AN}

}

,

where G(x) is defined by (2). It can easily be deduced from (1) and (2) that

(6) bN
sl.∼ N

1+µ
α .

Roughly speaking, this theorem says that when α < 2(1 + µ−1), the largest eigenvalues of

AN have order N
1+µ
α , but no fixed limit when divided by N

1+µ
α , because the limiting object

is a Poisson process. Moreover, the corresponding eigenvectors are essentially supported
by two components. As we shall see in the following theorem, the case α > 2(1 + µ−1) is
deeply different: in this case, the largest eigenvalues of AN have order N

µ
2 and tend to 2

when divided by N
µ
2 , whereas the eigenvectors are much more delocalized, i.e. supported

by a large number of components.

To be more precise, we use the following Definition 7.1 from Erdös, Schlein and Yau [14].

Definition 1.2. Let L be a positive integer and η ∈ (0, 1] be given. A unit vector v =
(v1, . . . , vN) ∈ C

N is said to be (L, η)-localized if there exists a set S ⊂ {1, . . . , N} such
that |S| = L and

∑

j∈Sc |vj|2 ≤ η.

We shall also use the following slightly modified version of the above definition.

Definition 1.3. Let L be a positive integer and η ∈ (0, 1] be given. A unit vector v =
(v1, . . . , vN) ∈ CN is said to be (L, η)-successively localized if there exists a set S which
is an interval of the set {1, . . . , N} endowed with the cyclic order such that |S| = L and
∑

j∈Sc |vj|2 ≤ η.

Remark 1.4. The larger L and η, the stronger a statement of the type “There is non
(L, η)-localized eigenvector” is.

Theorem 1.5 (Supercritical case). Let us suppose that α > 2(1 + µ−1) and that the aij’s
have variance one. Then for each fixed k ≥ 1, as N → ∞, we have the convergence in
probability

(7)
λk

N
µ
2

−→ 2.
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Moreover, for L := ⌊N c⌋, with c such that

(8) c <
2

5
µ
α− 2

α− 1
(resp. c < µ)

for any η0 < 1/2, we have, as N → ∞,

(9) P

(

∪η<η0{∃k, |λk| >
√

2ηρ(A) and vk is (L, η)-localized}
)

−→ 0,

(resp. P
(

∪η<η0{∃k, |λk| >
√

2ηρ(A) and vk is (L, η)-successively localized}
)

−→ 0.)

Remark 1.6. Note that this theorem does not only apply to the edges of the spectrum,
as η runs from 0 to η0 in (9).

Remark 1.7. Note that focusing on successively localized vectors, we would need to
improve the bound c < µ in order to get some flavor of the usual threshold of the so-called
Anderson transition. The localization length L of typical eigenvectors in the bulk is indeed
supposed numerically to be in the order of L ≈ N2µ when µ < 1/2 for entries with many
moments. At the edge of the spectrum, the authors are not aware of any intuited (even at
a physical level of rigor) localization length in the localized regime.

To prove both above theorems, we shall also use the following result, which had not
appeared at this level of generality yet.

Theorem 1.8. We suppose that the hypotheses (1) and (2) hold with α > 2 and that the
first and second moments of the non identically zero entries of AN are respectively equal
to 0 and 1. Then the empirical spectral measure of AN/N

µ
2 converges almost surely to the

semi-circle law with support [−2, 2].

Proof. The proof relies on a classical cutt-off and moments method, copying the proof
of the convergence to the semi-circle distribution for standard Wigner matrices (see for
example [2, Th. 2.5]). �

2. A preliminary result: general upper-bound on the moments

The Hypotheses made on the aij ’s are the ones presented in the beginning of Section 1.

Theorem 2.1. Assume that α > 2 and that the aij’s have variance one. Consider some
positive exponents γ, γ′, γ′′ such that

(10)
µ

2
≤ γ′ and

µ

4
+ γ + γ′′ < γ′

and define the truncated matrix ÂN = [aij1|aij |≤Nγ ]Ni,j=1. Then for sN ≤ Nγ′′

, there exists
a slowly varying function L such that

E[Tr(Â2sN
N )] ≤ L(N)N1+2γs

−3/2
N (2Nγ′

)2sN .
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The following corollary follows directly from the theorem and from the Chebichev in-
equality.

Corollary 2.2. Under the above hypotheses, for any κ < 1 (possibly depending on N),
there exists a slowly varying function L such that

(11) P

(

‖ÂN‖ ≥ κ× 2Nγ′

)

≤ κ−2sNL(N)N1+2γs
−3/2
N .

Remark 2.3. Roughly speaking, this theorem says that for any ǫ > 0,

‖ÂN‖ ≤ (2 + ǫ)Nmax{µ
2
,µ
4
+γ+ǫ} for N ≫ 1.

Remark 2.4. Note that for the theorem and its corollary to be true, one does not really
need the size of the matrix to be N , but just to be not more than a fixed power of N . This
remark will allow us to apply the estimate (11) to submatrices of AN .

Proof of the theorem. Our strategy will be to use the ideas of Soshnikov, well explained in
[24] (see also [27] or [1]). We shall also need an estimate on the moments of the truncated
variables âij := aij1|aij |≤Nγ . By [16], Chap. VIII.9, Th. 2.23, we have that for any k ≥ 0,
for any (non identically null) aij,

(12) E[|âij |k] sl.∼
{

1 if k ≤ α,

Nγ(k−α) if k > α.

We have, suppressing the dependence on N to simplify the notation,

Tr Â2s =
∑

1≤i0,...,i2s≤N
i0=i2s

âi0i1 · · · âi2s−1i2s .

To any i = (i0, . . . , i2s) such that i0 = i2s, we associate the non oriented graph Gi :=
(Vi, Ei) with vertex set {i0, . . . , i2s} and edges {iℓ−1, iℓ}, 1 ≤ ℓ ≤ 2s and the closed path
Pi = i0 → i1 → · · · → i2s on this graph.

Since the aij ’s are symmetrically distributed, each edge of Gi has to be visited an even

number of times by Pi for the contribution of i to ETr Â2s to be nonzero.

To such a i, we associate a set Mi of s marked instants as follows. We read the edges of
Pi successively. The instant at which an edge {i, j} is read is then said to be marked if up
to that moment (inclusive) the edge {i, j} was read an odd number of times (note that the
instant are counted from 1 to 2s, hence the instant where, for example, the edge i0 → i1
is read is the instant 1). Other instants are said to be unmarked. Since each edge of Gi is
visited an even number of times by Pi, it is clear that

#Mi = s.

Note that at any moment of time t, the number of marked instants up to time t is greater
(or equal) than the number of unmarked instants. Thus one can associate to the sequence
of marked/unmarked instants a unique Dyck path, that is a trajectory in (Z+)2, started
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at (0, 0) at time 0 and ending at (2s, 0) at time 2s with possible steps (1,±1): for any
i = 1, . . . , 2s, step number i in the trajectory is (1, 1) if and only if the instant i is marked.

Now, for each 0 ≤ k ≤ s, we define Ni(k) to be the set of i’s in {1, . . . , N} occurring
exactly k times as the current vertex of a marked instant and nk be its cardinality. Let
the family (n0, . . . , ns) be called the type of i. Note that we have

(13)
s∑

k=0

nk = N and
s∑

k=0

knk = s.

Let us now count the number of i’s with fixed type (n0, . . . , ns) (where the ni’s satisfy
(13)). To define such a i, one first has to choose the set Mi of marked instants: there are
as many possibilities as Dick paths, i.e. the Catalan number

Cs :=
1

s+ 1

(
2s

s

)

.

Then one has to choose an unlabelled partition of Mi defined by the fact that two marked
instants are in the same class if and only if the path Pi is at the same vertex of Gi at both
of these instants. Such a partition is only required to have nk blocks of cardinality k for
each k = 1, . . . , s. Hence there are

s!
∏s

k=1(k!)
nk

× 1
∏s

k=1 nk!

possibilities (the first factor counting the labelled partitions and the second one “dela-
belling”). At this point, one has to choose the vertices of Gi. For i0, there are N pos-
sibilities. For each other vertex, there are at most dN possibilities. There are at most
n1 + · · ·+ ns other vertices. Indeed, except possibly i0, each vertex is occurring a certain
number of times as the current vertex of a marked instant (for example at the first time the
vertex is visited by the path Pi). Hence there are at most Ndn1+···+ns

N possibilities for the
choices of the vertices of Gi. There now remains to give an upper-bound on the number of
ways to determine vertices at unmarked instants (such vertices will not be new, but still
have to be chosen among the before chosen vertices). Soshnikov proved in [27], Formula
(4.3), or [26], first paragraph on p. 6, that this number is not larger than

∏s
k=2(2k)

knk (the
idea is that if v is a vertex arising at k marked instants, the number of ways to determine
the endpoint of an edge starting from v at an unmarked instant is at most 2k).

To sum up, the number of i’s with fixed type (n0, . . . , ns) is at most

Cs
s!

∏s
k=1(k!)

nk
× 1
∏s

k=1 nk!
×Ndn1+···+ns

N ×
s∏

k=2

(2k)knk .

Let us now give an upper bound on the expectation E[âi0i1 · · · âi2s−1i2s] depending on the

type of i. For i, j ∈ Vi, let ij denote the edge {i, j} of Gi (this edge is unoriented, so
ij = ji) and let k(ij) denote the half of number of times that this edge is visited by Pi, i.e.
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the number of marked instants along edge ij. We also introduce ki;ij to be the number of

times that the vertex i is marked along the edge ij. Clearly,

k(ij) = ki;ij + kj;ij and type(i) =
∑

j

ki;ij.

We know, by (12), that for a certain slowly varying sequence L(N) (that can change at
every line)

E[âi0i1 · · · âi2s−1i2s ] =
∏

e∈Ei,
k(e)≥2

L(N)
∏

e∈Ei,
k(e)≥α

Nγ(2ke−α)

≤
∏

e∈Ei,
k(e)≥2

L(N)
∏

e∈Ei,
k(e)≥2

Nγ(2ke−2) = L(N)2EN−2γE
∏

e∈Ei,
k(e)≥2

N2γke ,

where E denotes the number of edges e such that k(e) ≥ 2. Let us now enumerate the
edges via their extremities. Then

∑

e∈Ei,
k(e)≥2

k(e) = #{marked instants along edges e such that k(e) ≥ 2}

=
∑

(v,w)∈V 2
i

k(vw)≥2

kv;vw =
∑

(v,w)∈V 2
i

k(vw)≥2,type(v)=1

kv;vw +
∑

(v,w)∈V 2
i

k(vw)≥2,type(v)≥2

kv;vw.

Let us now use the fact, well known from [27, 21, 1] that if an edge vw is visited at least 4
times by the path Pi, then at least one of v and w have type ≥ 2, except for the first visited
vertex i0. It follows that the first sum above is ≤ E + 1 and also that E ≤ 1 +

∑s
k=2 knk.

Hence
∑

e∈Ei,
k(e)≥2

k(e) ≤ E + 1 +
∑

v∈Vi,type(v)≥2

∑

w

kv;vw

= E + 1 +

s∑

k=2

knk

Hence E[âi0i1 · · · âi2s−1i2s ] ≤ L(N)2+2
∑s

k=2 knkN2γ(1+
∑s

k=2 knk), using E ≤ 1 +
∑

k≥2 knk.

As a consequence,

E[Tr(Â2s)]/N2sγ′ ≤ L(N)2N1+2γ−2sγ′

Css!
∑

n1,...,ns

s. t. (13) holds

1
∏s

k=1(k!)
nk

× 1
∏s

k=1 nk!
× dn1+···+ns

N ×
s∏

k=2

(2k)knk

×N2γ
∑s

k=2 knkL(N)2
∑s

k=2 knk .
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Let us now use the fact s! ≤ n1!s
(s−n1) = n1!s

∑s
k=2 knk ≤ n1!N

γ′′
∑s

k=2 knk , dN ≤ Nµ and
N−2sγ′

= N−2γ′
∑s

k=1 knk . We get

E[Tr(Â2s)]/N2sγ′ ≤

L(N)2N1+2γCs

∑

n1,...,ns

s. t. (13) holds

N (µ−2γ′)n1

s∏

k=2

1

nk!

(
L(N)2kNµ(2kN2(γ−γ′)+γ′′

)k

k!

)nk

.

But by the hypothesis (10), µ− 2γ′ ≤ 0, hence the first factor is ≤ 1, so, using the fact
that by (13), n1 is determined by the other nj ’s, we get

E[Tr(Â2s)]/N2sγ′ ≤ L(N)2N1+2γCs

∑

n2,...,ns≥0

s∏

k=2

1

nk!

(
L(N)2kNµ(2kN2(γ−γ′)+γ′′

)k

k!

)nk

≤ L(N)2N1+2γCs

∑

n2,...,ns≥0

s∏

k=2

1

nk!

(
L(N)2kNµ(2N2(γ−γ′+γ′′))k

k!

)nk

≤ L(N)2N1+2γCs exp

(
s∑

k=2

L(N)2kNµ(2N2(γ−γ′+γ′′))k

k!

)

≤ L(N)2N1+2γCs exp

(
s∑

k=2

L(N)2k2kN−εk

k!

)

with ε = −2
(
µ
4
+ γ + γ′′ − γ′). By (10), we have ε > 0, so that the exponential term stays

bounded as N → ∞. Using the fact that L(N)2 has slow variations and Cs ∼ 4s(πs3)−1/2,
we get Theorem 2.1. �

Remark 2.5. In the case where the entries aij, 1 ≤ i, j ≤ N are not symmetrically
distributed, one can prove a similar statement as in Theorem 2.1. The proof is based
on arguments already given in Section 4 of [1] and [21]. One can indeed assume that the

truncated entries are centered. Then, the main modification in evaluating E[Tr(Â2s)]/N2sγ′

is that one has to take into account the contribution of paths with edges seen an odd number
of times. However any such edge is seen at least 3 times, because the entries are centered.
It can then be shown that the contribution of such paths is negligible (provided s is small
enough as in Theorem 2.1), as to each such edge corresponds a vertex of type > 1.

3. Proof of Theorem 1.1

We are going to prove Theorem 1.1 as an application of Theorem 5.3 of the appendix,
for cn := bN , the sequence defined by (5). More precisely, we shall use its “random
versions”: the case α < 1+µ−1 will be a consequence of Corollary 5.4, whereas in the case
1 + µ−1 ≤ α < 2(1 + µ−1), we need to truncate the entries, and the conclusion will follow
from Corollary 5.5.
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Hypothesis (2) implies that the distribution of the non-zero entries is in the max-domain
of attraction of the Fréchet distribution with exponent α (see [22], p. 54). By e.g. [20, Th.
2.3.1], it implies that as N → ∞, the point process

∑

k ; |aikjk
|>0

δ|aikjk
|/bN

converges in distribution to a Poisson point process on (0,+∞) with intensity measure
α

xα+1dx. It explains why the second part of Theorem 1.1 is a consequence of its first part
and why Hypothesis (25) of the corollaries 5.4 and 5.5 is satisfied by the |aikjk |’s.

Note that by (2), for any θ > 0, for any non indenticaly null aij ,

(14) P(|aij| > bθN )
sl.∼ b−αθ

N
sl.∼ N−θ(1+µ).

The following claim (valid without any assumption on α) is a direct consequence of (14)
and of the union bound.

Claim 3.1. For any η > 0, with probability going to one as N → ∞, we have:

a) no row of AN has two entries larger, in absolute value, than b
1+2µ
2(1+µ)

+η

N (the exponent
1+2µ
2(1+µ)

increases from 1
2
to 3

4
as µ increases from 0 to 1),

b) the matrix AN has no diagonal entry larger, in absolute value, than b
1

1+µ
+η

N .

So for any positive δ, δ′, parts (b.i) and (b.ii) of the random version of Hypothesis 5.2
are satisfied with

(15) κ :=
1 + 2µ

2(1 + µ)
+ δ, τ :=

1

1 + µ
+ δ′.

Let us now verify Part (b.iii).

3.1. Case where α < 1 + µ−1. Set

(16) S :=
∑

j ; |aij |<bκ
N

|aij |

(we suppress the dependence in N to simplify notation). We shall prove that there is ν < 1
such that P(SN > bνN ) is exponentially small with some bounds that are uniform on i. The
sum S can be rewritten S = S1 + S2 + S3 as follows :

S =
∑

|aij |≤N
µ
α−η

|aij|+
∑

N
µ
α−η<|aij |≤N

µ
α+η

|a1i|+
∑

N
µ
α+η<|aij |≤bκ

N

|aij |

The sums S1, S2, S3 can be treated with respectively parts a), c) and d) of Proposition 5.6 of

the appendix. The treatment of S1 uses the facts bN
sl.∼ N

1+µ
α and that µ+ µ

α
(1−α)+ < 1+µ

α
,

which is always true when α ≤ 1 and which is a consequence of α < 1 + µ−1 when α > 1.
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3.2. Case where 1 + µ−1 ≤ α < 2(1 + µ−1). We have seen at (6) that bN
sl.∼ N

1+µ
α . So

to apply Corollary 5.5 for cn = bN , we have to find a cut-off exponent γ satisfying both
following constraints:

1) for κ defined by (15), there is ε > 0 such that with exponentially high probability,

(17) S :=
∑

j ;Nγ<|aij |≤bκ
N

|aij| ≤ N
1+µ
α

−ε,

2) there is ε′ > 0 such that with probability tending to one, we have:

‖ÂN‖ ≤ N
1+µ
α

−ε′ (with ÂN := [aij1|aij |≤Nγ ]1≤i,j≤N) .

By Corollary 2.2, the second condition is satisfied when max{µ
2
, µ
4
+ γ} < 1+µ

α
. As

α < 2(1 + µ−1), we have µ
2
< 1+µ

α
, so for condition 2) to be verified, one only needs

γ <
1 + µ

α
− µ

4
.

To treat the sum S of (17), one proceeds as we did to treat the sum S defined at (16) in
the case α < 1 + µ−1, except that now,

S1 =
∑

Nγ<|a1j |≤N
µ
α−η

|a1j|

and S1 is treated thanks to Part b) of Proposition 5.6. Indeed, Part b) of Proposition 5.6
implies that w.e.h.p., S1 ≤ Nµ−γ(α−1)+η with η > 0 as small as we need. Hence to fulfill
Condition 1), one needs γ to satisfy

µ− γ(α− 1) <
1 + µ

α
,

i.e. γ > µ
α
− 1

α(α−1)
. To sum up, we need to find a cut-off exponent γ such that

µ

α
− 1

α(α− 1)
< γ <

1 + µ

α
− µ

4
.

Hence to conclude, it suffices to remark that α < 2(1 + µ−1) implies

(18)
µ

α
− 1

α(α− 1)
<

1 + µ

α
− µ

4
.

4. Proof of Theorem 1.5

4.1. Eigenvalues. Let us first prove the part about the eigenvalues, i.e. Equation (7).
First, by Theorem 1.8, for any fixed k ≥ 1, we have

lim inf
λk

N
µ
2

≥ 2.
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Let us now prove that

(19) lim sup
λk

N
µ
2

≤ 2.

To do that, we will prove that one can find a cut-off exponent γ such that for ÂN :=
[aij1|aij |≤Nγ ]1≤i,j≤N , we have

(20) lim sup
‖ÂN‖
N

µ
2

≤ 2 and ‖AN − ÂN‖ = o(N
µ
2 ).

To treat the first part of (20), we apply Corollary 2.2 with γ′ = µ
2
and γ′′ > 0 such that

µ

4
+ γ + γ′′ < γ′.

For such a γ′′ to exist, the constraint on γ is that γ < µ
4
. To treat the second part of (20),

we use the following claim and the fact that

(21) ‖AN − ÂN‖ = sup
λ eig. of AN−ÂN

|λ| ≤ ‖AN − ÂN‖ℓ∞→ℓ∞ ≤ max
i

∑

j ; |aij |>Nγ

|aij|.

Claim 4.1. Under the hypothesis that α > 2(1 + µ−1), for any γ > µ
2(α−1)

, there is η > 0

such that with probability tending to one, we have:

max
i

∑

j ; |aij |>Nγ

|aij | ≤ N
µ
2
−η.

Let us conclude the proof of the eigenvalues part of Theorem 1.5 before proving the
claim. All we need is to find a cut-off exponent γ such that

µ

2(α− 1)
< γ <

µ

4
.

The existence of such a γ is equivalent to the fact that α − 1 > 2, which is true because
α > 2(1 + µ−1) ≥ 4.

Proof of the claim. Let S(i) be the sum in the statement. By (2), it is easy to see that
for any θ > 1+µ

α
, with probability tending to one, we have

max
ij

|aij | ≤ N θ.

Hence by Part a) of Claim 3.1 (using the fact that bN
sl.∼ N

1+µ
α ), for such a θ, with probability

tending to one, for all i,

S(i) ≤
∑

j ;Nγ<|aij |≤Nθ

|aij| =
∑

j ;Nγ<|aij |≤N
µ
α

|aij|+
∑

j ;N
µ
α <|aij |≤N

1+µ
α

|aij|+
∑

j ;N
1+µ
α <|aij |≤Nθ

|aij |.

Using respectively parts b), c), d) of Proposition 5.6, for any ǫ > 0, we have, w.e.h.p.,
∑

j ;Nγ<|aij |≤N
µ
α

|aij| ≤ Nµ−γ(α−1)+ǫ,
∑

j ;N
µ
α<|aij |≤N

1+µ
α

|aij| ≤ N
1+µ
α

+ǫ
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and
∑

j ;N
1+µ
α <|aij |≤Nθ

|aij| ≤ N θ+ǫ.

Hence as θ > 1+µ
α
, for any φ > max{µ− γ(α− 1), θ}, we have, w.e.h.p., uniformly on i,

∑

j ;Nγ<|aij |≤Nθ

|aij| ≤ Nφ.

Now, to conclude the proof of the claim, it suffices to notice that the hypotheses γ > µ
2(α−1)

and α > 2(1 + µ−1) are respectively equivalent to µ − γ(α− 1) < µ
2
and 1+µ

α
< µ

2
, so that

one can find some exponents θ, φ satisfying

1 + µ

α
< θ and max{µ− γ(α− 1), θ} < φ <

µ

2
.

�

4.2. Eigenvectors. We shall first prove the following lemma. Let us recall that a principal
submatrix of a matrix H = [xij ]1≤i,j≤N is a matrix of the type H = [xjkjℓ]1≤k,ℓ≤L, where
1 ≤ L ≤ N and 1 ≤ j1 < · · · < jL ≤ N . The submatrix will be said to be successively
extracted if the indices j1, . . . , jL form an interval of the set {1, . . . , N} endowed with the
cyclic order.

Lemma 4.2. Let H be a Hermitian matrix and ρL(H) (resp. ρsuccL (H)) be the maximum
spectral radius of its L × L principal (resp. principal successively extracted) submatrices.
Let λ be an eigenvalue of H and v an associated unit eigenvector.

If v is (L, η)-localized, then |λ| ≤ ρL(H)+
√
ηρ(H)√

1−η
.

If v is (L, η)-successively localized, then |λ| ≤ ρsucc
L

(H)+
√
ηρ(H)√

1−η
.

Proof. Let j1 < · · · < jL be indices such that
∑L

ℓ=1 |vjℓ|2 ≥ 1−η and let P be the orthogonal
projection onto the subspace generated by the vectors ej1 , . . . , ejL (the ej’s are the vectors
of the canonical basis). We have

λPv = PHv = PHPv+ PH(1− P )v.

Then the conclusion follows directly from the following

|λ| ×
√

1− η ≤ |λ| × ‖Pv‖ ≤ ρ(PHP ) + ρ(H)‖(1− P )v‖ ≤ ρ(PHP ) +
√
ηρ(H).

�

Claim 4.3. Let us suppose that α > 2(1 + µ−1).
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a) Let us fix c such that

(22) c <
2

5
µ
α− 2

α− 1
.

Then there is ε > 0 such that w.e.h.p., the following holds:

For any ⌊N c⌋ × ⌊N c⌋ principal submatrix B of AN , ‖B‖ ≤ N
µ
2
−ε.

b) Let us fix c such that

(23) c < µ.

Then there is ε > 0 such that w.e.h.p., the following holds:

For any ⌊N c⌋ × ⌊N c⌋ successively extracted principal submatrix B of AN ,
we have ‖B‖ ≤ N

µ
2
−ε.

Before proving the claim, let us conclude to the proof of the eigenvectors part of Theorem
1.5. We know that ρ(A) ∼ 2N

µ
2 and that there is ε > 0 such that with probability tending

to one, ρL(A) (resp. ρ
succ
L (A)) is bounded from above by N

µ
2
−ε. Since 1√

1−η
< 1√

1−η0
<

√
2,

the two assumptions |λk| >
√
2ηρ(A) and vk is (L, η)-localized are then incompatible by

Lemma 4.2. The case of successively extracted eigenvectors is handled similarly.

Proof of the claim. We shall treat a) and b) in the same time. Let us first note that
Equation (22) (resp. Equation (23)) is equivalent to (resp. implies that)

c

4
+

µ

2(α− 1)
+ c <

µ

2
(resp.

c

4
+

µ

2(α− 1)
<

µ

2
).

Hence one can choose some positive exponents ε, γ, γ′, γ′′ such that γ′ ≥ c/2 and

(24) γ >
µ

2(α− 1)
, γ′′ > c (resp. γ′′ > 0) and

c

4
+ γ + γ′′ < γ′ <

µ

2
− ε.

Any submatrix B = [ajkjℓ]1≤k,ℓ≤⌊Nc⌋ can be written B = B̂ + (B − B̂), with B̂ :=
[ajkjℓ1|ajk jℓ

|≤Nγ ]k,ℓ. We know (see e.g. (21)) that independently of the choice of the jk’s

‖B − B̂‖ ≤ max
1≤i≤N

∑

j s.t. |aij |>Nγ

|aij|.

Hence by Claim 4.1, the condition γ > µ
2(α−1)

of Equation (24) ensures us that for a

certain η > 0, with probability tending to one, independently of the choice of the jk’s
‖B − B̂‖ ≤ N

µ
2
−η. Hence one can focus on B̂.

Let us now apply Corollary 2.2 and Remark 2.4. We get that for any choice of j1, . . . , j⌊Nc⌋,
up to a polynomial factor in the RHT,

P(‖B̂‖ ≥ N
µ
2
−ε) ≤ N−(µ

2
−ε−γ′)2⌊Nγ′′ ⌋.
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But there are at most NNc

(resp. N) ways to choose the indices j1, . . . , j⌊Nc⌋ of the rows
of the submatrix B (resp. of the successively extracted submatrix B). Hence the proba-

bility that ‖B̂‖ ≥ N
µ
2
−ε for at least one of these choices is ≤ N−(µ

2
−ε−γ′)2⌊Nγ′′ ⌋+Nc

(resp.

≤ N−(µ
2
−ε−γ′)2⌊Nγ′′ ⌋+1). Since by (24), γ′′ > c (resp. γ′′ > 0) and µ

2
− ε − γ′ > 0, the

conclusion follows. �

5. Appendix

5.1. Eigenvalues and eigenvectors under perturbation. In this section, we state a
result about eigenvectors and eigenvalues of perturbed Hermitian matrices. The part about
eigenvalues can be found in the literature (see the books by Bhatia [3, 4]), but we did not
find the part about the eigenvectors in the literature.

Proposition 5.1. Let H be a Hermitian matrix and v be a unit vector such that for a
certain λ ∈ R,

Hv = λv + εw,

with w a unit vector such that w ⊥ v and ε > 0.

a) Then H has an eigenvalue λε in the ball B̄(λ, ε).

b) Suppose moreover that H has only one eigenvalue (counted with multiplicity) in
B̄(λ, ε) and that all other eigenvalues are at distance at least d > ε of λ. Then for
vε a unit eigenvector associated to λε, we have

‖vε − Pv(vε)‖ ≤ 2ε

d− ε
,

where Pv denotes the orthogonal projection onto Span(v).

Proof. Part b) is a simple consequence of perturbation theory (see e.g. Lemma A.2 in [19]).
Let vε be a normalizes eigenvector associated to λε. We decompose vε = 〈vε,v〉v+ r with
r ⊥ v. Then Hvε = 〈vε,v〉(λv + εw) +Hr. From this we deduce that

(λ−H)r = 〈vε,v〉εw+ (λ− λε)vε.

This yields the resut, by considering the norm of (λ−H) restricted to the subspace v⊥. �

5.2. Largest eigenvalues vs largest entries of matrices. In this section, we present
a synthetic version of some ideas first appeared in Soshnikov’s paper [28]. We also extend
these ideas to the eigenvectors level. Theorem 5.3 below gives a sufficient condition for
a large deterministic Hermitian matrix to have its kth largest eigenvalue approximately
equal to its kth largest entry in absolute value for all fixed k. Note that this is not what
happens usually: in some way the large entries need to overwhelm the other entries.
We also give sufficient condition so that the corresponding eigenvector is approximately
equal to the eigenvector of the symmetric matrix formed by forcing all but this kth largest
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entry to be 0. The sufficient condition is, roughly speaking, that the largest entries and
their spacings have an order cn ≫ 1, are sufficiently well spread out in the matrix and that,
up to the removing of these largest entries, the sum of the terms of each row of the matrix
have order ≪ cn. In Corollary 5.4, we give the random matrix version of this theorem and
in Corollary 5.5, we explain how one is allowed to first remove a part of the matrix which
does not affect the largest entries.

For each n, let Hn be an n× n deterministic Hermitian matrix with entries hij. Let us
denote by λ1 ≥ λ2 ≥ · · · the eigenvalues of Hn (they depend implicitly on n) and let us
choose some unit associated eigenvectors

v1,v2, . . .

Let us also introduce a set of pairs of indices (i1 ≤ j1), (i2 ≤ j2), . . . such that for all k, |hikjk|
is the kth largest entry, in absolute value, of Hn. Let θk ∈ R such that hikjk = |hikjk |e2iθk
The eigenvectors v1,v2, . . . are chosen such that for each k, e−iθk〈vk, eik〉 ≥ 0. We make
the following hypotheses.

Hypothesis 5.2. (a) There is a sequence cn −→ +∞ such that for any fixed k,

(a.i) cn+k ∼ cn,

(a.ii) 0 < lim inf
|hikjk

|
cn

≤ lim sup
|hikjk

|
cn

< ∞ and lim inf
|hikjk

|−|hik+1jk+1
|

cn
> 0

(b) There exists three exponents κ, τ, ν ∈ (0, 1) such that for n large enough,

(b.i) no row of Hn has two entries larger, in absolute value, than cκn,

(b.ii) no diagonal entry of Hn is larger, in absolute value, than cτn,

(b.iii) for each i ∈ {1, . . . , n},
∑

j ; |hij |<cκn

|hij | ≤ cνn.

Theorem 5.3. Under Hypothesis 5.2, as n → ∞, for any k ≥ 1 fixed,

λk

|hikjk |
−→ 1 and vk −

eiθkeik + e−iθkejk√
2

−→ 0 (for the ℓ2-norm).

Before proving the theorem, let us state its two “random versions”.

Corollary 5.4. Suppose now that the matrix Hn is random, that the sequence bn is deter-
ministic and satisfies Hypothesis (a.i), replace Hypothesis (a.ii) by

(25) lim
ε→0

lim sup
n→∞

P(
|hikjk |
cn

< ε) + P(
|hikjk |
cn

>
1

ε
) + P(

|hikjk | − |hik+1jk+1
|

cn
< ε) = 0
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and suppose that Hypothesis (b) holds with probability tending to one. Then the conclusions
of the theorem remain true for the convergence in probability.

Proof. Recall that a sequence of real random variables converges in probability to a deter-
ministic limit if and only if from each of its subsequences, one can extract a subsequence
converging almost surely. Hence it suffices to notice that the deterministic theorem also
holds (obviously) if one replaces the sequence Hn of n × n matrices, by a sequence Hϕ(n)

of ϕ(n)× ϕ(n) matrices with ϕ(n) → +∞. �

By Proposition 5.1, one directly deduces the following corollary.

Corollary 5.5. Suppose that one can write Hn = Ĥn+(Hn−Ĥn), where Hn−Ĥn satisfies
the hypotheses of Corollary 5.4 and that for a certain ρ < 1,

(26)
‖Ĥn‖
cρn

converges in probability to zero.

Then the conclusions of Theorem 5.3 for Hn remain true for the convergence in probability.

Proof of Theorem 5.3. We suppress the dependence on n to simplify notation.

Fact 1: We have ‖H‖ℓ∞→ℓ∞ = |hi1j1|(1+o(1)) (and as a consequence, λ1 ≤ |hi1j1 |(1+o(1))).

Indeed, ‖H‖ℓ∞→ℓ∞ = maxi
∑

j |hij| ≥ |hi1j1 |, thus to prove Fact 1, it suffices to notice
that for n large enough, for all i,

∑

j

|hij| ≤
∑

j ; |hij |<cκn

|hij|+max
j

|hij| ≤ cνn +max
j

|hij| ≤ cνn
︸︷︷︸

≪|hi1j1
| by (a.ii).

+|hi1j1 |.

Fact 2: For any fixed k ≥ 1, λk ≤ |hikjk|(1 + o(1)).

Indeed, the hypotheses ensure that for n large enough, the numbers i1, . . . , ik are pairwise
distinct, so that the largest entry, in absolute value, of the (n−k+1)×(n−k+1) matrixH(k),
deduced from H by removing rows and columns with indices i1, . . . , ik−1, is |hikjk |. This
matrix (more specifically : this sequence of matrices, because n is an implicit parameter

here) also satisfies the previous hypotheses (for the sequence c
(k)
n := cn+k−1). Hence by the

previous fact, λ1(H
(k)) ≤ |hikjk |(1 + o(1)). But by Weyl’s interlacing inequalities, we have

λk(H) ≤ λ1(H
(k)). It allows to conclude.

Fact 3: For any fixed k ≥ 1, for v =
eiθkeik+e−iθkejk√

2
, we have

Hv = |hikjk|v + r, with ‖r‖ = o(cn).

Indeed, for r := Hv− |hikjk |v, it is easy to see that

‖r‖ ≤ 1√
2



|hikik |+ |hjkjk |+
∑

i/∈{ik ,jk}
(|hiki|+ |hijk |)



 .
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We have ‖r‖ = o(cn) because by Hypothesis (b), |hikik |+ |hjkjk | ≤ 2cκn and
∑

i/∈{ik,jk}
(|hiki|+ |hijk|) ≤ 2cνn.

Let us now conclude the proof of the theorem. Since |hikjk | has order cn, Fact 3 and
Part a) of Proposition 5.1 imply that for any fixed k ≥ 1, H has an eigenvalue equal
to |hikjk |(1 + o(1)). Hence by Fact 2 and Hypothesis (a.ii), λk = |hikjk |(1 + o(1)). By
Hypothesis (a.ii) again, it follows that |λk − λk+1| has order cn and so one can apply Part
b) of Proposition 5.1 to deduce from fact 3 that

∥
∥
∥
∥
vk −

eiθkeik + e−iθkejk√
2

∥
∥
∥
∥
−→ 0.

�

5.3. Sums of truncated heavy-tailed random variables. In this section, we give
exponential estimates on the concentration of sums of truncated heavy-tailed variables. In
the paper, these estimates are needed for example to give upper bounds on the spectral
radius of matrices via the maximum of the sums of the entries along the rows.

Let us consider some i.i.d. variables Yi ≥ 0 such that for a certain α > 0,

(27) P(Y1 > y)
sl.∼ y−α as y → ∞.

Let us also fix a sequence dn
sl.∼ nµ for a fixed µ > 0.

Proposition 5.6. a) For any sequence βn
sl.∼ nb with 0 ≤ b ≤ µ/α and any ε > 0, we

have w.e.h.p.
dn∑

j=1

Yj1Yj≤βn
≤ nµ+b(1−α)++ε.

b) If α ≥ 1, for any sequences αn
sl.∼ na, βn

sl.∼ nb with 0 ≤ a < b ≤ µ/α and any ε > 0,
we have w.e.h.p.

dn∑

j=1

Yj1αn<Yj≤βn
≤ nµ−a(α−1)+ε.

c) For any sequences αn
sl.∼ n

µ
α
−η, βn

sl.∼ n
µ
α
+η′, with η, η′ ≥ 0 and any ε > αη + η′, we

have w.e.h.p.
dn∑

j=1

Yj1αn<Yj≤βn
≤ n

µ
α
+ε.
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d) For any sequences αn
sl.∼ n

µ
α
+η with η > 0, βn

sl.∼ nβ, with β > 0 and any γ > β, we
have w.e.h.p.

dn∑

j=1

Yj1αn<Yj≤βn
≤ nγ .

Before proving the proposition, we shall first state the following concentration result for
sums of Bernoulli variables, which is a direct consequence of Bennett’s inequality [8, p.
11].

Lemma 5.7. For each n ≥ 1, let X1, . . . , Xm be some independent Bernoulli variables with
paramater p (m, the Xi’s and p depending on the parameter n). Suppose that mp ≥ Cnθ

for some constants C, θ > 0. Then for any fixed η > 0, we have w.e.h.p.
∣
∣
∣
∣
∣

1

m

m∑

i=1

Xi − p

∣
∣
∣
∣
∣
≤ ηp.

Proof of Proposition 5.6. a) First, one gets rid of the j’s such that Yj ≤ 1 because their
sum is ≤ dn. Then, set

Sn :=

dn∑

j=1

Yj11<Yj≤βn

and kε := ⌊b/ε⌋. We have θ := µ−αkεε
2

> 0 and for n large enough, βn ≤ n(kε+1)ε, so

Sn ≤
kε∑

k=0

dn∑

j=1

Yj1nkε<Yj≤n(k+1)ε ≤
kε∑

k=0

dn∑

j=1

1nkε<Yj≤n(k+1)ε

︸ ︷︷ ︸

:=Z
(n)
k

n(k+1)ε.

For each k, Z
(n)
k is a sum of dn

sl.∼ nµ independent Bernoulli variables with parameter

pk(n)
sl.∼ n−αkε. We have dnpk(n)

sl.∼ nµ−αkε hence for n large enough, dnpk(n) ≥ nθ (where
θ is defined above). As a consequence, by Lemma 5.7, w.e.h.p., for each k,

Z
(n)
k ≤ 2dnpk(n).

This implies that

Sn ≤
kε∑

k=0

2dnpk(n)n
(k+1)ε ≤ nµ+b(1−α)++ε.

b) Let Sn be the considered sum. The proof works in the same way as the one of a),

introducing kε := ⌊(b− a)/ε⌋, θ := µ−α(a+kεε)
2

> 0 and writing

Sn ≤
kε∑

k=0

dn∑

j=1

1αnnkε<Yj≤αnn(k+1)εαnn
(k+1)ε.
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c) This is a direct application of Lemma 5.7, since the considered sum is ≤ βn× the sum

of dN Bernoulli variables with parameter
sl.∼ n−µ+αη.

d) Note that if the considered sum is > nγ, then there are at least nγ/βn non zero terms
in the sum. By the union bound, this happens with probability at most

d⌈n
γ/βn⌉

n × P(Y1 > αn)
⌈nγ/βn⌉

(indeed, there are at most d
⌈nγ/βn⌉
n subsets of cardinality ⌈nγ/βn⌉ in {1, . . . , dn}). Using

(27), one can easily check that this probability is exponentially small. �
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MAP 5, UMR CNRS 8145 - Université Paris Descartes, 45 rue des Saints-Pères 75270

Paris cedex 6, France.

E-mail address : florent.benaych-georges@parisdescartes.fr
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