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SPECTRAL STATISTICS FOR WEAKLY CORRELATED

RANDOM POTENTIALS

FRÉDÉRIC KLOPP

Abstract. We study localization and derive stochastic estimates (in
particular, Wegner and Minami estimates) for the eigenvalues of weakly
correlated random discrete Schrödinger operators in the localized phase.
We apply these results to obtain spectral statistics for general discrete
alloy type models where the single site perturbation is neither of finite
rank nor of fixed sign. In particular, for the models under study, the
random potential exhibits correlations at any range.

Résumé. On étudie la localisation et on obtient des estimées proba-
bilistes (en particulier des estimées de Wegner et de Minami) pour les
valeurs propres d’opérateurs de Schrödinger aléatoires discrets faible-
ment corrélés. Les résultats obtenus sont ensuite appliqués pour étudier
les statistiques spectrales de modèles généraux de type alliage pour
lesquels le potentiel de simple site n’est ni de signe constant ni de support
compact. En particulier, pour les modèles étudiés, le potentiel aléatoire
est corrélé à toutes les échelles.

1. Introduction: a model with long range correlations

Consider a single site potential u : Z
d → R. Assume that

(S): u ∈ ℓ1(Zd);

(H): the continuous function θ 7→
∑

n∈Zd

une
inθ does not vanish on R

d.

Let ω = (ωn)n∈Zd be real valued bounded i.i.d. random variables.
Define the random ergodic Schrödinger operator Hω as

(1.1) Hω = −∆+ λ
∑

n∈Zd

ωnτnu

where

• τnu is the potential u shifted to site n i.e. (τnu)k = u(k − n)
• the coupling constant λ is positive.

Define µ to be the common distribution of (ωn)n∈Zd and let S be the con-
centration function of µ, that is, S(s) = sup

a∈R
µ([a, a+ s]) for s ≥ 0.

Let us now assume that

(R): S is Lipschitz continuous at 0 i.e. there exists C > 0 such that
S(s) ≤ Cs for s ≥ 0.
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For Λ ⊂ Z
d a finite cube and J ⊂ R a measurable set, we define P

(Λ)
ω (J) to

be the spectral projector of Hω(Λ) that is Hω restricted to Λ (with periodic
boundary conditions) onto the energy interval J

P (Λ)
ω (J) = 1J(Hω(Λ)).

Define N the integrated density of states of Hω as

(1.2) N(E) = lim
|Λ|→+∞

1

|Λ|
trP (Λ)

ω ((−∞, E])

where tr denotes the trace.
Almost surely, the limit (1.2) exists for all E real (see e.g. [12, 9]); it defines
the distribution function of some probability measure, say, dN(E), the sup-
port of which is the almost sure spectrum of Hω (see e.g. [12, 9]). Let Σ
denote the almost sure spectrum of Hω.
We first prove

Theorem 1.1. Under the assumptions (S), (H) and (R), for Hω, one has

(1) the integrated density of states N is uniformly Lipschitz continuous;
N is almost everywhere differentiable

(2) Hω satisfies a Wegner and a Minami estimate, that is, there ex-
ists Cλ > 0 such that, for any bounded interval I and k, a positive
integer, we have

E

[

tr (P (Λ)
ω (I)) ·

(

tr (P (Λ)
ω (I)− 1

)

· · ·
(

tr (P (Λ)
ω (I)− (k − 1)

)]

≤ (Cλ |I| |Λ|)
k ;

(3) for λ sufficiently large, the whole spectrum of Hω is localized i.e.
there exists η such that, for any L ≥ 1, if Λ = ΛL is the cube of
center 0 and side-length L, one has, for any L ≥ 1 and any p > d,
there is q = qp,d so that, for any L large enough, the following holds
with probability at least 1−L−p: for any eigenvector ϕω,Λ,j of Hω(Λ),
there exists a center of localization xω,Λ,j in Λ, so that for any x ∈ Λ,
one has

‖ϕω,Λ,j‖x ≤ Lqe−η|x−xω,Λ,j |.

As we shall see below, these conclusion holds for more general models of
random Schrödinger operators with weakly dependent randomness (see The-
orems 2.1, 2.2 and 2.3 below).

For L ∈ N, let Λ = ΛL = [−L,L]d ∩ Z
d ⊂ Z

d be a large box; recall that
Hω(Λ) is the operator Hω restricted to Λ with periodic boundary conditions.
Let |Λ| be the volume of Λ i.e. |Λ| = (2L+ 1)d.

Hω(Λ) is an |Λ|×|Λ| real symmetric matrix. By point (2) of Theorem 1.1,
we know that the eigenvalues of Hω(Λ) are almost surely simple. Let us de-
note them ordered increasingly by E1(ω,Λ) < E2(ω,Λ) < · · · < E|Λ|(ω,Λ).

Let E0 be an energy in Σ such that N is differentiable at E0. Let n(E0)
denote the derivative of N at the energy E0. The local level statistics near
E0 is the point process defined by

(1.3) Ξ(ξ,E0, ω,Λ) =

|Λ|
∑

j=1

δξj(E0,ω,Λ)(ξ)
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where

(1.4) ξj(E0, ω,Λ) = |Λ|n(E0) (Ej(ω,Λ)− E0), 1 ≤ j ≤ |Λ|.

We prove

Theorem 1.2. In addition to (S), (H) and (R), assume that

(D): for some η > d−
1

2
,

lim sup
|n|→+∞

|n|α |u(n)| < +∞.

Then, for λ sufficiently large, for E0, an energy in Σ such that n(E0) exist
and be positive, when |Λ| → +∞, the point process Ξ(E0, ω,Λ) converges
weakly to a Poisson process on R with intensity 1. That is, for p > 0 arbi-
trary, for arbitrary non empty open two by two disjoint intervals I1, . . . , Ip
and arbitrary integers k1, · · · , kp, one has

(1.5) lim
|Λ|→+∞

P























ω;

#{j; ξj(E0, ω,Λ) ∈ I1} = k1

...
...

#{j; ξj(E0, ω,Λ) ∈ Ip} = kp























=
|I1|

k1

k1!
e−|I1| · · ·

|Ip|
kp

kp!
e−|Ip|.

When the single site potential u is supported in a single point, this result was
first obtained [11]. This result is typical of the localized phase of random
operators; a general analysis of the spectral statistics for the eigenvalues
was developed in [6] (see also [7]). There, it was shown that, in the localized
regime, under the additional “independence at a distance” (IAD) assump-
tion, if the random model satisfies a Wegner and a Minami estimate (see
below for more details), then the convergence to Poisson for the local sta-
tistics holds.
The (IAD) assumption requires that there exists some fixed positive dis-
tance, say, D such that, for any Λ and Λ′ at least at a distance D apart
from each other, the random operators Hω(Λ) and Hω(Λ

′) are independent.
For a general u chosen as above, this assumption is not fulfilled. There are
long range correlations. We will show that they do not suffice to induce
correlations between the eigenvalues asymptotically.

Remark 1.1. Note that if u is not too “lacunary” assumption (S) actually
implies that |u(n)| . |n|−d, that is, in particular that assumption (D) holds.
From the analysis done in [6], it is quite clear that, for the model (1.1),
if |u(n)| = o(|n|−2d+1−ε) for some ε > 0, then, the correlation are much
smaller than the typical spacing between the eigenvalues; thus, they should
not play a role in the statistics.
As the proof of Theorem 1.2 shows (see, in particular, the proof of Lemma 3.4),
condition (D) can be relaxed to

lim sup
|n|→+∞

|n|d−1/2 log |n| |u(n)| < η

for sufficiently small η.
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Following the proof of Theorem 1.2 and that of [6, Theorem 1.13], one proves

Theorem 1.3. Under the assumptions of Theorem 1.2, for 1 ≤ j ≤ |Λ|,
let xj(E0, ω,Λ) be a localization center associated to the eigenvalue Ej(ω,Λ)
(see Theorem 1.1). Then, the joint (eigenvalue - localization center) local
point process defined by

Ξ2
Λ(ξ, x;E0,Λ) =

N
∑

j=1

δξj(E0,ω,Λ)(ξ)⊗ δxj(E0ω,Λ)/L(x)

converges weakly to a Poisson point process on R×[−1/2, 1/2]d with intensity
1.

In [6], many other spectral statistics are studied; using the ideas developed
there and in the present work, they can also be studied for the model (1.1).

To close this introduction, we note that, in [13], Theorem 1.2 is proved forHω

under more restrictive assumptions: u is assumed to be of compact support
and the common density of the random variables (ωn)n∈Zd is supposed to
be sufficiently regular. In particular, under these assumptions, the operator
Hω satisfies the independence at a distance assumption.

2. Weakly correlated random potentials

On ℓ2(Zd), consider the discrete Anderson model

(2.1) Hω̃ = −∆+ λVω̃ where Vω̃ = ((ω̃nδnm))(n,m)∈Zd×Zd

and δnm is the Kronecker symbol and λ is positive coupling constant.
Assume that the random variables (ω̃n)n∈Zd are non trivial, real valued and
bounded. They are not assumed to be independent or identically distributed.

Let Λ ⊂ Z
d be a finite cube and J ⊂ R a measurable set, we define P

(Λ)
ω̃ (J)

to be the spectral projector of Hω̃(Λ), that is, Hω̃ restricted to Λ (with
periodic boundary conditions) onto the energy interval J

P
(Λ)
ω̃ (J) = 1J(Hω̃(Λ)).

For the operator Hω̃, we will now state a number of results on

• eigenvalue decorrelation estimates,
• localization,
• local representations of the eigenvalues of Hω̃(Λ) in some energy
interval.

In the case of independent random variables, these results are the basic
building blocks of the analysis of the spectral statistics performed in [6]. We
shall then show that these results can be applied to the model (1.1) and
analyze the spectral statistics of this model to prove Theorem 1.2.

2.1. Basic estimates on eigenvalues - decorrelation estimates. We
first need some estimates on the occurrence of eigenvalues in given intervals
as well as on their correlations. These give descriptions of the eigenvalues
seen as random variables that have proved crucial in the study of spectral
statistics. In these estimates, we actually do not need the random variables
(ω̃n)n∈Zd to be identically distributed.

Define µ̃m to be the distribution of ω̃m conditioned on (ω̃n)n 6=m and let S̃m
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be the concentration function of µ̃m, that is, S̃m(s) = sup
a∈R

µ̃m([a, a+s]). For

Λ ⊂ Z
d, define

S̃Λ := sup
m∈Λ

ess sup
(ω̃n)n6=m

S̃m

We prove

Theorem 2.1. There exists C > 0 such that

• for any bounded interval I, we have

(2.2) E

[

tr (P
(Λ)
ω̃ (I))

]

≤ CS̃Λ(|I|)|Λ|;

• for any two bounded intervals I1 ⊂ I2, we have

(2.3) E

[

tr (P
(Λ)
ω̃ (I1))

(

tr (P
(Λ)
ω̃ (I2)− 1

)]

≤ C2S̃Λ(|I1|)S̃Λ(|I2|)|Λ|
2;

• specializing to the case I1 = I2 = I, (2.3) reads

(2.4) E

[

tr (P
(Λ)
ω̃ (I))

(

tr (P
(Λ)
ω̃ (I)− 1

)]

≤ C2
(

S̃Λ(|I|)|Λ|
)2

;

• for any k ≥ 1, and arbitrary intervals I1 ⊂ I2 ⊂ · · · ⊂ Ik, one has

(2.5) E

[

tr (P
(Λ)
ω̃ (I1))

(

tr (P
(Λ)
ω̃ (I2)− 1

)

· · ·
(

tr (P
(Λ)
ω̃ (Ik)− (k − 1)

)]

≤ Ck|Λ|k
k
∏

j=1

S̃Λ(|Ij |);

• specializing to the case I1 = · · · = Ik = I, (2.5) reads

(2.6) E

[

tr (P
(Λ)
ω̃ (I))

(

tr (P
(Λ)
ω̃ (I)− 1

)

· · ·
(

tr (P
(Λ)
ω̃ (I)− (k − 1)

)]

≤ Ck
(

S̃Λ(|I|)|Λ|
)k

.

Remark 2.1. In Theorem 2.1, as the proof shows, the results stay valid if

the spectral projector P
(Λ)
ω̃ (I) is replaced by the spectral projector on I for

Hω̃ restricted to Λ with different boundary conditions.

Estimate (2.2) is the so called “Wegner estimate”; it was first obtained
in [15] when the random variables (ωn)n∈Zd are independent and identically
distributed. We refer the reader to [14] for more details on Wegner estimates
for various models. Estimate (2.5) is the so called “Minami estimate”; it was
first obtained in [11] when (ω̃n)n are independent and identically distributed
(see also [8, 2]). Later, estimates (2.4) – (2.6) were proved for independent
random variables in [3]. The method developed in [3] can be transposed
verbatim to the present case as the proof below shows.

Proof of Theorem 2.1. The proof essentially consists in repeating verbatim
the proof of [3, Theorem 2.1] replacing expectations by conditional expec-
tations. We give some details for the reader’s convenience.
We first recall the following well-known spectral averaging lemma (in a form
specialized to our setting)
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Lemma 2.1. Let H0 be a self-adjoint operator of ℓ2(Zd) and define Ht =
H0 + tπ0 where t ∈ R and π0 = ((δn0δ0m))(n,m)∈Zd×Zd is the orthogonal

projector on the unit vector δ0 = (δn0)n∈Zd .
Let 1I(Ht) be the spectral projector of Ht associated to the energy interval
I.
Let µ be an arbitrary, non trivial, compactly supported probability measure
on R.
Then, for any bounded interval I, one has

∫

R

〈δ0,1I(Ht)δ0〉dµ(t) ≤ 8Sµ(|I|).

A proof of this result can be found e.g. in [4] or in the appendix of [3].
This immediately yields (2.2). Indeed, defining the vector δn = (δnm)m∈Zd

for n ∈ Z
d, one writes

(2.7) E

[

tr (P
(Λ)
ω̃ (I))

]

=
∑

n∈Λ

E [〈δn,1I(Hω̃(Λ))δn〉] .

Now, the operator Hω̃(Λ) may be written as Hω̃(Λ) = Hn
ω̃(Λ)+ ω̃nπn where

πn is the orthogonal projector on δn. To evaluate the expectation in (2.7),
in the nth term, we first compute the expectation with respect to ω̃n condi-
tioned on (ω̃m)m6=n and, by Lemma 2.1, we get

Eω̃n [〈δn,1I(Hω̃(Λ))δn〉 | (ω̃m)m6=n] ≤ 8S̃n(|I|).

Plugging this into (2.7) and using the definition of S̃Λ immediately yields (2.2).

Let us now turn to the proof of (2.3); we won’t give a detailed proof of
inequality (2.5) as it is very similar to that of (2.3); we refer to [3] for
details.
We recall [3, Lemma 4.1] specialized to our setting.

Lemma 2.2 ([3]). Assume we are in the setting of Lemma 2.1. Assume
moreover that tr (1I(H0)) < +∞ for any I ⊂ R.
Then, for arbitrary a < b real and 0 ≤ s ≤ t, we have

tr (1(a,b](Hs)) ≤ 1 + tr (1(a,b](Ht)).

To prove (2.3), we follow the proof of [3, Theorem 2.1]. LetM = supn ess sup ω̃n

and m = infn ess inf ω̃n. Pick τn ≥ M . Then, by Lemma 2.2, one computes

tr (P
(Λ)
ω̃ (I1))

(

tr (P
(Λ)
ω̃ (I2)− 1

)

=
∑

n∈Λ

〈δn, P
(Λ)
ω̃ (I1)δn〉

(

tr (P
(Λ)
ω̃ (I2)− 1

)

≤
∑

n∈Λ

〈δn, P
(Λ)
ω̃ (I1)δn〉tr

(

P
(Λ)
((ω̃m)m6=n,τn)

(I2)
)

.

Thus, taking the expectation with respect to ω̃n conditioned on (ω̃m)m6=n,
using the spectral averaging lemma, Lemma 2.1, we obtain

(2.8) E

(

tr (P
(Λ)
ω̃ (I1))

(

tr (P
(Λ)
ω̃ (I2)− 1

)

|(ω̃m)m6=n

)

≤ 8S̃Λ(|I1|)
∑

n∈Λ

tr
(

P
(Λ)
((ω̃m)m6=n,τn)

(I2)
)

.
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for arbitrary (τn)n∈Λ such that τn ≥ M . Thus, we can set τn = τ̃n +M −m
where τ̃n is the random variable ω̃n conditioned on (ω̃m)m6=n.
We then take the expectation with respect to ω̃ on both side in (2.8) to
obtain

E

(

tr (P
(Λ)
ω̃ (I1))

(

tr (P
(Λ)
ω̃ (I2)− 1

))

≤ 8S̃Λ(|I1|)

·
∑

n∈Λ

E

(

tr
(

P
(Λ)
((ω̃m)m6=n,ω̃n+M−m)

(I2)
))

≤ CS̃Λ(|I1|)
∑

n∈Λ

S̃Λ(|I2|)|Λ|

where in the last step we have used estimate (2.2) (for a different set of
random variables).
Thus, we obtain

E

(

tr (P
(Λ)
ω̃ (I1))

(

tr (P
(Λ)
ω̃ (I2)− 1

))

≤ CS̃Λ(|I1|)S̃Λ(|I2|)|Λ|
2

that is, (2.3).
This completes the proof of Theorem 2.1. More details can be found in [3].

�

2.2. Localization. The second ingredient needed in our analysis is local-
ization. Using the notations above, let us assume that

(R̃): There exists C > 0 such that, for s ≥ 0, one has

sup
Λ⊂Zd

S̃Λ(s) ≤ Cs.

This in particular implies that, for any m, µ̃m, the distribution of ω̃m con-
ditioned on (ω̃n)n 6=m admits a density bounded by C.
Thus, we can apply the results of [1], in particular [1, criterion (1.12)] to
obtain

Theorem 2.2. Assume (R̃) holds. For λ sufficiently large, there exists
η = ηλ such that, for any L ≥ 1, if Λ = ΛL is the cube of center 0 and
side-length L, one has, for any L ≥ 1

(2.9) sup
y∈Λ

E











∑

x∈Λ

eη|x−y| sup
supp f⊂I
|f |≤1

‖χxf(Hω̃,Λ)χy‖2











< ∞.

Note that assumption (R̃) guarantees that, for any n ∈ Z
d, the distribution

of ω̃n conditioned on (ω̃m)m6=n admits a density that is bounded by a con-
stant that is independent of (ω̃m)m6=n and n.
While in [1] the proofs are given in the case of independent random vari-
ables, in the beginning of [1, section 1.1], it is noted that, in the case of
dependent random variables, regularity of the conditional distributions (in

particular that implied by assumption (R̃)) is sufficient to perform the same
analysis.
As in [6, Theorem 6.1], we then obtain that, one has



8 FRÉDÉRIC KLOPP

Theorem 2.3. Assume (R̃) holds. For λ sufficiently large, there exists
η = ηλ such that, for any L ≥ 1, if Λ = ΛL is the cube of center 0 and side-
length L, one has, for any L ≥ 1, for all p > d, there is q = qp,d so that, for
any L large enough, the following holds with probability at least 1−L−p: for
any eigenvector ϕω̃,Λ,j of Hω̃(Λ), there exists a center of localization xω̃,Λ,j
in Λ such that, for any x ∈ Λ, one has

(2.10) ‖ϕω̃,Λ,j‖x ≤ Lqe−η|x−xω̃,Λ,j |;

moreover, two localization centers are at most at a distance Cp logL away
for each other (the positive constant Cp depends on p only).

Note that in the derivation of (2.10) from (2.9) in [6, the proof of Theorem
6.1] the assumption (IAD) was not used. Thus, this proof can be repeated
verbatim here to derive Theorem 2.3.

2.3. A representation theorem for the eigenvalues. We are now in a
position to prove a representation theorem for the eigenvalues of the random
operator; it is the analogue of the representation theorem [6, Theorem 1.1].
To this effect, though it is not strictly necessary, it will be convenient to
use the density of states of the model Hω̃. Therefore, it is convenient to
assume now that the process (ω̃n)n∈Zd is Z

d-ergodic (see e.g. [9]). For the
model (1.1), this assumption is clearly satisfied.
Define N the integrated density of states of Hω̃ as

N(E) = lim
|Λ|→+∞

1

|Λ|
trP

(Λ)
ω̃ ((−∞, E])

where tr denotes the trace. The existence of the above limit is a consequence
of the ergodicity of the process (ω̃n)n∈Zd (see e.g. [9]).
Almost surely, the integrated density of states exists for all E real (see
e.g. [12, 9]); it defines the distribution function of some probability measure,
say, dN(E), the support of which is the almost sure spectrum of Hω̃ (see
e.g. [12, 9]). Let Σ denote the almost sure spectrum of Hω̃. To start, pick ρ̃
such that

(2.11) 0 ≤ ρ̃ <
1

1 + d
.

Pick E0 and IΛ centered at E0 such that N(IΛ) ≍ |Λ|−α for α ∈ (αd,ρ̃, 1)
where αd,ρ̃ is defined as

(2.12) αd,ρ̃ := (1 + ρ̃)
d+ 1

d+ 2
.

Theorem 2.4. Pick an energy E0 such that N is differentiable at E0 and

such that
dN

dE
(E0) = n(E0) > 0. Pick IΛ centered at E0 such that N(IΛ) ≍

|Λ|−α. There exists β > 0 and β′ ∈ (0, β) small so that 1+β < 2α
1+ρ̃ and, for

ℓ ≍ Lβ and ℓ′ ≍ Lβ′
, there exists a decomposition of Λ into disjoint cubes of

the form Λℓ(γj) := γj + [0, ℓ]d satisfying:

• ∪jΛℓ(γj) ⊂ Λ,
• dist (Λℓ(γj),Λℓ(γk)) ≥ ℓ′ if j 6= k,
• dist (Λℓ(γj), ∂Λ) ≥ ℓ′

• |Λ \ ∪jΛℓ(γj)| . |Λ|ℓ′/ℓ,
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and such that, for L sufficiently large, there exists a set of configurations ZΛ

s.t.:

• P(ZΛ) ≥ 1− |Λ|−(α−αd,ρ̃),
• for ω̃ ∈ ZΛ, each centers of localization associated to Hω̃(Λ) belong
to some Λℓ(γj) and each box Λℓ(γj) satisfies:
(1) the Hamiltonian Hω̃,Λℓ(γj) has at most one eigenvalue in IΛ,

say, Ej(ω̃,Λℓ(γj));
(2) Λℓ(γj) contains at most one center of localization, say xkj (ω̃,Λ),

of an eigenvalue of Hω̃(Λ) in IΛ, say Ekj (ω̃,Λ);
(3) Λℓ(γj) contains a center xkj(ω̃,Λ) if and only if σ(Hω̃,Λℓ(γj )) ∩

IΛ 6= ∅; in which case, one has

(2.13) |Ekj (ω̃,Λ)− Ej(ω̃,Λℓ(γj))| ≤ e−ηℓ′/2

and dist(xkj (ω̃,Λ),Λ \ Λℓ(γj)) ≥ ℓ′.

where η is given by Theorem 2.3.

In particular, if ω̃ ∈ ZΛ, all the eigenvalues of Hω̃(Λ) are described by (2.13).

The proof of this result is a verbatim repetition the proof of [6, Theorem 1.1]
verbatim. The independence at a distance is not used; only the localization
and the Wegner and Minami estimates are used.
Note that now the “local” Hamiltonians (Hω̃,Λℓ(γj))j are not necessarily
stochastically independent.
In our application of Theorem 2.4 to the model (1.1), the choice we will
make for the parameters α, β′, β and ρ̃ will be quite different from the one
made in [6]. While in [6] the authors wanted to maximize the admissible
size f |IΛ (i.e. minimize α), here, our primary concern will be to control the
non independence of the “local” Hamiltonians (Hω̃,Λℓ(γj))j . To control their

correlations, we will pick β′ close to 1. Thus, α and β will also have to be
close to 1 and ρ̃ will be close to 0.

2.4. The local distribution of the eigenvalues. The final ingredient
needed for the analysis of the spectral statistics is a precise description of
the distribution of the spectrum of the “local” Hamiltonians (Hω̃,Λℓ(γj))j
constructed in Theorem 2.4 within IΛ.
Pick ℓ large and 1 ≪ ℓ′ ≪ ℓ. Consider a cube Λ of side-length ℓ i.e. Λ = Λℓ

and an interval IΛ = [aΛ, bΛ] ⊂ I (i.e. IΛ is contained in the localization
region). Consider the following random variables:

• X = X(Λ, IΛ) = X(Λ, IΛ, ℓ
′) is the Bernoulli random variable

X = 1Hω̃(Λ) has exactly one eigenvalue in IΛ with localization center in Λℓ−ℓ′
;

• Ẽ = Ẽ(Λ, IΛ) is the eigenvalue of Hω̃(Λ) in IΛ conditioned on X = 1;

• ξ̃ = ξ̃(Λ, IΛ) =
Ẽ(Λ, IΛ)− aΛ

bΛ − aΛ
.

Clearly ξ̃ is valued in [0, 1]; let Ξ̃ be its distribution function.
We now describe the distribution of these random variables as |Λ| → +∞
and |IΛ| → 0. One proves
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Lemma 2.3 ([6]). Assume λ is sufficiently large and pick η as in Theo-
rem 2.3. One has

(2.14) |P(X = 1)−N(IΛ)|Λ|| . (|Λ||IΛ|)
1+ρ +N(IΛ)|Λ|ℓ

′ℓ−1 + |Λ|e−ηℓ′/2

where N(E) denotes the integrated density of states of Hω̃.
One has, for all x, y ∈ [0, 1],

(2.15)
∣

∣

∣(Ξ̃(x)− Ξ̃(y))P(X = 1)
∣

∣

∣ . |x− y||IΛ||Λ|.

Moreover, setting N(x, y,Λ) := [N(aΛ + x|IΛ|)−N(aΛ + y|IΛ|)]|Λ|, one has

(2.16)
∣

∣

∣(Ξ̃(x)− Ξ̃(y))P(X = 1)−N(x, y,Λ)
∣

∣

∣

. (|Λ||IΛ|)
1+ρ + |N(x, y,Λ)| ℓ′ℓ−1 + |Λ|e−ηℓ′/2.

The proof of this result in [6, Lemma 2.2] relies solely on the localization es-
timates obtained in Theorem 2.3, the Wegner estimate (2.2) and the Minami
estimate (2.4). Thus, it can be repeated verbatim in the present setting for
the model Hω̃.

3. The long range correlation model (1.1) seen as weakly

dependent model of the type (2.1)

We shall now show that the long range correlation model (1.1) satisfies
the assumptions of Theorems 2.1, 2.2, 2.3 and 2.4 and Lemma 2.3. The only
non trivial assumption to verify is (R̃).

3.1. A linear change of random variables. Consider the Banach space
ℓ∞(Zd) (endowed with its natural norm). Consider a bounded linear map-
ping M : ℓ∞(Zd) → ℓ∞(Zd) that admits a bounded inverse. Consider now
ω = (ωn)n∈Zd independent random variables that are all bounded the same
constant. Define the random variables

(3.1) ω̃ = (ω̃n)n∈Zd = M(ωn)n∈Zd = Mω.

Fix n0 and m0 in Z
d arbitrary and write

(3.2)

(

ω̃m0

ω̃m0

)

=

(

a B
A C

)(

ωn0

ωn0

)

where ω̃m0 = (ω̃m)m6=m0
and ωm0 = (ωm)m6=m0

. So, we consider M as a

map from ℓ2(Zd) = Cδn0
⊕ ℓ2(Zd \ {n0}) to ℓ2(Zd) = Cδm0

⊕ ℓ2(Zd \ {m0}).
Assume that

(I): a 6= 0 and C is one-to-one.

Let Sm be the concentration function of the random variable ωm and S̃m

be the concentration function of the random variable ω̃m conditioned on
(ω̃n)n 6=m. Then, one has

Lemma 3.1. Under assumption (I), there exists κ > 0 such that, for x ≥ 0

and for any bounded sequence (ω̃n)n 6=m, one has S̃m0
(x) = Sn0

(κx).
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Proof. As M is invertible with bounded inverse, one can write

M−1 =

(

ã B̃

Ã C̃

)

considering M−1 as a map from ℓ2(Zd) = Cδm0
⊕ ℓ2(Zd \ {m0}) to ℓ2(Zd) =

Cδn0
⊕ ℓ2(Zd \ {n0}). We, thus, obtain that

(3.3)

(

ã B̃

Ã C̃

)(

a B
A C

)

=

(

1 0
0 Id

)

=

(

a B
A C

)(

ã B̃

Ã C̃

)

.

Solving (3.2) in ω̃m0 and ωn0
, we obtain ω̃m0

= aωn0
+ Bωn0 and ω̃m0 −

ωn0
A = Cωn0 . Thus, by the first equality in (3.3), we have

(3.4) C̃ω̃m0 − ωn0
C̃A = ωn0 − (Bωn0)Ã.

Applying B to this, we get

(3.5) (1−BÃ)Bωn0 = BC̃ω̃m0 − ωn0
BC̃A

We claim that, as C is one-to-one, one has BÃ 6= 1. Indeed, if BÃ = 1, then
Ã 6= 0 and, by the first equality in (3.3), kerC =span Ã. This contradicts
our assumption on C.
Hence, from (3.4), (3.5) and (3.3), we obtain

ω̃m0
=

a

1−BÃ
ωn0

−D ω̃m0

where D is a bounded linear form on ℓ∞(Zd \ {m0}).

This immediately yields Lemma 3.1 if one sets κ =

∣

∣

∣

∣

∣

1−BÃ

a

∣

∣

∣

∣

∣

. �

Keeping the notations of the proof of Lemma 3.1, we easily checks that the
assumption (I) is equivalent to the assumption

(I’): a · ã 6= 0.

One can apply this to convolutions i.e. assume that M is a convolution,
that is, it is given by a matrix M = ((M̂m−n))(m,n)∈Zd×Zd (where M̂n ∈ R).
Assume that

(H1)
∑

n∈Zd

|M̂n| < +∞,

(H2) the function θ 7→ M(θ) =
∑

n∈Zd

M̂ne
inθ does not vanish on R

d.

Consider now (ωn)n∈Zd independent random variables that are all bounded
by the same constant and define the random variables (ω̃n)n∈Zd by (3.1).
Then, as a consequence of Lemma 3.1, we prove

Theorem 3.1. Assume (H1) and (H2). There exists κ > 0 and k ∈ Z
d such

that, for n ∈ Z
d and x ≥ 0, for any (ω̃m)m6n, one has S̃n(x) = Sn+k(κx).

Proof. The fact that, under assumptions (H1) and (H2), M is invertible on
ℓ∞(Zd) with bounded inverse is an immediate consequence of Wiener’s 1/f -
theorem (see e.g. [5, Chapter 2.4]).
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Let (M̂−1
n )n∈Zd denote the Fourier coefficients of the function θ 7→ M−1(θ).

As M ·M−1 = 1, one has
∑

n∈Zd

M̂nM̂
−1
−n = 1. Thus, we pick k such that

(3.6) M̂−1
−kM̂k 6= 0.

Fix n0 ∈ Z
d and write the decomposition (3.2) for m0 = n0 + k and n0.

Then, the coefficient a, the vector A, the linear form B and the operator C
in (3.2) are given by

a = M̂k, A = (M̂k−n)n 6=0, B = (M̂k+m)m6=0 and C = ((M̂k+m−n))m6=0
n 6=0

.

Note that a, A, B and C do not depend on n0.
In the same way, using the notations of the proof of Lemma 3.1, one com-
putes

ã = M̂−1
−k , Ã = (M̂−1

−k−n)n 6=0, B̃ = (M̂−1
−k+m)m6=0 and C̃ = ((M̂−1

−k+m−n))m6=0
n 6=0

.

Note that ã, Ã, B̃ and C̃ do not depend on n0.
By construction (see (3.6)), we have a · ã 6= 0; hence, assumption (I’), thus,

assumption (I) is satisfied and the statement of Theorem 3.1 for S̃n0
and

Sn0+k follows immediately from Lemma 3.1. Recalling that a, A, B, C, ã, Ã,

B̃ and C̃ do not depend on n0, we obtain the full statement of Theorem 3.1.
�

To show that the long range correlation model (1.1) satisfies the assump-

tion (R̃) (thus, that the conclusions of Theorems 2.1, 2.2, 2.3 and 2.4 and
Lemma 2.3 hold), we first note that Hω defined in (1.1) can be rewritten
as Hω̃ defined in (2.1) where ω̃ = Mω and M is the convolution associated

to the multiplier θ 7→ M(θ) =
∑

n∈Zd

une
inθ. Thus, the summability of u and

the assumption (H) guarantee that assumptions (H1) and (H2) are satisfied.

That for the model (1.1) assumption (R̃) is satisfied is then an immediate
consequence of Theorem 3.1 and assumption (R).

3.2. The proof of Theorem 1.2. We are now in a position to prove The-
orem 1.2. To simplify notations, we assume that the random variables (ωn)n
are centered; this comes up to shifting the operator Hω by a constant.

Recall that ξj is defined in (1.4). For p > 0 arbitrary, for arbitrary, non
empty, open, two by two disjoint intervals I1, . . . , Ip and arbitrary integers
k1, · · · , kp, consider the event

ΩΛ
I1,k1;I2,k2;··· ;Ip,kp :=

p
⋂

l=1

{ω; #{j; ξj(ω̃,Λ) ∈ Il} = kl} .

In view of Theorem 2.4, as P(ZΛ) →
|Λ|→+∞

1, Theorem 1.2 will be proved if

we prove that

(3.7) lim
|Λ|→+∞

P

(

ΩΛ
I1,k1;I2,k2;··· ;Ip,kp ∩ ZΛ

)

=
|I1|

k1

k1!
e−|I1| · · ·

|Ip|
kp

kp!
e−|Ip|.

Pick ε small, in particular, smaller than
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• the length of the smallest of the intervals I1, . . . , Ip,
• the smallest distance between two distinct intervals among I1, . . . , Ip.

Define

I+,ε
j = Ij ∪ [−ε/2, ε/2] and I−,ε

j = Ij ∩ (cIj + [−ε/2, ε/2]).

Clearly, I−,ε
j ⊂ Ij ⊂ I+,ε

j .
For a cube Λ and an interval I, define the Bernoulli random variable XΛℓ,ℓ′,I

by

XΛℓ,ℓ′,I = 1Hω(Λℓ) has an e.v. in E0+|Λ|n(E0)]−1 I with localization center in Λℓ−ℓ′
.

Here, the length scales ℓ and ℓ′ are taken as in Theorem 2.4 that is ℓ ≍ Lβ

and ℓ′ ≍ Lβ′
. Notice that, using the notations of section 2.4, one has

XΛℓ,ℓ′,I = X(Λℓ, N
−1[N(E0) + |Λ|−1J ], ℓ′) where, as it is assumed that N is

differentiable at E0 and that n(E0) = N ′(E0) > 0, one has |J∆I| = o(1) as
Λ → +∞; here, J∆I denotes the symmetric difference between I and J i.e.
J∆I = (I \ J) ∪ (J \ I).
Consider now the decomposition in cubes (Λℓ(γj))1≤j≤J given by Theo-

rem 2.4; then, J = Ld(1−β)(1 + o(1)). The choice of the parameters ρ̃, α, β
and β′ is the following. The parameter β′ will be the determining parameter
and will be chosen close to 1 (see Lemma 3.4 below); thus, the parameters
α and β will also be close to 1 and ρ̃ will be chosen close to 0; indeed, in
Theorem 2.4, one requires

0 < β′ < β, 0 < α < 1, 0 < ρ̃ and 1 + β <
2α

1 + ρ̃
.

By Theorem 2.4, in particular (2.13), and the Wegner estimate (2.2), we
know that, for L sufficiently large, one has

p
⋂

l=1







ω;

J
∑

j=1

XΛℓ(γj),ℓ′,I
−,ε
l

= kl







⋂

ZΛ ⊂ ΩΛ
I1,k1;I2,k2;··· ;Ip,kp ∩ ZΛ,

ΩΛ
I1,k1;I2,k2;··· ;Ip,kp ∩ ZΛ ⊂

p
⋂

l=1







ω;
J
∑

j=1

XΛℓ(γj ),ℓ′,I
+,ε
l

= kl







⋂

ZΛ.

Hence, as P(ZΛ) →
|Λ|→+∞

1, it suffices to prove that, for any δ > 0, there

exists ε > 0 small such that

(3.8)

lim inf
|Λ|→+∞

P





p
⋂

l=1







J
∑

j=1

XΛℓ(γj),ℓ′,I
−,ε
l

= kl









 ≥

p
∏

j=1

|Ij |
kj

kj!
e−|Ij | − δ,

lim sup
|Λ|→+∞

P





p
⋂

l=1







J
∑

j=1

XΛℓ(γj),ℓ′,I
+,ε
l

= kl









 ≤

p
∏

j=1

|Ij |
kj

kj!
e−|Ij | + δ.

The main loss compared to the case when the (IAD) assumption holds is
that the random variables (XΛℓ(γj),ℓ′,I

±,ε
l

)j are not independent anymore.

We will show that this dependence can be controlled using assumption (D)
and the decorrelation estimates obtained in Theorem 2.1.
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Now, for ℓ′′ ≤ ℓ′ ≤ ℓ and γ ∈ Z
d, define the auxiliary operator H̃ω(Λℓ(γ), ℓ

′′)
to be the operator

H̃ω,ℓ′′ := −∆+ λ
∑

n∈Zd

ω̃nτn(uℓ′′) where uℓ′′(m) =

{

u(m) if |m| ≤ ℓ′′,

0 if not

restricted to Λℓ(γ) (with periodic boundary conditions).
We prove

Lemma 3.2. There exists ℓ0 such that if ℓ′′ ≥ ℓ0, then, for λ sufficiently
large, the whole spectrum of H̃ω,ℓ′′ is localized, in particular, the conclusions
of Theorems 2.2 and 2.3 hold for this operator for a value η independent
of ℓ′′. Moreover, the spectral estimates given in Theorem 2.1 also hold for
H̃ω,ℓ′′ with constants independent of ℓ′′.

Proof of Lemma 3.2. Clearly, to prove Lemma 3.2, it suffices to

(1) prove that if u satisfies (S) and (H), there exists ℓ0 such that, for
ℓ′′ ≥ ℓ0, the potential uℓ′′ satisfies (S) and (H) uniformly in ℓ′′,

(2) reapply the arguments explained above for Hω.

Assume that

m := min
θ∈Rd

∣

∣

∣

∣

∣

∣

∑

n∈Zd

une
inθ

∣

∣

∣

∣

∣

∣

> 0.

Thus, by (S), we can pick ℓ0 such that
∑

|n|≥ℓ0

|u(n)| ≤ m/2; then, for ℓ′′ ≥ ℓ0,

we have that

min
θ∈Rd

∣

∣

∣

∣

∣

∣

∑

n∈Zd

uℓ
′′

n einθ

∣

∣

∣

∣

∣

∣

≥ min
θ∈Rd

∣

∣

∣

∣

∣

∣

∑

n∈Zd

une
inθ

∣

∣

∣

∣

∣

∣

−m/2 ≥ m/2.

This completes the proof of Lemma 3.2. �

We also define the Bernoulli random variable XΛℓ,ℓ′,ℓ′′,I by

XΛℓ,ℓ′,ℓ′′,I = 1H̃ω,ℓ′′(Λℓ) has an e.v. in E0+|Λ|n(E0)]−1 I with localization center in Λℓ−ℓ′
.

Then, clearly, by Theorem 2.4, one has that

Lemma 3.3. Assume ℓ′′ ≤ ℓ/3. For I a real interval, the random variables
(XΛℓ(γj),ℓ′,ℓ′′,I)1≤j≤J are two by two independent.

We also prove

Lemma 3.4. Assume (D) holds. Recall that η > d − 1/2 and assume that

β′ ∈

(

d

2η − d+ 1
, 1

)

. Set δ := −d+ (2η − d+ 1)β′ > 0.

Then, for any a < b, any ε ∈ (0, (b− a)/2) and any p > 0, for L sufficiently
large, with probability at least 1− L−p, for all 1 ≤ j ≤ J , one has

(3.9) XΛℓ(γj),2ℓ′/3,ℓ′/3,(a+ε,b−ε) ≤ XΛℓ(γj),ℓ′,(a,b) ≤ XΛℓ(γj),4ℓ′/3,ℓ′/3,(a−ε,β+ε).
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Proof of Lemma 3.4. By Hoeffding’s inequality (see e.g. [10]), we know that,
for some C > 0 (depending only on the essential supremum of the random

variables (|ωn|)n), for ℓ
′ = Lβ′

/3, for L sufficiently large, one has

P





∣

∣

∣

∣

∣

∣

∑

|m|≥ℓ′

ωn−mu(m)

∣

∣

∣

∣

∣

∣

≥ εL−d



 ≤ exp











−
εL−d

C
∑

|m|≥ℓ′

|u(m)|2











≤ e−εLδ

(3.10)

where we recall that δ = −d + (2η − d + 1)β′ > 0; here, we have used

assumption (D), the fact that η > d− 1/2 and picked
d

2η − d+ 1
< β′ < 1.

Hence, with a probability at least 1− Lde−εLδ
, we have that

sup
1≤j≤J

sup
m∈Λℓ(γj)

∣

∣

∣

∣

∣

∣





∑

n∈Zd

ωnτnu



 (m)− ω̃m

∣

∣

∣

∣

∣

∣

≤ εL−d.

that is

(3.11) sup
1≤j≤J

∥

∥

∥H̃ω,,ℓ′′(Λℓ(γj))−Hω(Λℓ(γj))
∥

∥

∥ ≤ εL−d.

Next, we prove

Lemma 3.5. Assume that the conclusions of Theorem 2.3 hold for the ran-
dom operator Hω for all L sufficiently large. Fix p > 0 and r > 0. Let q
and η be given by Theorem 2.3.
Then, for L sufficiently large, with probability at least 1 − L−p, for L′ ≤ L
and γ ∈ ΛL such that ΛL′+η−1(q+r+d/2) logL(γ) ⊂ ΛL (q being defined in

Theorem 2.3), if there exists ϕ ∈ ℓ2(ΛL) such that

• suppϕ ⊂ ΛL′(γ),
• ‖ϕ‖ = 1 and ‖(Hω(ΛL)− E)ϕ‖ ≤ εL−d,

then, Hω(ΛL) has an eigenvalue in [E− 2εL−d, E+2εL−d] with localization
center in ΛL′+η−1(q+r+d/2) logL(γ).

Proof of Lemma 3.5. Pick ϕ as in Lemma 3.5. As Hω(ΛL) is self-adjoint
and ‖(Hω(ΛL) − E)ϕ‖ ≤ ε, Hω(ΛL) has an eigenvalue in [E − ε,E + ε].
Expand ϕ in the basis of eigenfunctions of Hω(ΛL): ϕ =

∑

i〈ϕ,ϕi〉ϕi. If the
localization centers of ϕi are outside of ΛL′+η−1(q+r+d/2) logL(γ), as suppϕ ⊂

ΛL′(γ), one has |〈ϕ,ϕi〉| . L−r−d/2. On the other hand,

(3.12) ε2L−2d ≥ ‖(H − E)ϕ‖2 =
∑

i

|〈ϕ,ϕi〉|
2|E − Ei|

2.

Thus, if the conclusion of Lemma 3.5 does not hold, then, as the total
number of eigenvalues is bounded by Ld, we have

1−
∑

|E−Ei|>2εL−d

|〈ϕ,ϕi〉|
2 =

∑

|E−Ei|≤2εL−d

|〈ϕ,ϕi〉|
2 . L−2r,
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thus, by (3.12),

ε2L−2d ≥ ‖(H − E)ϕ‖2 =
∑

i

|〈ϕ,ϕi〉|
2|E − Ei|

2 ≥ 4ε2L−2d
(

1−O(L−2r)
)

.

which is absurd for L sufficiently large.
Lemma 3.5 is proved. �

Now, we can use (3.11) and apply Lemma 3.5 in turn to Hω(Λℓ(γj), ℓ
′) and

to Hω(Λℓ(γj)) to obtain that, for L sufficiently large, with probability at
least 1− L−p (p > 0 fixed arbitrary),

• if Hω(Λℓ(γj)) has an eigenvalue in (a, b) with loc. center in Λℓ−ℓ′(γj)

then Hω,,ℓ′′(Λℓ(γj)) has an eigenvalue in (a − εL−d, b + εL−d) with
loc. center in Λℓ−ℓ′+ℓ′′(γj);

• if Hω,,ℓ′′(Λℓ(γj)) has an eigenvalue in (a, b) with loc. center in

Λℓ−ℓ′(γj) then Hω(Λℓ(γj)) has an eigenvalue in (a− εL−d, b+ εL−d)
with loc. center in Λℓ−ℓ′+ℓ′′(γj).

This, then, implies (3.9) and completes the proof of Lemma 3.4. �

Equipped with Lemma 3.4, in view of (3.8), to prove Theorem 1.2, it suffices
to prove that, for any a > 0 and b > 0, for any δ ∈ (0, 1/3], there exists
ε > 0 small such that
(3.13)

lim inf
|Λ|→+∞

P





p
⋂

l=1







J
∑

j=1

XΛℓ(γj),aℓ′,bℓ′,I
−,ε
l

= kl









 ≥

p
∏

j=1

|Ij|
kj

kj !
e−|Ij | − δ,

lim sup
|Λ|→+∞

P





p
⋂

l=1







J
∑

j=1

XΛℓ(γj),aℓ′,bℓ′,I
+,ε
l

= kl









 ≤

p
∏

j=1

|Ij|
kj

kj !
e−|Ij | + δ.

We will only prove the second inequality, the first one being proved in the
same way.
First, by (2.14) of Lemma 2.3, by Lemma 3.4 and by the definition of (I±,ε

l )l,
for L sufficiently large and our choice of ε, one has

P(XΛℓ(γj),aℓ′,bℓ′,I
±,ε
l

= 1) = (|Il| ± ε)Ld(β−1)(1 + o(1))

= (|Il| ± ε)J−1(1 + o(1)).
(3.14)

Then, we compute

P





p
⋂

l=1







J
∑

j=1

XΛℓ(γj),aℓ′,bℓ′,I
+,ε
l

= kl











=
∑

Kl⊂{1,··· ,Ñ}
#Kl=kl, 1≤l≤p

P

(

p
⋂

l=1

{

ω;
∀j ∈ Kl, XΛℓ(γj),aℓ′,bℓ′,I

+,ε
l

= 1

∀j 6∈ Kl, XΛℓ(γj),aℓ′,bℓ′,I
+,ε
l

= 0

})

.

(3.15)
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For 1 ≤ l ≤ p, pick Kl ⊂ {1, · · · , J} such that (#Kl)1≤l≤p = (kl)1≤l≤p. For

1 ≤ j ≤ J , define κj = #{1 ≤ l ≤ p; γj ∈ Kl} =

p
∑

l=1

1γj∈Kl
. Then, one has

(3.16)
J
∑

j=1

κj =

p
∑

l=1

J
∑

j=1

1γj∈Kl
= k1 + · · ·+ kp.

As ∪lI
+,ε
l ⊂ IC := [−C,C] (for some C > 0), thanks to the decorrelation

estimates (2.6) for Hω,,ℓ′′(Λℓ(γj)) (see Lemma 3.2) and using their stochastic
independence, one has the following a priori bound

P

(

p
⋂

l=1

{

ω;
∀j ∈ Kl, XΛℓ(γj),aℓ′,bℓ′,I

+,ε
l

= 1

∀j 6∈ Kl, XΛℓ(γj),aℓ′,bℓ′,I
+,ε
l

= 0

})

≤
J
∏

j=1

P
{

ω;Hω,,ℓ′′(Λℓ(γj)) has at least κj e.v. in IC
}

≤
J
∏

j=1

(CL−d|Λℓ(γj)|)
κj ≤ CJ−k1−k2−···−kp

(3.17)

as J = Ld|Λℓ(γj)|
−1(1+o(1)) = Ld(1−β)(1+o(1)); here, we have used (3.16).

By (3.15), we have

P





p
⋂

l=1







J
∑

j=1

XΛℓ(γj ),aℓ′,bℓ′,I
+,ε
l

= kl











=
∑

Kl⊂{1,··· ,Ñ}
#Kl=kl, 1≤l≤p
∀l 6=l′, Kl∩Kl′=∅

P

(

p
⋂

l=1

{

ω;
∀j ∈ Kl, XΛℓ(γj),aℓ′,bℓ′,I

+,ε
l

= 1

∀j 6∈ Kl, XΛℓ(γj),aℓ′,bℓ′,I
+,ε
l

= 0

})

+
∑

Kl⊂{1,··· ,Ñ}
#Kl=kl, 1≤l≤p
∃l 6=l′, Kl∩Kl′ 6=∅

P

(

p
⋂

l=1

{

ω;
∀j ∈ Kl, XΛℓ(γj),aℓ′,bℓ′,I

+,ε
l

= 1

∀j 6∈ Kl, XΛℓ(γj),aℓ′,bℓ′,I
+,ε
l

= 0

})

.

(3.18)

One sets and, by Lemmas 2.3 and 3.4, one computes

p+l := P

(

XΛℓ(γj ),aℓ′,bℓ′,I
+,ε
l

= 1
)

= |I+,ε
l |J−1(1 + o(1)).

We also will use [6, Lemma 4.1]

Lemma 3.6. With the choice of (Il)1≤l≤p made above, under the assump-
tions of Theorem 1.2, with our choice of ℓ and ℓ′, for L sufficiently large,
one has

P

(

p
∑

l=1

XΛℓ(γj),aℓ′,bℓ′,I
±,ε
l

= 0

)

= 1− (1− o(1))J−1
p
∑

l=1

|I±,ε
l |.

For 1 ≤ l ≤ p, pick Kl ⊂ {1, · · · , J} such that (#Kl)1≤l≤p = (kl)1≤l≤p and
Kl ∩Kl′ = ∅ if l 6= l′. For such (Kl)1≤l≤p, using the stochastic independence
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of the operators (Hω,,ℓ′′(Λℓ(γj)))1≤j≤J , one computes

P

(

p
⋂

l=1

{

ω;
∀j ∈ Kl, XΛℓ(γj ),aℓ′,bℓ′,I

+,ε
l

= 1

∀j 6∈ Kl, XΛℓ(γj ),aℓ′,bℓ′,I
+,ε
l

= 0

})

= P







p
⋂

l=1











ω;

∀j ∈ Kl, XΛℓ(γj),aℓ′,bℓ′,I
+,ε
l

= 1

∀j 6∈
⋃

l′ 6=l

Kl′ , XΛℓ(γj),aℓ′,bℓ′,I
+,ε
l

= 0

















=
∏

j 6∈∪p
l=1

Kl

P

(

p
∑

l=1

XΛℓ(γj ),aℓ′,bℓ′,I
+,ε
l

= 0

)

·

p
∏

l=1

∏

j∈Kl

P

(

XΛℓ(γj ),aℓ′,bℓ′,I
+,ε
l

= 1
)

=

(

1−

p
∑

l=1

p+l

)J−(k1+···+kp) p
∏

l=1

[

p+l
]kl (1 + o(1))

=

(

p
∏

l=1

e−|I+,ε
l

||I+,ε
l |kl

)

J−k1−···−kp(1 + o(1)).

(3.19)

On the other hand, as k1 + · · · + kp is bounded, when J → +∞, that is,
when |Λ| → +∞, one has

(3.20)
∑

Kl⊂{1,··· ,J}
#Kl=kl, 1≤l≤p

1 =

p
∏

l=1

(

J

kl

)

and
∑

Kl⊂{1,··· ,J}
#Kl=kl, 1≤l≤p
∃l 6=l′, Kl∩Kl′ 6=∅

1 = o

(

p
∏

l=1

(

J

kl

)

)

.

Thus, for L sufficiently large, plugging the a-priori bound (3.17), the bounds (3.20)
and (3.19) into (3.18), we compute

P





p
⋂

l=1







J
∑

j=1

XΛℓ(γj),aℓ′,bℓ′,I
+,ε
l

= kl











=

(

p
∏

l=1

e−|I+,ε
l

||I+,ε
l |kl

)

p
∏

l=1

(

J

kl

)

J−k1−···−kp + o

(

J−k1−k2−···−kp

p
∏

l=1

(

J

kl

)

)

=

p
∏

l=1

e−|I+,ε
l ||I+,ε

l |kl

kl!
+ o(1) =

p
∏

l=1

e−|Il||Il|
kl

kl!
+O(ε).

This proves the second inequality in (3.13), thus, in (3.8). The first one is
proved in the same way. The proof of Theorem 1.2 is complete. �
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[13] Martin Tautenhahn and Ivan Veselić. Minami’s estimate: beyond rank one perturba-
tion and monotonicity. ArXiv http://arxiv.org/abs/1210.3542, 2012.
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