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Simple Patient-Based Transmantle Pressure and
Shear Estimate From Cine Phase-Contrast MRI in

Cerebral Aqueduct
Gérald Bardan*, Franck Plouraboué, Mokhtar Zagzoule, and Olivier Balédent

Abstract—From measurements of the oscillating flux of the cere-
brospinal fluid (CSF) in the aqueduct of Sylvius, we elaboratea
patient-based methodology for transmantle pressure (TRP) and
shear evaluation. High-resolution anatomical magnetic resonance
imaging first permits a precise 3-D anatomical digitalized recon-
struction of the Sylvius’s aqueduct shape. From this, a very fast
approximate numerical flow computation, nevertheless consistent
with analytical predictions, is developed. Our approach includes
the main contributions of inertial effects coming from the pulsatile
flow and curvature effects associated with the aqueduct bending

.

Integrating the pressure along the aqueduct longitudinal center

-

line enables the total dynamic hydraulic admittances of the aque-
duct to be evaluated, which is the pre-eminent contribution to the
CSF pressure difference between the lateral ventricles and the
subarachnoidal spaces also called the TRP. The application of the
method to 20 healthy human patients validates the hypothesis of the
proposed approach and provides a first database for normal aque-
duct CSF flow. Finally, the implications of our results for modeling
and evaluating intracranial cerebral pressure are discussed.

Index Terms—Aqueduct of sylvius, cerebrospinal fluid (CSF),
electric impedance modeling, Fourier decomposition, intracranial
pressure, pulsatile flows, transmantle pressure (TRP).

I. INTRODUCTION

M AGNETIC resonance imaging (MRI) and cine phase-
contrast allow accurate anatomical imaging and specific

valuation of pulsation velocities and fluxes inside brain cavi-
ties and vessels. It is now an invaluable tool for investigations
in physiology and pathology [1]–[3]. Electric models have been
proposed to describe hydraulic couplings between various in-
tracerebral spaces (e.g., subarachnoidal spaces (SAS), ventric-
ular spaces, and intrathecal spaces of the spinal canal) [4]–[8].
Recent contributions also point out that patient-based flux and
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pressure measurements can be found from control volume com-
partmental image analysis and could contribute to a better un-
derstanding of intracranial dynamics and progression to dis-
order [9]. Furthermore, since somein vivo measurements are
possible, it is tempting to use computational fluid dynamics
(CFD) for a deeper understanding of the cerebrospinal fluid
(CSF) flow [10]–[12], and for a better description of the CSF
pressure variations inside the brain as well as a more com-
plete understanding of the hydraulic coupling within the various
intracerebral compartments. However, even though numerical
computations have already been developed for CSF flow inside
the third or fourth ventricles [11], it should be borne in mind that
complete computations of CSF flow fields inside brain cavities
have to face difficult obstacles, if not challenges.

First, the numerical evaluation of temporally oscillating flows
inside very complex cavity shapes is a 4-D problem that needs
massive data storage and heavy and lengthy computations, the
precision of which is difficult to control. It is important to re-
alize that, since the size of the smallest (e.g., intrathecal space
and Sylvius aqueduct) and largest cavities (ventricles) differ
by a large factor and adaptive mesh is necessary. This in-
volves various issues such as mesh generation, regularization,
and refinement, the quality of which necessitates much effort
and case-specific treatments. CSF is mainly produced by the
choroid plexus of the lateral ventricle (LV) and it is mainly
reabsorbed by the Paccioni granulation pathway in the venous
blood through the sagittal Sinus [13], [14]. Under normal cir-
cumstances, CSF oscillates in and out of the ventricular system
with a net outward flowQs equal to the physiological produc-
tion rate of CSF. The aqueduct, a slightly curved pipe with a
variable elliptic section, is the smallest cavity between the LV
and SAS. This is where most of the viscous dissipation, and
thus most of the pressure drop, occurs as illustrated in [12],
Fig. 5]. The pressure in large cavities is found to be spatially
uniform while most variation occurs within the cerebral aque-
duct. Pressure variations inside the third ventricle are typically
smaller than 0.5 Pa [11], while transmantle pressure (TRP) is
close to 4 Pa [12]. The aqueduct influence thus deserves spe-
cial attention, especially in stenotic conditions [5], [15]. In the
field of fluid mechanics, oscillating pulsed flow in curved pipes
has received considerable attention [16]–[18]. It involves three
independent parameters: 1) the ratio between the typical radius
R of the pipe and its radius of curvatureRc , λ = R/Rc ; 2)
the product between viscous diffusion time and the main car-
diac forcing pulsationω describedby theso-called Womersley
numberα2 = ωρR2/µ, whereρ and µ are, respectively, the



Fig. 1. Example of cerebral aqueduct (CA) joining the third (V3) and fourth
(V4) ventricle visualized from a volume rendering in the sagittal plane of the
anatomical MRI image of patientA. LVs can be seen on top.

density and dynamic viscosity of the CSF(very close to wa-
ter), 3) the Reynolds numberRe = ρUa/µ, whereU is the
averaged longitudinal velocity inside the aqueduct anda is
the mean cross-sectional ellipse’s major axis averaged along
the aqueduct centerline, which is approximated by the aver-
age over all major axisai of ellipsesΩi in all sectionsi (see
Fig. 2), i.e.,a = (1/L)

∫ L

0 a(s)ds ≃ (1/n)
∑n

i=1 ai . The aver-
age longitudinal velocityU = Q/πab is defined as the measured
flux (which is constant along the aqueduct) over the average
sectionπab, where, again,b is the average ellipseΩi minor
axis in each sectioni. Usually, two supplementary parameters,
which are a combination of the above, are also considered: the
Dean numberDe = Re ·

√
λ and the reduced Reynolds number

Res = (Re/α)2
λ. Depending on the value of these parameters,

some complex flow patterns and case-specific approximations
can be built [16]–[20]. Since the physiological Womersley num-
berα typically lies between 5 and 30, the flow field variations
inside the cavities are generically localized in the vicinity of the
walls, within so-called Stokes layers. These layers can be either
large or small, so a finer grid discretization is also needed inside
them if velocity is to be evaluated properly. We show below that
the Stokes layers develop around 10% of the radius (mean value
of the Womersley number in Table II).

Finally, from the acquisition point of view, as pointed in [12],
it is difficult to obtain anatomically reliable data for the smallest
cavities (e.g. SAS and intrathecal spaces) and the mechanical
parameters used to describe soft tissue deformations and poroe-
lastic behaviors. For all these reasons, it is interesting to develop
alternative approaches to full CFD, such as [12], for CSF mod-
eling and case-specific analysis. Such alternative approaches are

Fig. 2. Sketch of the cerebral aqueduct centerline description with associated
transverse elliptic sectionΩ(s) having minor axisb(s), major axisa(s), and
ellipse frontier∂Ω(s) at longitudinal curvilinear distances.

not always possible: they depend on the geometry involved and
on the flow conditions.

In this paper, we show that a slightly curved aqueduct of
Sylvius with low reduced Reynolds number is a fair descrip-
tion that leads to a fast estimation of the pressure drop, shear,
and hydraulic admittance. This analysis provides an equiva-
lent frequency-dependent electric impedance description of the
TRP/flux relationship, and is, to our knowledge, the first explicit
evaluation available in a healthy cohort of patients. Section II de-
scribes the four-step method [aqueduct reconstruction (see Sec-
tion II-A), fluid flow (see Section II-B), Fourier decomposition
and hydraulic admittances (see Section II-C), and physiological
validation of the model hypothesis (see Section II-D)] that we
put forward here associated with asymptotic evaluation of the
aqueduct of Sylvius hydraulic admittances. Section III shows
the evaluation of these hydraulic admittances for three out of 20
real patients, resulting from the first Fourier modes decompo-
sition of their cardiac cycle variations. We, finally, discuss the
relevance of the results obtained for the derivating realistic elec-
trical models of complete CSF hydraulic models in Section III.

II. M ETHODS

A. Aqueduct Reconstruction

MRI acquisitions were obtained using the method described
in [1] and [21] with isotropic voxels of∆x = ∆y = ∆z =
0.55 mm. The anatomical orientation of the aqueduct is sagittal
and mostly vertical. Thus, it was possible to obtain a reliable
3-D digitalized reconstruction of it by analyzing each succes-
sive horizontal section (cf., Fig. 2). In each horizontal section,
we extracted the elliptical contour that best fitted the gray-level
anatomical image of the aqueduct (cf., Fig. 3). First, we drew
(dotted line) a contour plot of the gray-scale image with equally



Fig. 3. Gray-level anatomical slice of the aqueduct. Dotted line: gray-level
contour profile of the aqueduct. Continuous line: ellipse extracted from best fit
of the contour line (PatientA).

spaced contour levels in the plot. Then, in the least squares
sense, we plotted (continuous line) the best fit ellipse. For each
ellipse, the center, major radiusa(s), and minor radiusb(s) were
extracted. From the evaluation of the ellipse’s center in each
successive horizontal section, the aqueduct centerline was re-
constructed. Over the human patients examined, we found that,
to a good approximation, this centerline lies within the sagittal
plane. Hence, it was easy to evaluate the main radius of curvature
of the resulting planar centerline curve. Using a quadratic min-
imization among the discrete set ofn points of the centerline, it
was possible to extract the main radius of curvatureRc of the
aqueduct centerline, which quantified its bending in the sagittal
plane as well as the curvilinear lengthL of the centerline. For
some patients, a double bending of the centerline was observed,
with two radii of curvature of opposite sign (cf., Fig. 4). In this
case, each radius of curvatureRc+ (respectively,Rc−) was fitted
using a properly chosen number of pointsn+ (respectively,n−)
among the total number of pointsn = n+ + n−, giving less
than 5% relative difference with the centerline in every case.
The average curvature was thus computed from

Rc =
n+Rc+ + n−Rc−

n
, λ =

a

Rc
(1)

where the influence of curvature on the CSF flow can be
quantified by the dimensionless parameterλ. Here, again,
a is the longitudinally averaged major axis of the elliptical
cross section of the aqueduct over cross-sectional images, i.e.,
a = (1/L)

∫ L

0 a(s)ds ≃ (1/n)
∑n

i=1 ai . Other useful parame-
ters, of interest, for quantitative comparison with previous anal-
yses [19], [20], were also derived from the major and minor radii
a andb, such as the mean eccentricitye and the mean ellipticity
m, defined as

e =

√

1 − b2

a2
, m =

√

a − b

a + b
. (2)

The values observed for parameterm (m ≃ 0.6, as seen in
Fig. 5 and Table II) showed that slightly noncircular mod-
els of the cerebral aqueduct were not relevant, and called for
fully elliptic cross sections geometries. Also, a Fourier mode

Fig. 4. Result of centerline segmentation in the sagittal plane (unit in voxel =
0.55 mm). Radius of curvatureRc fitting in two cases forn+ = n andn− = 0

(left, PatientB) and forn+ = 7n
10 andn− = 3n

10 (right, PatientC).

decomposition of the flow rate during the cardiac cycle, similar
to [22], is proposed in the next sections.

B. Fluid Flow, Pressure, and Shear Evaluation
Within the Aqueducts

In this section, we use an asymptotic approach for flow eval-
uation. This model is derived from an asymptotic approxima-
tion of the Navier–Stokes equations without considering elastic
deformation, consistently with [18]–[20]. It is necessary to con-
sider a dimensionless formulation of the problem, which can
then provide a patient-independent formulation whatever the
particular aqueduct shape or cardiac temporal forcing. Taking∗
for dimensional quantities, let us first discuss a formulation for
curvilinear coordinates,s, associated with the centerline arc
length following [18]. Since the aqueduct is slightly bent,s is
nondimensionalized by the radius of curvatureRc , s∗ = Rc s,
while the radial coordinater∗ = a r is nondimensionalized by
the typical transverse lengtha. The forcing pulsation is used
to define dimensionless timet∗ = t/ω, where the typical lon-
gitudinal velocity provides the scaling for the longitudinal ve-
locity componentu∗ = U u. A viscous pressure is used for the
pressure nondimensionalization since we consider moderate re-
duced Reynolds numbers, as will be seen in Section II-D, so
that p∗ = (µUL/a2)p. The dimensionless flux is defined by
Q∗ = Ua2Q, whereQ∗ is given by MRI acquisitions. Following
previous authors and seeking the leading order, slightly curved,
low Reynolds number flow description, the longitudinal veloc-
ity component forced by a single sinusoidal mode forcing with
associated local longitudinal pressure gradient∂p

∂s (s) satisfies

∇2u − α2 ∂u

∂t
= −∂p

∂s
(3)

where∇2 is the Laplacian operator in the plane locally orthog-
onal to the centerline at curvilinear distances, to be solved with
boundary conditionu = 0 on thefrontier ∂Ω(s) of the local
transverse elliptic sectionΩ(s) having major and minor radii
a(s) andb(s). The local pressure gradient is decomposed into
a stationaryKS (s) and unstationaryKU (s). In subsequent no-
tations, index S (respectively, U) is associated with stationary
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Fig. 5. Reconstructed aqueduct for three healthy patients anonymized as Pa-
tientD, PatientE, and PatientF.

(respectively, unstationary) cases

∂p

∂s
= KS (s) + ℜ

(

KU (s)eit
)

. (4)

1) Stationary forcing:Solving (3) for α = 0 and ∂P
∂s =

KS (s) leads to

uS (x, y, s) = −1

2

a2b2

a2 + b2

(

1 − x2

a2
− y2

b2

)

KS (s) (5)

in the coordinatesx, y locally orthogonal to the centerline arc
lengths, oriented toward the principal axis of the ellipseΩ(s)
(see Fig. 2). The associated longitudinal fluxQS =

∫

Ω uS dS
with infinitesimal elementary surfacedS = dxdy in Ωi reads

QS = −yS (s)KS (s) (6)

where we have introduced the local complex hydraulic admit-
tance of the stationary contributionyS (s) = CS (s) + iScS (s)
which is, in this case, a pure real conductance

yS (s) = CS (s) =
π

4

a3b3

a2 + b2
(7)

since, for nonoscillating flow, the imaginary hydraulic suscep-
tance contribution is zero,ScS (s) = 0. The local pressure gra-
dient KS (s) is adapted so that constant flux is preserved in
each successive sectionQS . By considering the leading order
contribution to the viscous stress tensor of this longitudinally
dominated flow, we also evaluate the shear stressτS . It can be
expressed (see the Appendix) at leading orderO(λ) in the coor-
dinates locally orthogonal to the centerline arc lengths, in the
principal axis coordinates of the ellipseΩ(s), along its frontier
∂Ω(s)

τS = λ
a2b2

a2 + b2

√

x2

a4
+

y2

b4
KS (s) (8)

where indexs refers to stationary flow contribution andt is the
local tangent vector to the centerline at locations. By integrating
around the elliptic contour∂Ω(s), we can see that the simple
result for the leading order total shear at the wallτTS =

∫

∂Ω τS dl
is

τTS(s) = −λπabKS (s). (9)

2) Unstationary forcing:Solving (3) for nonzeroα with
complex velocityuU and forcing∂P

∂s = KU (s)eit is performed
numerically using a finite-element discretization ofΩ(s) with a
classical variational formulation usingP0 elements [23]. From
the numerical evaluation of the complex velocity component
uU , the fluxQU can be computed numerically from a simple
spatial integrationQU =

∫

Ω uU dS. On the other hand, Haslam
and Zamir [24] provide an analytical expression for the flux

QU = −ℜ
(

yU (s)KU (s)eit
)

(10)

which can be expressed using the local complex admittance
yU (s):

yU (s) =
2πi

η

a3b3

a2 + b2

(

1 − 2J1(
√
−iη)√

−iη J0(
√
−iη)

)

(11)

with η = 2 a2 b2

a2 +b2 α2 andJ0 ,J1 the zeroth- and first -order Bessel
functions. Consistently with previous results (11) tends to (7)
asα → 0. The analytical result (11) (derived from [24]) is fully
consistent with finite-element numerical evaluation, as repre-
sented in Fig. 10.



TABLE I
INFLUENCE OF THEFOURIERMODE TRUNCATION ON THERECONSTRUCTED

FLUX (PATIENT D)

n 1 2 3 4 5 6

En 0.31 0.12 0.06 0.05 0.03 0.02

Similar to the stationary case, the oscillating part of the shear
leading order wall shear stress is approximately given by (see
the Appendix)

τU = −λℜ
(∫

Ω

(

KU (s) − iα2uU

)

dS eit

)

(12)

or, using the flux expressions (10) and (11)

τU = −λπabℜ
(

2J1(
√
−iη)√

−iη J0(
√
−iη)

eit

)

KU (s) (13)

which obviously tends to (9) asα → 0 andη → 0.

C. Fourier Decomposition and Hydraulic Admittances

1) Fourier Decomposition of the Flux:The experimental
flux is decomposed into discrete Fourier modes from a signal
having 32 points per cardiac cycle. The zeroth mode corresponds
to the stationary fluxQS . The constant flux amplitude is gener-
ally smaller than the first oscillatory mode by almost three orders
of magnitude. It is thus difficult to obtain a reliable Fourier de-
composition, and this is why a dedicated acquisition sequence
has previously been proposed for its evaluation [10], [25]. From
thefk = 2π

ω k frequency, we compute the sequence of Womers-
ley numbersαk for which the admittanceyk

U (s) is evaluated for
a flux amplitudeQk

U (t). A truncated reconstruction of the vari-
ation of the fluxQn (t) = Σn

0 Qk
U (t) over the complete cardiac

cycle [0, Tc ] taking only the firstn modes has been tested. The
L2 norm errorEn recovered from the truncated evaluation is

En =

√

√

√

√

(

∫ Tc

0 (Qexp − Qn )2dt
∫ Tc

0 (Qexp)2dt

)

.

It is represented in Table I and Fig. 6. This computation shows
that keeping only the first three modes provides a accurate de-
scription to within 10% of the flux temporal variation. The
saturation of the error forn > 3 arises since there is a modest
number of points per cycle (32 here).

2) Hydraulic Admittances and TRP Reconstruction:Equa-
tions (6) and (10) describe a local linear relation between
the flux and the pressure gradient associated with a local
admittance. The local admittance is also the inverse of the
local hydraulic impedancez(s) = y−1 . As for the electrical
description, the integral of relations (6) and (10) along the
curvilinear centerline arc lengths of the aqueduct provides
the total hydraulic admittanceY of the aqueduct relating the
flux QU to the pressure difference∆P . Considering the flux
QU = −yU (s)KU (s)eit = −Q̃U eit with the amplitude

Q̃U = −yU (s)KU (s)

0 0.25 0.5 0.75 1
−1

−0.5

0

0.5

1

1.5
Q

t

Fig. 6. Solid line: MRI nondimensional flux versus times (over a cardiac
cycle). dashed, dotted, and dot-dashed lines: reconstructed flux withn = 1, 2,
and 3, respectively (PatientD).

leads to
∫

Q̃U

yU (s)
ds = −

∫

KU (s)ds = ∆PU (14)

Q̃U is constant along the aqueduct (incompressible Newtonian
fluid) such that

Q̃U = Y ∆PU =
1

∫ L

0 yU (s)−1ds
∆PU (15)

where∆PU is the pressure difference obtained between the two
extremities of the aqueduct of lengthL for a flux amplitudeQ̃U .
A discrete version of (15) over each successive ellipsesΩi has
been implemented with finite-difference integration. This was
done for each modek to evaluate the admittanceY k of each flux
Qk

U . The real and imaginary components ofY k = Ck + iSk
c are

called conductance and susceptance, respectively. The resulting
complex admittance results are discussed in the next section.
We also evaluate the complex impedanceZk = 1

Y k and find
that, for all patients,ℑ(Zk ) > 0. Thus, the electric model of
the aqueduct is a self-inductance withZk = Rk + Lkωk i with
a phase lagφk = tan−1(Lk ω k

Rk ). Using the truncation to the
first three modes, described in the previous section, leads to the
reconstruction of the total pressure drop for the aqueduct

∆P =

(

R0QS +
3

∑

k=1

ℜ(Zk Q̃k
U eiω k t)

)

, (16)

which is the main contribution to the TRP drop, i.e.,∆P ≈TRP,
as will be discussed in Section III. The values ofQS , Q̃k

U , Rk ,
andLk are reported in Table II.

D. Discussion of the Model’s Validity

In this section, we investigate the validity of the creeping flow
regime that has been developed for CSF in the previous sections.
As mentioned in Section I, many detailed studies [16]–[20],
[26] have already investigated moderate Reynolds number flow
in curved pipes. In this context, inertial and curvature effects
are properly described by a single dimensionless Dean number
De = Re ·

√
λ for stationary flows or by a reduced Reynolds

numberRes = (Re/α)2
λ for oscillating flows. The latter pa-

rameterRes is generally small (see Table III) in the normal



TABLE II
TABLE OF NUMERICAL VALUES MEASURED FORTHREEDIFFERENTPATIENTS

PatientD PatientE PatientF
λ 0.18 0.25 0.12
e 0.91 0.92 0.86
m 0.68 0.68 0.59
Re 5.78 21.01 16.60
De 2.49 10.52 5.87
Res 0.043 0.753 0.35
ā mm 4.21 4.45 3.54
L mm 14.22 9.85 9.3
Qmax mm3/s 99 371 254
QS mm3/s 6 5 3

Q̃1

U
mm3/s 84 322 203

Q̃2

U
mm3/s 26 49 58

Q̃3

U
mm3/s 9 56 8

umax mm/s 9.08 21.28 34.24
τusmax 1.22 0.30 0.27
τuumax 3.83 8.02 1.32√

abmin mm 1.71 2.19 1.37
α1 (f1 Hz) 12.00 (1.42) 12.14 (1.30) 9.87 (1.36)
α2 (f2 Hz) 16.97 (2.84) 17.16 (2.60) 13.96 (2.71)
α3 (f3 Hz) 20.78 (4.26) 21.02 (3.90) 17.10 (4.07)
R0 61.1 34.2 37.0
(R1; L1) (77.7; 23.8) (48.1; 19.7) (45.7; 13.6)
(R2; L2) (97.2; 22.5) (63.2; 20.1) (56.7; 13.2)
(R3; L3) (114; 22.8) (72.8; 18.9) (64.6; 12.4)
φ1 69o 73o 68o

∆Pmax Pa 1.76 2.43 2.64

Where units are not stated, the quantity is dimensionless. The resistances Rk

are nondimensionalized by µ L/a4 with k = 0,1,2,3 andtheinductances Lk by µ

L/a4ωk with k = 1, 2, 3, with ωk
= 2πfk.

conditions considered, so that it is reasonable to neglect iner-
tial corrections to the leading order viscous contributions. Most
studies have focused on the occurrence and structure of sec-
ondary transverse counterrotating flows arising from the conju-
gated effects of inertia and curvature. Systematic Dean number
and reduced Reynolds number expansions, respectively, are pro-
posed for those corrections [16]–[20], [26]. Here, we are mainly
interested in the leading order viscous contribution to the flux
for a given longitudinal pressure gradient.

Following previous authors, we looked for the leading order
flow description in the range of the fluid flow parameters eval-
uated by MRI (see, for example, Table II). According to [17]
and [18], small reduced Reynolds numberRes ≈ 1 (see Table III
for the mean value ofRes) allows us to assume that the CSF flow
is well approximated by (3). Moreover, the pressure/flux rela-
tionship in a curved pipe with an elliptical cross section has been
thoughtfully analyzed in [20], where inertial deviations from
the stationary creeping flow regime are systematically provided
for each family of parameterm =

√

(a − b)/(a + b), Reynolds
numberRe, and dimensionless curvatureλ

E = λ
2
(

A(m) + B(m)Re2 + C(m)Re4
)

(17)

where coefficientsA(m), B(m), andC(m) can be extracted
from figures given in [20].E is the dimensionless relative dif-
ference (the relative error) between the creeping flow flux and
the real flux, which includes inertial effects up to third-order cor-
rections that are valid for Reynolds numbers as large as 1000.
This relation provides an explicit quantitative test for the validity
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Fig. 7. Plot ofλ versus the Reynolds numberRe for 0.57 < m < 0.70.
Validity of the low Dean number approximation. Lines correspond toE =
10% error on the TRP and are plotted forA(m) = −0.22, B(m) =
−6.10−5 , C(m) = 2.10−8 (m = 0.54) and for A(m) = 3.12, B(m) =
−2.10−4 , C(m) = 10−9 (m = 0.57). Each cross (+) corresponds to a patient
measurement.

of our approximation, which we have illustrated in Fig. 7. Fur-
thermore, this formula also gives an index for testing how good
the proposed approximation is in certain diseases for which the
Reynolds number might be large, or the aspect ratioλ might not
be small. This can be done using the parametersA(m), B(m),
andC(m) provided in the legend of Fig. 7.

Using E = 0.1 when looking for an approximation to the
flux with an error of< 10%, relation (17) provides a curve in
the (λ, Re) plane for comparison. Most of patients (17 out of
20) had an ellipticitym between 0.57 and 0.70, so we chose the
appropriate value ofm for parametersA(m), B(m), andC(m)
to compute the validity curve represented by the black line in
Fig. 7. All the experimental data points lie below the 10% error
curve, which indicates that our approximation for the linear pres-
sure/flux relationship is accurate to within 10%. Since the mode
truncation described in the previous section leaves out 15% of
the total flow, the linear viscous approximation is more than a
consistent approximation in this context. Thus, the validity of
the approximation used in this paper compares well with the
real physiological condition of the pool of patient considered.

III. RESULTS ANDDISCUSSION

The very slight pressure variations observed in ventricles (lat-
eral, third, and fourth) together with the pressure variations ob-
served inside the cerebral aqueduct in the full CVD simulations
illustrated in [12], Fig. 5] demonstrate the validity of the key
hypothesis of our study: most of the pressure variations between
LVs and spinal subarachnoid spaces arise within the thin passage
of the cerebral aqueduct. Hence, the pressure difference ampli-
tude obtained, of a few pascals, which is compatible with the
TRP obtained in [12], is another confirmation that this hypoth-
esis is relevant (see Fig. 8). Entrance effects discussed in [27]
and numerically observed in [5] are expected to be small when
considering realistic anatomical reconstruction of the cerebral
aqueduct having a gently varying diameter.

As mentioned in [10], the hydrodynamic pressure, which can
be reconstructed by solving CSF equations, is defined up to an
unprescribed constant. In order to discuss our result quantita-
tively, it is interesting to consider how the cerebral aqueduct
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fits into a more global intracranial pressure distribution model.
The electrical model depicted in Fig. 9 is very close to those
proposed in [7] and [28]. This linear model is easy to solve for
the intracranial pressurePICP

PICP =
RPV 3 + RZ1Cω1iP0 + Z1PSAS

R + RZ1Cω1i + Z1
(18)

and thus evaluation of aqueduct impedance parametersZ1 is
useful but not sufficient to determine intracranial pressure. This
conclusion is similar to the one drawn by previous authors [29],
who pointed out that cine phase-contrast MRI combined with
fluid-pressure flow evaluation cannot provide intrinsic pressure
values but necessitates supplementary information such as esti-
mation of compliance and/or monitoring [30].

Nevertheless, a positive correlation between TRP and ICP
increase has been recognized [31], [32], so the evaluation of
TRP is also interesting. As mentioned in Section I, the cerebral
aqueduct is the main contributor to the total resistance between
LVs and SAS. AsR1 ≫ R, using the electrical model of Fig. 9,
a good approximation ofPTRP is

PTRP = PV 3 − PSAS ≈ PV 3 − PICP . (19)

Q̃1

PV 3

R1 L1

PICP

R

PSAS

C

P0

Fig. 9. Electrical model representing CSF flow.

TABLE III
TABLE OF NUMERICAL MEAN VALUES MEASURED FOR20 DIFFERENT

PATIENTS, WITH STANDARD DEVIATION

λ 0.19 ± 0.06
e 0.84 ± 0.14
m 0.59 ± 0.14
Re 29 ± 25
De 14 ± 13
Res 0.49 ± 0.62
ā mm 3.6 ± 0.9
L mm 10.2 ± 2.7
Qmax mm3/s 357 ± 290
QS mm3/s 9.1 ± 13

Q̃1

U
mm3/s 270 ± 247

Q̃2

U
mm3/s 67 ± 46

Q̃3

U
mm3/s 25 ± 20

umax mm/s 32 ± 25
τusmax 1.7 ± 2.2
τuumax 5 ± 6.4√

abmin mm 1.59 ± 0.3
α1 (f1 Hz) 9.5 ± 2.2 (1.2 ± 0.2)
α2 (f2 Hz) 13.7 ± 3.1 (2.5 ± 0.45)
α3 (f3 Hz) 17 ± 3.8 (4 ± 0.8)
R0 32 ± 20 (2.2 ± 1.55 106 Pa.s.m3)
R1 41.3 ± 27.1 (2.7 ± 1.7 106 Pa.s.m3)
L1 14.9 ± 10.5 (7.64 ± 4 105 Pa.s2.m3)
R2 51.9 ± 34.3 (3.5 ± 2.1 106 Pa.s.m3)
L2 14.4 ± 10.1 (3.5 ± 1.7 105 Pa.s2.m3)
R3 60.3 ± 40 (4 ± 2.4 106 Pa.s.m3)
L3 14.1 ± 10 (2.3 ± 1.3 105 Pa.s2.m3)
φ1 63o ± 7o

∆Pmax Pa 4.316 ± 3.6
∆PS Pa 0.039 ± 0.029

Hence, from an evaluation of the pressure drop between the
third and fourth ventriclesPV3 − PICP , this simple electrical
model leads to the conclusion that it is possible to obtain a
good approximation for the TRP dropPTRP = PV3 − PSAS ,
and noninvasive estimation of this pressure from cine phase-
contrast MRI is thus possible.

We found a TRP magnitude of4.3 ± 3.6 Pa and a mean
TRP of 0.039 ± 0.029 Pa (respectively,∆Pmax and ∆PS in
Table III) which can be compared with typical literature values.
In vivostudies on dogs with kaolin-induced hydrocephalus [33]
report a mean TRP of 34 Pa. In the cat kaolin model, Shapiro
et al.[34] found zero mean TRP. More recently, Pennet al.[35]
have found that the mean TRP in dogs was not greater than



the resolution of their sensors (66 Pa), and consequently, they
concluded that the magnitude of such gradients could not be
accurately determined in their study. A clinical study has been
performed by Stephensenet al. [36] on ten human patients hav-
ing communicating or noncommunicating hydrocephalus. The
first microsensor was placed in the ventricle system, inside a
ventricular catheter, and the second one in the subarachnoid
space. When using a temporal average, they found a mean TRP
of 1.3 ± 32 Pa, while the deviation from this temporal TRP
pressure data (which should be related to the amplitude of TRP
pressure oscillation) could be evaluated at65 ± 22 Pa from their
Fig. 3. The mean TRP value reported in [36] was compared to
our stationary TRP∆PS using a Mann–Whitney test. We found
no significant difference with a p-value of 0.9 (nonparamet-
ric tests are insensitive to inhomogeneity of variance that may
result from the use of different measurement methods). Never-
theless, when comparing the ten temporal standard deviations
reported in [36] with∆Pmax of our 20 healthy patients, we
found them significantly different, with a p-value smaller than
10−3 , which is consistent with the large departure from the sta-
tistical mean (65 Pa, as against, our 4.3 Pa). This difference
between normal and pathological situations, and average value
obtained for the oscillating part of the TRP, are also consistent
with other estimates obtained from cine MRI measurements,
3-D reconstruction of brain geometry, and direct simulation
by Penn [37]. They report a TRP magnitude below 10 Pa for
healthy volunteers and close to 50 Pa in patients with hydro-
cephalus. The ICP in normal subjects is of the order of 500 Pa
and the TRP smaller than 10 Pa. In abnormal conditions, the
ICP can become as high as 3000 Pa, whereas the TRP does
not exceed 30 Pa [10]. Our findings are thus consistent with all
these considerations related to previous measurements. Further-
more, it is important to stress that previous direct experimental
measurements of the TRP were obtained by evaluating pres-
sure differences that were 10–100 times smaller than the actual
value measured. As the resolution of the sensors was hardly a
hundred times smaller than the actual measurement, the relia-
bility of the direct measurements can be called into question.
One major contribution of our TRP evaluation, apart from its
painless and noninvasive nature, lies in the fact that it is much
more precise since the limitation is related to the evaluated flux
and, to a lesser extent, the spatial resolution of the reconstructed
aqueduct.

Another consequence of our findings is to show that the sta-
tionary Hagen–Poiseuille approximation for the aqueduct flow
used in [8] and [38] has to be corrected. Our results show that
the leading order contribution comes from the first oscillatory
modek = 1, for which the Womersley number is nonzero, and
thus, the resulting admittance is complex (see Fig. 10). Ana-
lytical result (11) (derived from [24]) is fully consistent with
finite-element numerical evaluation, as represented in Fig. 10,
where the two curves cannot be distinguished. Furthermore, our
evaluation shows that the resistance partRk does not predomi-
nate over the inductance partLk . Our results (see Tables II and
III) show an average phase lagφ1 of 63 ± 7◦ between pressure
and flow, which is consistent with the58◦ found in [12] us-
ing 3-D numerical simulations. We also note the influence ofα
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Fig. 10. Hydraulic admittanceY = C + iSc versus Womersley numberα.
The hydraulic conductanceC(α) is shown as a solid line, and the susceptance
Sc (α) as a dashed line. The vertical lines indicate the Womersley numbersαk

for k = 1, k = 2, andk = 3.

on the electric impedance. Whenα1 is three times larger, the
electric resistance and inductance are five and ten times larger,
respectively. The mean values ofR1 andL1 over the 20 patients
are given in Table III.

Finally, it is also interesting to note that our findings might
contribute to the understanding of pathological evolutions as-
sociated with aqueduct stenosis, which is a common cause of
hydrocephalus. Such stenosis increases wall shear stresses and
can be easily detected by our method. Increased wall shear
stresses occur with increased pressure drop and may result in
ongoing damage to the aqueduct where the area of the sections
is minimal, as mentioned in [15]. This effect is also observed in
healthy patients in Fig. 11(a)–(c) where the maximum for the
total wall shear stress of nonstationary flow componentsτU is
shown to be maximal when the local sectionπab is minimal.
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IV. CONCLUSION

Our contribution has successfully tested the validity of a low
curvature/low reduced Reynolds number approximation for CSF
flow in real patients. Using this approximation, we propose a
simple and very fast method for evaluating the aqueduct ad-
mittance from MRI anatomical images and cine acquisitions.
This method can also evaluate the shear stress within the cere-
bral aqueduct, which is greatest in its smallest portion. The pro-
posed approach provides the total pressure drop in the aqueduct,
which permits a simple, noninvasive patient-based, approximate
evaluation of the TRP.

Combined with other invasive (e.g., intrathecal pressure mon-
itoring) or noninvasive (compliance estimation [9], [29], [39])
measurements, our method could be useful for estimating in-
tracranial pressure or evaluating a patient’s disorder.

APPENDIX

This section provides a detailed derivation of the wall shear
stress relations (8), (9), (12), and (13). Let us call the total veloc-
ity field U. Due to the low-curvature geometry of the aqueduct
and the incompressibility condition,U can be decomposed into
a leading order term in the local longitudinal direction,ut, plus
a small correctionλv for the in-plane contribution in the elliptic
sectionΩ(s), wherev ∼ O(1), with λ ≪ 1 andv.t = 0, so that

U = ut + λv.

From the chosen nondimensionalization, the in-plane coordi-
nates(x, y) in sectionΩ(s) are scaled bya and the longitudinal
coordinatez by Rc , so that the local dimensionless gradient
operator reads∇ = (∇2 , λ∂z ), where∇2 = (∂x , ∂y ). The di-
mensionless stress tensorσ then reads

σ = −p +
λ

2

(

∇⊗ U + ∇T ⊗ U
)

where we have consistently used the viscous pressure
(µUL/a2) to define the dimensionless stressσ, such that
σ∗ = (µUL/a2)σ. By considering only the deviatoric part of
the stressσd , (since the viscous stress is the only contribution
to the shear here)

σd = λ∇2 ⊗ ut + O(λ2) = λ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0
∂u

∂x

0 0
∂u

∂y

∂u

∂x

∂u

∂y
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ O(λ2)

we then compute the local shear stressτ (a scalar), at each point
of the wall∂Ω where the normal in-plane vector is denotedn

τ = t · σd · n = λ∇2u · n + O(λ2).

In the following, we neglectO(λ2) terms and no longer mention
them. In the stationary case, as given in (5),u can be computed
analytically, and we have

τS =
λ

4

a2b2

a2 + b2
KS (s)) t ·
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and we thus obtain result (8)

τS = λ
a2b2

a2 + b2

√

x2

a4
+

y2

b4
KS (s).

Furthermore, we can estimate the total wall shear stress by
integrating along the contour∂Ω

τT = λ

(∫

∂Ω

∇2u · n dl

)



which, from the Green formula also reads

τT = λ

∫

Ω

∇2u dS (20)

where we have used the same notation∇2 = ∂2
x + ∂2

y as in (3).
If we use (3) in the stationary case, this leads to relation (9)

τTS = λ

(

−KS

∫

Ω

dS

)

= −λπabKS .

Alternatively, using (3) in the unstationary case leads to the
complex version of (12)

τTU = λ

(

−iα2Q̃U − πabKU

)

eit .
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