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Simple Patient-Based Transmantle Pressure and
Shear Estimate From Cine Phase-Contrast MRI In
Cerebral Agueduct

Gérald Bardan*, Franck PlourabeuMokhtar Zagzoule, and Olivier Badent

*G. Bardan is with the Institute of Fluid Mechanics of Toulouse, UMR, Uni-pressure measurements can be found from control volume com-
bt 258 . 2agsou e i e e o it idnancsP eIl image analysio and could contribute to @ betterur-
of 'I"oulouse, UMR, Un.ivergity of Toulouse, 5502 Toulouse, France (e-mailderStandlng of mtracranlgl dynarTncs_ and progression to dis-
fplourab@imft.fr; zagzoule@cict.fr). order [9]. Furthermore, since sonite vivo measurements are

Q. Balkdent is with‘the_C_entre Hospitalier Uniyersitaire Amiens, 80054p035ib|e, it is tempting to use Computationa| fluid dynamics
Amiens, France (e-mail: Olivier Baledent@chu-amiens.r). (CFD) for a deeper understanding of the cerebrospinal fluid

(CSF) flow [10]-[12], and for a better description of the CSF
pressure variations inside the brain as well as a more com-
plete understanding of the hydraulic coupling within the various
intracerebral compartments. However, even though numerical
computations have already been developed for CSF flow inside
the third or fourth ventricles [11], it should be borne in mind that
complete computations of CSF flow fields inside brain cavities
have to face difficult obstacles, if not challenges.

_— First, the numerical evaluation of temporally oscillating flows
Abstract—From measurements of the oscillating flux of the cas: . . . .

brospinal fluid (CSF) in the aqueduct of Sylvius, we elaboratex |n5|dg very complex cavity shapes is a 4-D problem tha.t needs
patient-based methodology for transmantle pressure (TRP) and Massive data storage and heavy and lengthy computations, the
shear evaluation. High-resolution anatomical magnetic resonance precision of which is difficult to control. It is important to re-
imaging first permits a precise 3-D anatomical digitalized recon-  ajize that, since the size of the smallest (e.g., intrathecal space
struction of the Sylvius's aqueduct shape. From this, a very fast 5.4 gyvius aqueduct) and largest cavities (ventricles) differ
approximate numerical flow computation, nevertheless consistent . . L
with analytical predictions, is developed. Our approach includes PY @ large factor and adaptive mesh is necessary. This in-
the main contributions of inertial effects coming from the pulsatile ~ Volves various issues such as mesh generation, regularization,
flow and curvature effects associated with the aqueduct bending and refinement, the quality of which necessitates much effort
Integrating the pressure along the aqueduct longitudinal center  gnd case-specific treatments. CSF is mainly produced by the
line enables the total dynamic hydraulic admittances of the aque- choroid plexus of the lateral ventricle (LV) and it is mainly

duct to be evaluated, which is the pre-eminent contribution to the .. . .
CSF pressure difference between the lateral ventricles and the F€a@bsorbed by the Paccioni granulation pathway in the venous

subarachnoidal spaces also called the TRP. The application of the blood through the sagittal Sinus [13], [14]. Under normal cir-
method to 20 healthy human patients validates the hypothesis ofthe cumstances, CSF oscillates in and out of the ventricular system

proposed approach and provides a first database for normal aque- ith a net outward flowQ, equal to the physiological produc-
duct CSFflqw. l_:lnally, th_e implications ofourresultfs for modeling tion rate of CSF. The aqueduct, a slightly curved pipe with a
and evaluating intracranial cerebral pressure are discussed. . e . . .
variable elliptic section, is the smallest cavity between the LV
Index Terms—Aqueduct of sylvius, cerebrospinal fluid (CSF), and SAS. This is where most of the viscous dissipation, and
electric impedance modeling, Fourier decomposition, intracranial thus most of the pressure drop, occurs as illustrated in [12],
pressure, pulsatile flows, transmantle pressure (TRP). . . . .

Fig. 5]. The pressure in large cavities is found to be spatially
uniform while most variation occurs within the cerebral aque-
duct. Pressure variations inside the third ventricle are typically
smaller than 0.5 Pa [11], while transmantle pressure (TRP) is

AGNETIC resonance imaging (MRI) and cine phaseclose to 4 Pa [12]. The aqueduct influence thus deserves spe-
M contrast allow accurate anatomical imaging and specifial attention, especially in stenotic conditions [5], [15]. In the
valuation of pulsation velocities and fluxes inside brain cavfield of fluid mechanics, oscillating pulsed flow in curved pipes
ties and vessels. It is now an invaluable tool for investigatiort¥as received considerable attention [16]-[18]. It involves three
in physiology and pathology [1]-[3]. Electric models have beeiidependent parameters: 1) the ratio between the typical radius
proposed to describe hydraulic couplings between various if- of the pipe and its radius of curvature., » = R/R.; 2)
tracerebral spaces (e.g., subarachnoidal spaces (SAS), venthe-product between viscous diffusion time and the main car-
ular spaces, and intrathecal spaces of the spinal canal) [4]-[8ac forcing pulsations describedby theso-called Womersley
Recent contributions also point out that patient-based flux andmbera® = wpR? /., wherep and . are, respectively, the

|. INTRODUCTION



Fig. 2. Sketch of the cerebral aqueduct centerline description with associated
transverse elliptic sectiof(s) having minor axig(s), major axisa(s), and
ellipse frontierd€2(s) at longitudinal curvilinear distance

Fig. 1. Example of cerebral agueduct (CA) joining the third (V3) and fourth
(V4) ventricle visualized from a volume rendering in the sagittal plane of thaot always possible: they depend on the geometry involved and
anatomical MRI image of patient. LVs can be seen on top. on the flow conditions.
In this paper, we show that a slightly curved aqueduct of
Sylvius with low reduced Reynolds number is a fair descrip-
density and dynamic viscosity of the CSF(very close to wWgon that leads to a fast estimation of the pressure drop, shear,
ter), 3) the Reynolds numbeke = pUa/u, whereU is the and hydraulic admittance. This analysis provides an equiva-
averaged longitudinal velocity inside the aqueduct anis |ent frequency-dependent electric impedance description of the
the mean cross-sectional ellipse’s major axis averaged alof@p/flux relationship, and is, to our knowledge, the first explicit
the aqueduct centerline, which is approximated by the av@kaluation available in a healthy cohort of patients. Section Il de-
age over all major axig; of ellipses(2; in all sectionsi (see scribes the four-step method [aqueduct reconstruction (see Sec-
Fig. 2),i.e.,a = (1/L) fOL a(s)ds ~ (1/n)>"" | a;. The aver- tion II-A), fluid flow (see Section 1I-B), Fourier decomposition
age longitudinal velocity/ = Q/rab is defined as the measuredand hydraulic admittances (see Section 1I-C), and physiological
flux (which is constant along the aqueduct) over the averagalidation of the model hypothesis (see Section II-D)] that we
sectionwab, where, againp is the average ellips@; minor put forward here associated with asymptotic evaluation of the
axis in each section Usually, two supplementary parametersaqueduct of Sylvius hydraulic admittances. Section Ill shows
which are a combination of the above, are also considered: the evaluation of these hydraulic admittances for three out of 20
Dean numbeDe = Re - /A and the reduced Reynolds numbereal patients, resulting from the first Fourier modes decompo-
Re, = (Re/a)? . Depending on the value of these parametersition of their cardiac cycle variations. We, finally, discuss the
some complex flow patterns and case-specific approximatigetevance of the results obtained for the derivating realistic elec-
can be built [16]-[20]. Since the physiological Womersley nunirical models of complete CSF hydraulic models in Section IlI.
ber « typically lies between 5 and 30, the flow field variations
inside the cavities are generically localized in the vicinity of the
walls, within so-called Stokes layers. These layers can be either [I. METHODS
large or small, so a finer grid discretization is also needed insi
them if velocity is to be evaluated properly. We show below th
the Stokes layers develop around 10% of the radius (mean valu®RI acquisitions were obtained using the method described
of the Womersley number in Table I1). in [1] and [21] with isotropic voxels ofAz = Ay = Az =
Finally, from the acquisition point of view, as pointed in [12]0.55 mm. The anatomical orientation of the aqueduct is sagittal
itis difficult to obtain anatomically reliable data for the smallesind mostly vertical. Thus, it was possible to obtain a reliable
cavities (e.g. SAS and intrathecal spaces) and the mechan&& digitalized reconstruction of it by analyzing each succes-
parameters used to describe soft tissue deformations and posiee horizontal section (cf., Fig. 2). In each horizontal section,
lastic behaviors. For all these reasons, itis interesting to develop extracted the elliptical contour that best fitted the gray-level
alternative approaches to full CFD, such as [12], for CSF modnatomical image of the aqueduct (cf., Fig. 3). First, we drew
eling and case-specific analysis. Such alternative approacheqdot¢ted line) a contour plot of the gray-scale image with equally

e .
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Fig. 4. Result of centerline segmentation in the sagittal plane (unit in voxel =
0.55 mm). Radius of curvatur®,. fitting in two cases fon, = nandn_ =0

. ™ Rt .
Fig. 3. Gray-level anatomical slice of the aqueduct. Dotted line: gray-leviff: Patient3) and forn,. = 15 andn_ = 35 (right, PatientC).

contour profile of the aqueduct. Continuous line: ellipse extracted from best fit
of the contour line (Patier).

decomposition of the flow rate during the cardiac cycle, similar
spaced contour levels in the plot. Then, in the least squafed22], is proposed in the next sections.
sense, we plotted (continuous line) the best fit ellipse. For each
ellipse, the center, majorrad|g$s), and minor ra,d|us(s) Were o rid Flow, Pressure, and Shear Evaluation
extracted. From the evaluation of the ellipse’s center in eaa? .

. . i . ithin the Aqueducts

successive horizontal section, the aqueduct centerline was re-
constructed. Over the human patients examined, we found thatn this section, we use an asymptotic approach for flow eval-
to a good approximation, this centerline lies within the sagittaigtion. This model is derived from an asymptotic approxima-
plane. Hence, it was easy to evaluate the main radius of curvattie@ of the Navier—Stokes equations without considering elastic
of the resulting planar centerline curve. Using a quadratic mifleformation, consistently with [18]-[20]. It is necessary to con-
imization among the discrete setiopoints of the centerline, it sider a dimensionless formulation of the problem, which can
was possible to extract the main radius of curvatBreof the then provide a patient-independent formulation whatever the
aqueduct centerline, which quantified its bending in the sagitarticular aqueduct shape or cardiac temporal forcing. Taking
plane as well as the curvilinear lengthof the centerline. For for dimensional quantities, let us first discuss a formulation for
some patients, a double bending of the centerline was obsen&tdfvilinear coordinatess, associated with the centerline arc
with two radii of curvature of opposite sign (cf., Fig. 4). In thidength following [18]. Since the aqueduct is slightly besis
case, each radius of curvatu®e, (respectivelyR,._)was fitted nondimensionalized by the radius of curvatdtg s* = R, s,
using a properly chosen number of points (respectivelyn_)  While the radial coordinate” = ar is nondimensionalized by
among the total number of points= n, +n_, giving less the typical transverse length The forcing pulsation is used
than 5% relative difference with the centerline in every cast define dimensionless time = ¢/w, where the typical lon-

The average curvature was thus computed from gitudinal velocity provides the scaling for the longitudinal ve-
_ locity component.* = U . A viscous pressure is used for the
n4 R(:+ + n,R(,, a H H : : H H
R =—"—*“" =% i= o (1) pressure nondimensionalization since we consider moderate re-
n C

duced Reynolds numbers, as will be seen in Section II-D, so
where the influence of curvature on the CSF flow can Wbat p* = (uUL/@*)p. The dimensionless flux is defined by
quantified by the dimensionless parameterHere, again, Q* = Ua’(Q, whereQ* is given by MRI acquisitions. Following

a is the longitudinally averaged major axis of the ellipticaprevious authors and seeking the leading order, slightly curved,
cross section of the aqueduct over cross-sectional images, @y, Reynolds number flow description, the longitudinal veloc-
a=(1/L) fOL a(s)ds ~ (1/n) Y"1, a;. Other useful parame- ity component forced by a single sinusoidal mode forcing with
ters, of interest, for quantitative comparison with previous andissociated local longitudinal pressure gradights) satisfies
yses[19], [20], were also derived from the major and minor radii

a andb, such as the mean eccentricitgand the mean ellipticity 9 5 Ou dp
- ] Vu—a*— = —— )
m, defined as ot 0s
_ v __  Ja—b whereV? is the Laplacian operator in the plane locally orthog-
e=\/1——, m=4/—. (2) ) ™ ) .
a? a+b onal to the centerline at curvilinear distancéo be solved with

boundary condition: = 0 on thefrontier 9€2(s) of the local
The values observed for parameter(m ~ 0.6, as seen in transverse elliptic sectiof2(s) having major and minor radii
Fig. 5 and Table Il) showed that slightly noncircular moda(s) andb(s). The local pressure gradient is decomposed into
els of the cerebral aqueduct were not relevant, and called &stationaryKs (s) and unstationar¥ (s). In subsequent no-
fully elliptic cross sections geometries. Also, a Fourier modations, index S (respectively, U) is associated with stationary



1) Stationary forcing:Solving (3) for « =0 and %—f =
Kg(s) leads to

1 a’b? 2 P
‘2ﬁ+bz(‘a2‘w)K“@ ®)

in the coordinates;, y locally orthogonal to the centerline arc
length s, oriented toward the principal axis of the ellip¢és)

(see Fig. 2). The associated longitudinal fidx = [, usdS
with infinitesimal elementary surfaeks = dxdy in €; reads

Qs = —ys(s)Ks(s) (6)

where we have introduced the local complex hydraulic admit-
tance of the stationary contributiaf (s) = Cs(s) + iSc5(s)
which is, in this case, a pure real conductance

us(@,y,s) =

T a’h?

ys(s) = Cs(s) = 1250 (7)

since, for nonoscillating flow, the imaginary hydraulic suscep-
tance contribution is zerdj. s (s) = 0. The local pressure gra-
dient K¢(s) is adapted so that constant flux is preserved in
each successive sectigyy. By considering the leading order
contribution to the viscous stress tensor of this longitudinally
dominated flow, we also evaluate the shear stresét can be
expressed (see the Appendix) at leading ofdgr) in the coor-
dinates locally orthogonal to the centerline arc lengtin the
principal axis coordinates of the ellip§¥s), along its frontier
00(s)

a’b? 2 y?
a1 Vg s ®
where indexs refers to stationary flow contribution ards the
local tangent vector to the centerline at locatioBy integrating
around the elliptic contoup2(s), we can see that the simple
result for the leading order total shear atthe wall = faﬂ Tgdl
is

Tg = A

Trs(s) = —Amab Kg(s). 9)

2) Unstationary forcing:Solving (3) for nonzeron with
complex velocityu;; and forcing%—f = Ky (s)e' is performed
numerically using a finite-element discretizatior{{fs) with a
classical variational formulation using0 elements [23]. From
the numerical evaluation of the complex velocity component
uy, the fluxQy can be computed numerically from a simple
spatial integratior);; = fQ uydS. On the other hand, Haslam
and Zamir [24] provide an analytical expression for the flux

Qu = —R (yu (s)Ku (s)e'") (10)
which can be expressed using the local complex admittance
yu (s):
Fig. 5. Reconstructed aqueduct for three healthy patients anonymized as Pa- ;313 Ve
tientD, PatientE, and PatienF'. yu (s) = @ 2ab 3 ( - 2<.]1( “7). > (11)
n a*+b V=in Jo(v/=in)

respectively, unstationary) cases . 272 .
(resp Y Y) withn = 2%042 andJ,, J; the zeroth- and first -order Bessel

functions. Consistently with previous results (11) tends to (7)

op _ Ks(s)+ R (KU(S)eit> _ (4) asa— 0. The_: an_alytical result (11) (d(_arived from [24]) is fully
consistent with finite-element numerical evaluation, as repre-
sented in Fig. 10.

Os



TABLE | 15 v T T
INFLUENCE OF THEFOURIER MODE TRUNCATION ON THE RECONSTRUCTED Q
FLUX (PATIENT D)

n 1 2 3 4 5 6

osf’
E, | 0.31| 0.12| 0.06 | 0.05| 0.03 | 0.02

Similar to the stationary case, the oscillating part of the shear

leading order wall shear stress is approximately given by (see
the Appendix) 0

t

. it
= —AR (/ (KU (S) - “U) ds e ) (12) Fig. 6. Solid line: MRI nondimensional flux versus times (over a cardiac
Q cycle). dashed, dotted, and dot-dashed lines: reconstructed fluxwith, 2,

or, using the flux expressions (10) and (11) and 3, respectively (Patief).

- leads to
= /\mzb§R< 2‘,] 1(\/_7”’), e“> Ky(s)  (13) -
V=i b (V=i W g / Ky (s)ds = APy (14)
which obviously tends to (9) as — 0 andn — 0. vu(s)
Qu is constant along the aqueduct (incompressible Newtonian
C. Fourier Decomposition and Hydraulic Admittances fluid) such that
1) Fourier Decomposition of the FluxThe experimental Oy = YAP, = 1 APy (15)

flux is decomposed into discrete Fourier modes from a signal JUL yu (s)~1ds

having 32 points per cardiac cycle. The zeroth mode corresponds ) ) i

to the stationary flux)s. The constant flux amplitude is generWhereA Py is the pressure difference obtained between the two
ally smaller than the first oscillatory mode by almost three ordef&tremities of the aqueduct of lengttfor a flux amplitudey; .

of magnitude. It is thus difficult to obtain a reliable Fourier de2 discrete version of (15) over each successive elligselsas
composition, and this is why a dedicated acquisition sequerR@e" implemented with finite-difference integration. This was
has previously been proposed for its evaluation [10], [25]. Froprﬁgne for each modeeto evaluate the admittandé* ]?f egc? flux
the f¥ = 2% frequency, we compute the sequence of Womer& - The real and imaginary componentsdf = " +iS;are
ley numbers:* for which the admittance?; (s) is evaluated for called conduqtance and susceptanpe, respeptlvely. The resu!tlng
a flux amplitudeQ”; (¢). A truncated reconstruction of the vari-complex admittance results are discussed in tlhe next section.
ation of the flux@, (t) = =4 Q¥ (t) over the complete cardiac Ve also evaluqte the C(;mplex impedarfce YE and find
cycle[0, 7.] taking only the first. modes has been tested. Théhat, for all patients3(2") > 0. Thus, the electric model of

N X H H ¢ k k, kg
L2 norm errorE, recovered from the truncated evaluation is the aqueduct is a self-inductance wih = R + L*w"i with

a phase lag)’ = tan‘l(L;’f" ). Using the truncation to the
<[UT(: (Qexp — Q )zdt> first three modes, described in the previous section, leads to the
En _ . ex n ]

T reconstruction of the total pressure drop for the aqueduct
Iy (Qexp)?dt

3
It is represented in Table | and Fig. 6. This computation shows AP = (ROQS +y §)‘E(Zk(?]ffewkt)) ) (16)
that keeping only the first three modes provides a accurate de- k=1

scription to within 10 of the flux temporal variation. The which is the main contribution to the TRP drop, i&AP ~ TRP,
saturation of the error for > 3 arises since there is a modeshs will be discussed in Section IIl. The values@§, QF, R¥,

number of points per cycle (32 here). andL* are reported in Table II.
2) Hydraulic Admittances and TRP Reconstructidqua-
tions (6) and (10) describe a local linear relation betweg® pjscussion of the Model’s Validity
the flux and the pressure gradient associated with a local ) ) ) ) o )
admittance. The local admittance is also the inverse of thelM this section, we investigate the validity of the creeping flow
local hydraulic impedance(s) = y~'. As for the electrical reglmethat has_been d_eveloped for CSF_mthe previous sections.
description, the integral of relations (6) and (10) along tHeS mentioned in Section |, many detailed studies [16]-{20],
curvilinear centerline arc length of the aqueduct provides [26] have already investigated moderate Reynolds number flow
the total hydraulic admittanc¥ of the aqueduct relating the N curved pipes. In this context, inertial and curvature effects
flux Qu to the pressure differenca P. Considering the flux &€ properly descrlbeq by a single dimensionless Dean number
Qu = —yu (s)Ky (s)e’ = —Qpeit with the amplitude De = Re - /A for stationary f|OWS or by a reduced Reynolds
numberRe, = (Re/a)? for oscillating flows. The latter pa-
Qu = —yu (s)Ky (s) rameterRe; is generally small (see Table Ill) in the normal




TABLE Il

4
TABLE OF NUMERICAL VALUES MEASURED FORTHREE DIFFERENTPATIENTS A is
PatientD PatientE PatientF b
A 0.18 0.25 0.12
e 0.91 0.92 0.86 25
m 0.68 0.68 0.59 2t
Re 5.78 21.01 16.60 .
De 2.49 10.52 5.87 '
Res 0.043 0.753 0.35 1t
a mm 4.21 4.45 3.54 0
L mm 14.22 9.85 9.3 . .
Qmaz mm3 /s 99 371 254 % 20 0 60 80 100 20 140
Qs mm3/s 6 5 3 Re
Qf mm3/s 84 322 203
Q% mm?/s 26 49 58 Fig. 7. Plot of A versus the Reynolds numbée for 0.57 < m < 0.70.
Q3U mm3 /s 9 56 S \l/gfyi(dity of the Ic;\(]v D??QTD nurr(ljber applrt)tﬁirga;&n(. L)ines %o;rzes%)(no‘g;t@:
© error on e ana are otte m) = —0.22, m) =
Umaz TUN/S ?'gg 2013208 304'2274 —6.107, C(m) = 2.10°% (m = 0.551)) and for A(m) = 3.12, B(m) =
Tusmaz : : : —2.107%,C(m) = 107 (m = 0.57). Each cross+{) corresponds to a patient
Tuumas 3.83 8.02 1.32 measurement.
Vabyin mm 1.71 2.19 1.37
ol (ff Hz) 12.00 (1.42) | 12.14 (1.30) | 9.87 (1.36) of our approximation, which we have illustrated in Fig. 7. Fur-
o? (f* Hz) 16.97 (2.84) | 17.16 (2.60) | 13.96 (2.71) thermore, this formula also gives an index for testing how good
a“q; (f° Hz) 20.78 (4.26) | 21.02 (3.90) | 17.10 (4.07) the proposed approximation is in certain diseases for which the
R — 61.1 34.2 37.0 Reynolds number might be large, or the aspect vatiaght not
(RY; LT (77.7;23.8) | (48.1;19.7) | (45.7;13.6) b I Thi be d i th B
(RZ,I9) (97.2:22.5) | (63.2:20.1) | (36.7:13.2) e small. This can be done using the parametérs), B(m),
(R%, L%) (114;22.8) | (72.8,18.9) | (64.6;12.4) andC'(m) provided in the legend of Fig. 7.
¢! 69° 73° 68° Using £ = 0.1 when looking for an approximation to the
APpaz Pa 1.76 2.43 2.64 flux with an error of< 10%, relation (17) provides a curve in

Where units are not stated, the quantity is dimensionless. The resistances R*
are nondimensionalized by p L/a* with k = 0,1,2,3 andtheinductances L* by u
L/a*w" with k = 1,2,3, with w* = 27 f*.

the (1, Re) plane for comparison. Most of patients (17 out of
20) had an ellipticityn between 0.57 and 0.70, so we chose the
appropriate value ot for parametersi(m), B(m), andC(m)
conditions considered, so that it is reasonable to neglect iner-compute the validity curve represented by the black line in
tial corrections to the leading order viscous contributions. MoBtg. 7. All the experimental data points lie below theZd8rror
studies have focused on the occurrence and structure of saave, which indicates that our approximation for the linear pres-
ondary transverse counterrotating flows arising from the conjsure/flux relationship is accurate to within0Since the mode
gated effects of inertia and curvature. Systematic Dean numireincation described in the previous section leaves ot @b
and reduced Reynolds number expansions, respectively, are pine-total flow, the linear viscous approximation is more than a
posed for those corrections [16]-[20], [26]. Here, we are mainbonsistent approximation in this context. Thus, the validity of
interested in the leading order viscous contribution to the fluke approximation used in this paper compares well with the
for a given longitudinal pressure gradient. real physiological condition of the pool of patient considered.
Following previous authors, we looked for the leading order
flow description in the range of the fluid flow parameters eval- Il.

uated by MRI (see, for example, Table f). According to [17] The very slight pressure variations observed in ventricles (lat-

%ﬁ&%;&%&igl&ed)Raflﬁ'xslissr:g:;?%’m%e tlh(e:tetﬁga(l:tgilflllo V\(Ieral, third, and fourth) together with the pressure variations ob-
Cs served inside the cerebral aqueduct in the full CVD simulations

tionship in a curved pipe with an elliptical cross section has be;ﬂlrﬁJStrated in [12], Fig. 5] demonstrate the validity of the key

) T L ypothesis of our study: most of the pressure variations between
thoughtiully analyzed in [20], where inertial deviations frorq_gs and spinal subarachnoid spaces arise within the thin passage

}2f;iﬂc;gﬁﬁycgfegglrgﬂ?:nrig'mfaa_rebf}/zefgnCRae"yyn%ﬁz\;'d% the cergbral aqueduct. Hence, thg pressure diffgrencc_a ampli-
numberRe. and dimensionless curvature ' tude obta!ned,.of a feyv pascals, wh|_ch |s_compat|blle with the
' TRP obtained in [12], is another confirmation that this hypoth-
esis is relevant (see Fig. 8). Entrance effects discussed in [27]
and numerically observed in [5] are expected to be small when
where coefficientsA(m), B(m), andC(m) can be extracted considering realistic anatomical reconstruction of the cerebral
from figures given in [20]E is the dimensionless relative dif-aqueduct having a gently varying diameter.
ference (the relative error) between the creeping flow flux andAs mentioned in [10], the hydrodynamic pressure, which can
the real flux, which includes inertial effects up to third-order cobe reconstructed by solving CSF equations, is defined up to an
rections that are valid for Reynolds numbers as large as 1006prescribed constant. In order to discuss our result quantita-
This relation provides an explicit quantitative test for the validitively, it is interesting to consider how the cerebral aqueduct

RESULTS AND DISCUSSION

E = )* (A(m) + B(m)Re* + C(m)Re") (17)
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TABLE IlI
b TABLE OF NUMERICAL MEAN VALUES MEASURED FOR20 DIFFERENT
1 PATIENTS, WITH STANDARD DEVIATION

A 0.19 £0.06
0.8 e 0.84 £0.14
m 0.59 £0.14
Re 29 + 25
1 De 14 4+13
J Res 0.49 £+ 0.62
a mm 3.6 +0.9
0.8 L mm 10.2 £2.7
Qmaz mm3>/s 357 £ 290
Qs mm?/s 9.1 +13
0 100 ] QL mm3/s 270 £ 247
ot 8 2 mm3/s 67 £+ 46
ol ] Q3 mm3/s 25 + 20
0 0.1 0.2 0.3 04 0.5 0.6 0.7 08 Umaz mm/s 32425
Tusmaz 1.7+£2.2
4 ‘ ‘ ‘ ‘ ‘ ‘ ‘ Tuwmaz 5+6.4
AP 7 1 Vabin mm 1.59+0.3
o | ol (fY Hz) 9.5+2.2(1.2+£0.2)
o? (f? Hz) 13.7 £ 3.1 (2.5 £ 0.45)
) 01 02 03 0z 05 06 07 0.8 o3 (f3 Hz) 17+ 3.8 (4 £0.8)
(©) t RO 32 £20 (2.2 £ 1.55 10° Pa.s.m?)
R? 41.34+27.1 (2.7 £1.7 10° Pa.s.m?3)
Fig. 8. (Top) experimental flug in mm?.s~!. (Bottom) Reconstructed os- | LT 14.9 +10.5 (7.64 + 4 10° Pa.s®>.m?3)
cillating pressure\ P in pascals for a cardiac cycle in seconds. R2 51.9£343 (35 L£2.1 100 Pa.s.md)
o . _ o | L2 14.44£10.1 (3.5 £ 1.7 10° Pa.s>.m5)
fits into a more global |ntr_acran_|al pressure distribution model—3 60.3 £40 (4 £ 2.4 10° Pa.s.md)
The electrical model depicted in Fig. 9 is very close to those 73 141410 (2.3 £ 1.3 10° Pa.sZ.m?)
proposed in [7] and [28]. This linear model is easy to solve fo o7 630 £ 70
the intracranial pressu@cp APrmaz Pa 1316 £ 3.6
RPys + RZ'Cw'iPy + Z' Pyag APs Pa 0.039 4+ 0.029
Picp = (18)

R+ RZICwli+ 21

and thus evaluation of aqueduct impedance paraméteiis

useful but not sufficient to determine intracranial pressure. This .

conclusion is similar to the one drawn by previous authors [2g]l€NCe, from an evaluation of the pressure drop between the

who pointed out that cine phase-contrast MRI combined witRird and fourth ventricles?y; — Picp, this simple electrical

fluid-pressure flow evaluation cannot provide intrinsic pressufédel leads to the conclusion that it is possible to obtain a

values but necessitates supplementary information such as &4Rd approximation for the TRP drafrre = Py — Psas,

mation of compliance and/or monitoring [30]. and noninvasive est|mat|9n of this pressure from cine phase-
Nevertheless, a positive correlation between TRP and IEPNrast MRI s thus possible.

increase has been recognized [31], [32], so the evaluation ofV& found a TRP magnitude of.3 + 3.6 Pa and a mean

TRP is also interesting. As mentioned in Section I, the cerebfdRP 0f 0.039 £ 0.029 Pa (respectivelyA P, . and APs in

aqueduct is the main contributor to the total resistance betwettp!€ 1) which can be compared with typical literature values.
LVs and SAS. AsR! > R, using the electrical model of Fig. 9, In vivo studies on dogs with kaolin-induced hydrocephalus [33]
a good approximation aPrgp is report a mean TRP of 34 Pa. In the cat kaolin model, Shapiro

et al.[34] found zero mean TRP. More recently, Pertal.[35]
Prrp = Py3 — Psas = Py3 — Piop. (19) have found that the mean TRP in dogs was not greater than



the resolution of their sensoré( Pa), and consequently, they 0.02
concluded that the magnitude of such gradients could not beY
accurately determined in their study. A clinical study has been
performed by Stephensemal.[36] on ten human patients hav-
ing communicating or noncommunicating hydrocephalus. The
first microsensor was placed in the ventricle system, inside a
ventricular catheter, and the second one in the subarachnoid
space. When using a temporal average, they found a mean TRP
of 1.3 + 32 Pa, while the deviation from this temporal TRP
pressure data (which should be related to the amplitude of TRP  -o01 L = - - - -
pressure oscillation) could be evaluated@at- 22 Pa from their @) o
Fig. 3. The mean TRP value reported in [36] was compared to oo ‘
our stationary TRRA Pg using a Mann—Whitney test. We found - OO: T
no significant difference with a p-value of 0.9 (nonparamet- '
ric tests are insensitive to inhomogeneity of variance that may
result from the use of different measurement methods). Never-
theless, when comparing the ten temporal standard deviations
reported in [36] withAP,,,, of our 20 healthy patients, we
found them significantly different, with a p-value smaller than
1073, which is consistent with the large departure from the sta-
tistical mean (65 Pa, as against, our 4.3 Pa). This difference
between normal and pathological situations, and average value
obtained for the oscillating part of the TRP, are also consistent (b) o
with other estimates obtained from cine MRI measurements, oo ,
3-D reconstruction of brain geometry, and direct simulation Y oo
by Penn [37]. They report a TRP magnitude below 10 Pa for 0.02}
healthy volunteers and close to 50 Pa in patients with hydro- oo}
cephalus. The ICP in normal subjects is of the order of 500 Pa o1}
and the TRP smaller than 10 Pa. In abnormal conditions, the  o.c0s}
ICP can become as high as 3000 Pa, whereas the TRP does
not exceed 30 Pa [10]. Our findings are thus consistent with all .05}
these considerations related to previous measurements. Further- o}
more, it is important to stress that previous direct experimental 0015} - - - S
measurements of the TRP were obtained by evaluating pres- ©) o
sure differences that were 10-100 times smaller than the actual
value measured. As the resolution of the sensors was hardlyiga 10. Hydraulic admittanc® = C' + iS.. versus Womersley number.
hundred times smaller than the actual measurement. the reTi%F— hydraulic conductanag(«) is shown as a solid line, and the susceptance
bility of the direct m rement nb lled int ’ ti _(a) as a dashed line. The vertical lines indicate the Womersley numbers
y of the direct measurements can be calle O questigf, . — 1 1 — 2 andk — 3.

One major contribution of our TRP evaluation, apart from its
painless and noninvasive nature, lies in the fact that it is much
more precise since the limitation is related to the evaluated flux
and, to a lesser extent, the spatial resolution of the reconstructed
aqueduct. on the electric impedance. When is three times larger, the

Another consequence of our findings is to show that the stlectric resistance and inductance are five and ten times larger,
tionary Hagen—Poiseuille approximation for the aqueduct flowespectively. The mean values®f andL! over the 20 patients
used in [8] and [38] has to be corrected. Our results show treak given in Table II.
the leading order contribution comes from the first oscillatory Finally, it is also interesting to note that our findings might
modek = 1, for which the Womersley number is nonzero, andontribute to the understanding of pathological evolutions as-
thus, the resulting admittance is complex (see Fig. 10). Anseciated with aqueduct stenosis, which is a common cause of
lytical result (11) (derived from [24]) is fully consistent withhydrocephalus. Such stenosis increases wall shear stresses and
finite-element numerical evaluation, as represented in Fig. 1@n be easily detected by our method. Increased wall shear
where the two curves cannot be distinguished. Furthermore, stresses occur with increased pressure drop and may result in
evaluation shows that the resistance piirtdoes not predomi- ongoing damage to the aqueduct where the area of the sections
nate over the inductance pdrt. Our results (see Tables Il andis minimal, as mentioned in [15]. This effect is also observed in
1) show an average phase lag of 63 + 7° between pressure healthy patients in Fig. 11(a)—(c) where the maximum for the
and flow, which is consistent with th&8° found in [12] us- total wall shear stress of nonstationary flow componentss
ing 3-D numerical simulations. We also note the influence of shown to be maximal when the local sectiodb is minimal.

-0.0051
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70.0150




0.02 : : : . - : APPENDIX

T 0‘015’\/\/\/\: This section provides a detailed derivation of the wall shear

.l stress relations (8), (9), (12), and (13). Let us call the total veloc-

B -] ity field U. Due to the low-curvature geometry of the aqueduct

0 2 4 6 8 1o 2 “ and the incompressibility conditio] can be decomposed into
40 , , , , , , a leading order term in the local longitudinal directian, plus
308 1 a small correction.v for the in-plane contribution in the elliptic
mab ZO\/h/‘ sectionf)(s), wherev ~ O(1), with A < 1andv.t = 0, so that
12 . . . . . . U =ut + Av.
0 2 4 6 8 10 12 14
@ § From the chosen nondimensionalization, the in-plane coordi-
01 — nates(x, y) in section(2(s) are scaled by and the longitudinal
. coordinatez by R., so that the local dimensionless gradient
0057 1 operator reads’ = (Va, A0, ), whereV, = (0,,0,). The di-

mensionless stress tengothen reads

0 1 2 3 4 5 6 7 8 9 10 A
. o=-p+35(VeU+V' 2U)
25t ] where we have consistently used the viscous pressure
rab (uUL/a*) to define the dimensionless stress such that
20 1 % —9 . . . .
o* = (pUL/a@*)o. By considering only the deviatoric part of
Y1 2z 3 4 5 6 7 8§ 9 10 the stressr,, (since the viscous stress is the only contribution
(b) § to the shear here)
0.03 T T T T T T T T a
0o o =
0.02f b 53:
-
J/\ | ) Au )
e T og=AVy@ut+0ML)=1| 0 0 oy +O0(1\%)
I H B S S B u Ou
40 , , : : : : : : dx Oy
o | we then compute the local shear strega scalar), at each point
mab %% | of the wall 992 where the normal in-plane vector is denoied
10F 1
— . . — . 2
00 i é f; 4‘1 é é ; é 5 T=1t Jgq ' 1n )\.VQU n+0()\. )
(©) s In the following, we negleaD(1?) terms and no longer mention

Fig. 11. (Top) Oscillating (solid lineyry and stationary (dashed line} g them. .In the stationary case, as given in (6§:an be computed
wall shear stress in pascals. (Bottom) Surface awe@)b(s) in mm? of the analytically, and we have

agueduct section versus curvilinear coordirate 2
0o 0 =
A a’b? ;
Tg = 12102 s(s))t- 0 0 FQy n
20 2y
IV. CONCLUSION 2 2 0
Our contribution has successfully tested the validity of a lowhile
curvature/low reduced Reynolds number approximation for CSF 2z
flow in real patients. Using this approximation, we propose a a2
simple and very fast method for evaluating the aqueduct ad- 2y
mittance from MRI anatomical images and cine acquisitions. b2
This method can also evaluate the shear stress within the cere- 0
bral aqueduct, which is greatest in its smallest portion. The pr@3d we thus obtain result (8)
posed approach provides the total pressure drop in the aqueduct, a2 2 P
which permits a simple, noninvasive patient-based, approximate Ty = xm\/ e + bT;KS( ).

evaluation of the TRP. _
Combined with other invasive (e.g., intrathecal pressure mon-Furthermore, we can estimate the total wall shear stress by

itoring) or noninvasive (compliance estimation [9], [29], [39]jntegrating along the contowdi2
measurements, our method could be useful for estimating in-
tracranial pressure or evaluating a patient’s disorder. T = A </8S2 Vau-n dl>



which, from the Green formula also reads [16]
0 = | V2udS 20y 7

Q [18]

where we have used the same notafith= 92 + 9 as in (3). (el

If we use (3) in the stationary case, this leads to relation (9)

Trg = A (—Kg/ dS)
Q

Alternatively, using (3) in the unstationary case leads to th&ll
complex version of (12)

_ [20]

—AmabKy.

Ty = A (—iaQQU — WabKU) e'l. [22]
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