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Maximal Eigenvalue and norm of the product of Toeplitz matrices. Study of a particular case

Maximal eigenvalue and norm of the product of Toeplitz matrices. Study of a particular case In this paper we describe the asymptotic behaviour of the spectral norm of the product of two finite Toeplitz matrices as the matrix dimension goes to infinity. These Toeplitz matrices are generated by positive functions with Fisher-Hartwig singularities of negative order. Since we have positive operators it is known that the spectral norm is also the largest eigenvalue of this product.

Introduction

If f ∈ L 1 (T) the Toeplitz matrix with symbol f denoted by T N (f ) is the (N + 1) × (N + 1) matrix such that (T N (f )) i+1,j+1 = f (ji) ∀i, j 0 ≤ i, j ≤ N (see, for instance, [START_REF] Böttcher | Analysis of Toeplitz operators[END_REF], [START_REF] Böttcher | Introduction to large Toepltitz truncated matrices[END_REF]). We say that a function h is regular if h ∈ L ∞ (T) and h > 0.

Otherwise the function h is said singular. If b is a regular function continuous in e iθr we call Fisher-Hartwig symbols the functions

f (e iθ ) = b(e iθ ) R r=1
|e iθe iθr | 2αr ϕ βr,θr (e iθ ) where

• the complex numbers α r and β r are subject to the constraints -1 2 < α r < 1 2 and - 1 2 < β r < 1 2 , • the functions ϕ βr,θr are defined as ϕ βr,θr (e iθ ) = e iβr(π+θ-θr) . The problem of the extreme eigenvalues of a Toeplitz matrix is well known (see [START_REF] Grenander | Toeplitz forms and their applications[END_REF] and [START_REF] Avram | On biliner forms in Gaussian random variables and Toeplitz matrices[END_REF]). with m f = essinf f and M f = essup f . In [START_REF] Böttcher | On the condition numbers of large semi-definite Toeplitz matrices[END_REF] and [START_REF] Böttcher | Norms of Teplitz matrices with Fisher-Hartwig symbols[END_REF] Böttcher and Grudsky on one hand and Böttcher and Virtanen in the other hand give an asymptotic estimation of the maximal eigenvalue in the case of one Toeplitz matrix when the symbol has one or several zeros of negative order. In [START_REF] Rambour | Inversion des matrices de Toeplitz dont le symbole admet un zéro d'ordre rationnel positif,valeur propre minimale[END_REF] we have obtained the asymptotic of the minimal eigenvalue of one Toeplitz matrix when the symbol has one zero of order α with α > 1 2 . But estimatig the eigenvalues of the product of two Toeplitz matrices is more delicate. Effectively it is clear that a product of Toeplitz matrices is generally not a Toeplitz matrix. In the first part of this paper we consider the product T N (f 1 )T N (f 2 ) of two Toeplitz matrices where f 1 (e iθ ) = |1e iθ | -2α 1 c 1 (e iθ ), and f 2 (e iθ ) = |1e iθ | -2α 2 c 2 (e iθ ) with 0 < α 1 , α 2 < 1 2 and c 1 , c 2 are two regular continuous functions on the torus. For these symbols we obtain the norm of the matrix T N (f 1 )T N (f 2 ). Owing to an important result of Widom (see Lemma 3 and also [START_REF] Widom | Extreme eigenvalues of N-dimensional convolution operators[END_REF], [START_REF] Widom | Extreme eigenvalues of translation kernels[END_REF], [START_REF] Widom | On the eigenvalues of certain hermitian operators[END_REF], [START_REF] Böttcher | On the eigenvalues of certain canonical higher-order ordinary differential operators[END_REF]), which connects the norm of an operator and the norm of a matrix. A proof of this result can be found in [START_REF] Böttcher | Norms of Teplitz matrices with Fisher-Hartwig symbols[END_REF]. Since T N (f 1 )T N (f 2 ) is a positive matrix the norm is also the maximal eigenvalue of this matrix. Hence our main result (see Theorem 3) can be also stated as Theorem 1 Let f 1 (e iθ ) = |1e iθ | -2α 1 c 1 (e iθ ) and f 2 (e iθ ) = |1e iθ | -2α 2 c 2 (e iθ ) with 0 < α 1 , α 2 < 1 2 and c 1 , c 2 ∈ L ∞ (T) continuous and nonzero in 1. Then if Λ α 1 ,α 2 ,N is the maximal eigenvalue of T N (f 1 )T N (f 2 ) we have

Λ α 1 ,α 2 ,N = N 2α 1 +2α 2 C α 1 C α 2 c 1 (1)c 2 (1) K α 1 ,α 2 + o(N 2α 1 +2α 2 ). with ∀α ∈]0, 1 2 [ C α = Γ(1 -2α) sin(πα) π and K α 1 ,α 2 the integral operator on L 2 [0, 1] with kernel (x, y) → 1 0 |x -t| 2α 1 -1 |y -t| 2α 2 -1 dt.
Then we obtain bounds on K α 1 ,α 2 which provides bounds on Λ α 1 ,α 2 ,N (see the theorem 4). In a second part we apply this result to obtain the maximal eigenvalue Λ α,β,N of the more general symbols

f1 (e iθ ) = |1-e iθ | -2α p j=1 |e iθ j -e iθ | -2α j c 1 (e iθ ) and f2 (e iθ ) = |1-e iθ | -2β q j=1 |e iθ j -e iθ | -2α j c 2 (e iθ ) (1) with 0 < α, β < 1 2 , α > max 1≤j≤p (α j ), β > max 1≤j≤q
(β j ) and where c 1 , c 2 are two regular functions satisfying precise hypotheses. We obtain

Λ α,β,N ∼ CN 2α+2β K α,β
(see Theorem 5 for the expression of C).

Remark 1 To get Theorem 5 we give in Lemma 2 an asymptotic of the Fourier coefficients of the symbols f1 and f2 of (1). We may observe that this lemma provides a statement that slightly differs from Theorem 4.2. in [START_REF] Böttcher | Norms of Teplitz matrices with Fisher-Hartwig symbols[END_REF].

This statement will be

Theorem 2 Put σ = R j=1 |χ -χ j | -2α j c where ∀j, χ j ∈ T and i) 0 < α 1 < 1 2 ii) α 1 > max 2≤j≤R (α j ) .
If c is a regular positive function with c ∈ A(T, r) for 1 > r > 0 (see the point 2.2) we have

Λ N ∼ H K α 1 N 2α 1 where Λ N is the maximal eigenvalue of T N (σ), H = C α 1 c(χ 1 ) R j=2 |1 -χ j |-2α j and K α 1 is the integral operator on L 2 (0, 1) with kernel (x, y) → |x -y| -2α 1 -1 .
An important application of the knowledge of the maximal eigenvalue of the product of two Toeplitz matrices T N (f 1 ) and T N (f 2 ) is the application of the Gärtner-Ellis Theorem to obtain a large deviation principle and( [START_REF] Dembo | Large deviations techniques and applications[END_REF]). Here we consider the case of long memory (see also [START_REF] Sato | Large deviation results for statistics of short and long-memory Gaussian process[END_REF]). For the application of the Gärtner-Ellis Theorem in the case where f 1 and f 2 belong to L ∞ (T) [START_REF] Bercu | Large deviations for quadratic forms of stationnary Gaussian processes[END_REF], [START_REF] Bercu | Sharp large deviations for gaussian quadratic forms with applications[END_REF], [START_REF] Bercu | Large deviations for Gaussian stationnary processes and semi-classical analysis[END_REF] are good references.

Remark 2 For the case where f, g ∈ L ∞ (T) is it not true in general that the maximal eigenvalue of T N (f )T N (g) goes to essup(f g). Likewise it is not always true that the minimal eigenvalue of T N (f )T N (g) goes to essinf(f g). If we denote these maximal and minimal eigenvalues by Λ max,N and Λ min,N Bercu, Bony and Bruneau give in [START_REF] Bercu | Large deviations for Gaussian stationnary processes and semi-classical analysis[END_REF] an example of two functions f, g ∈ C 0 (T), g ≥ 0 such that lim

N →+∞ Λ max,N exists but is greater than sup θ∈T (f g)(θ)
and another example where lim

N →+∞ Λ min,N is defined but is smaller than inf θ∈T (f g)(θ). Howe- ver if f, g ∈ L ∞ (T) since essup(f )essup(g) -T N (f )T N (g) is
a nonnegative operator it is quite easy to obtain, from the results of [START_REF] Bercu | Large deviations for quadratic forms of stationnary Gaussian processes[END_REF], that

essup(f )essup(g) = essup(f g) ⇒ lim N →+∞ Λ max,N = essup(f g).

Main result

In the rest of this paper we denote by χ the function θ → e iθ .

2.1 Single Fisher-Hartwig singularities.

Theorem 3 Let f 1 = |1 -χ| -2α 1 c 1 and f 2 = |1 -χ| -2α 2 c 2 with 0 < α 1 , α 2 < 1
2 and c 1 , c 2 ∈ L ∞ (T) that are continuous and nonzero in 1. We have

T N (f 1 )T N (f 2 ) = N 2α 1 +2α 2 C α 1 C α 2 c 1 (1)c 2 (1) K α 1 ,α 2 + o(N 2α 1 +2α 2 ). with C α 1 , C α 2 and K α 1 ,α 2 as in Theorem 1.

Now we give a lemma which is useful to prove Theorem 4.

Lemma 1 There exits a constant H α 1 α 2 such that for all (x, y)

∈ [0, 1] 2 , x = y |y -x| 2α 1 +2α 2 -1 ≤ 1 0 |x -t| 2α 1 -1 |y -t| 2α 2 -1 dt ≤ H α 1 α 2 |x -y| 2α 1 +2α 2 -1 , with H α 1 α 2 = B(2α 1 , 2α 2 ) + +∞ 0 (v 2α 1 -1 (1 + v) 2α 2 -1 + v 2α 2 -1 (1 + v) 2α 1 -1 )dv
that is also

H α 1 α 2 = B(2α 1 , 2α 2 ) + B(2α 2 , 3 -2α 1 -2α 2 ) + B(2α 1 , 3 -2α 1 -2α 2 ).
Then we have, as corollary of Theorem 3

Theorem 4 With the hypotheses of Theorem 3, if γ α 1 ,α 2 is such that T N (f 1 )T N (f 2 ) ∼ N 2α 1 +2α 2 c 1 (1)c 2 (1)γ α 1 α 2 we have the bounds ψ(α 1 + α 2 ) C α 1 C α 2 C α 1 +α 2 ≤ γ α 1 ,α 2 ≤ H α 1 α 2 C α 1 C α 2 C α 1 +α 2 1 α 1 + α 2 , with ψ(α) = 1 2α 2 4α+1 + 2 Γ 2 (2α+1) Γ(4α+2) 1 2 
.

If we consider now the two symbols f 1,χ 0 = |χ 0 -χ| -2α 1 c 1 and f 2,χ 0 = |χ 0 -χ| -2α 2 c 2 with χ 0 ∈ T it is known (see [START_REF] Rambour | Formulas for the inverses of Toeplitz matrices with polynomially singular symbols[END_REF]) that

T N (|χ 0 -χ| -2α c) = ∆ 0 (χ 0 )T N |1 -χ| -2α c χ 0 ∆ -1 0 (χ 0 )
where c χ 0 (χ) = c(χ 0 χ) and where ∆ 0 (χ 0 ) is the diagonal matrix defined by (∆ 0 (χ 0 )) i,j = 0 if i = j and (∆ 0 (χ 0 )) i,i = χ i 0 . Hence we have the following corollary of Theorems 3 and 4

Corollary 1 With the previous notations and hypotheses we have 

T N (f 1,χ 0 )T N (f 2,χ 0 ) ∼ N -2α 1 -2α 2 C α 1 C α 2 c 1 (χ 0 )c 2 (χ 0 ) K α 1 ,α 2
A(T, r) (1 ≥ r > 0 if 1 2 > α 1 > 0 and r ≥ 2 if 0 > α 1 > -1 2 ) we have σ(M ) = C α 1 c(χ 1 ) R j=2 |1 -χ j | -2α j M 2α 1 -1 + o(M 2α 1 -1 ) uniformly in M .
This lemma and the proof of Theorem 3 allow us to obtain

Theorem 5 Let f1 = |1 -χ| -2α p j=1 |χ j -χ| -2α j c 1 and f2 = |1 -χ| -2β q j=1 | χj -χ| -2α j c 2 with 0 < α, β < 1 2 , α > max 1≤j≤p (α j ), β > max 1≤j≤q (β j ), χ j = 1, χj = 1 and c 1 , c 2 two regular functions with c 1 ∈ A(T, r 1 ), c 2 ∈ A(T, r 2 ) for 1 ≥ r 1 , r 2 > 0. Then T N ( f1 )T N ( f2 ) ∼ CN 2α+2β K α,β with C = c 1 (1)c 2 (1)C α C β p j=1 |1 -χ j | +2α j q j=1 |1 -χj | +2β j .
With the same hypotheses on α and β we can now consider

T N ( f1,χ 0 )T N ( f2,χ 0 ) with f1,χ 0 = |χ 0 -χ| -2α p j=1 |χ j -χ| -2α j c 1 and f2,χ 0 = |χ 0 -χ| -2β q j=1 | χj -χ| -2α j c 2 , with ∀j ∈ {1, • • • , p} χ j = χ 0 and ∀h ∈ {1, • • • , q} χh = χ 0 .
We obtain the corollary Corollary 2 With the previous notations and hypotheses we have

T N ( f1,χ 0 )T N ( f2,χ 0 ) ∼ N 2α+2β C χ 0 K α 1 ,α 2 with C χ 0 = C α C β c 1 (χ 0 )c 2 (χ 0 ) p j=1 |χ 0 -χ j | -2α j q j=1 |χ 0 -χ j | -2β j .
3 Demonstration of Theorem 3

Let us recall the following Widom's result ( see, for instance, [START_REF] Böttcher | On the eigenvalues of certain canonical higher-order ordinary differential operators[END_REF]).

Lemma 3 Let A N = (a i,j ) N -1 i,j=0 be an N × N matrix with complex entries. We denote by G N the integral operator on L 2 [0, 1] with kernel

g N (x, y) = a [N x],[N y] , (x, y) ∈ (0, 1) 2 .
Then the spectral norm of A N and the operator norm of G N are related by the equality

A N = N G N .
Denote by K N and K α 1 ,α 2 the integral operators on L 2 (0, 1) with the kernels, defined for x = y by

k N (x, y) = N -2α 1 -2α 2 +1 0≤u≤N,u =[N x],u =[N y] [N x] -u 2α 1 -1 [N y] -u 2α 2 -1 and k α 1 ,α 2 (x, y) = 1 0 |x -t| 2α 1 -1 |y -t| 2α 2 -1 dt.
To prove Theorem 3 we first assume that the following lemma is true.

Lemma 4 The operator K N converges to K α 1 ,α 2 in the operator norm on L 2 (0, 1). Assume Lemma 4 is true. Suppose c 1 = c 2 = 1. Then put T 1,N , T 2,N , D 1,N , D 2,N the (N + 1) × (N + 1) matrices defined by if k = l (T 1,N ) (k+1,l+1) = C α 1 |k -l| 2α 1 -1 (T 2,N ) (k+1,l+1) = C α 2 |k -l| 2α 2 -1 , and (T 1,N ) (k+1,k+1) = 0, (T 2,N ) (k+1,k+1) = 0. On the other hand (D 1,N ) (k+1,l+1) = (T N (f 1 )) (k+1,l+1) -(T 1,N ) (k+1,l+1) , (D 2,N ) (k+1,l+1) = (T N (f 2 )) (k+1,l+1) -(T 2,N ) (k+1,l+1) .
We can remark that D 1,N and D 2,N are Toeplitz matrices such that (D 1,N ) (k+1,l+1) = o(|k -l| 2α 1 -1 ) and (D 2,N ) (k+1,l+1) = o(|k -l| 2α 2 -1 ) (see [START_REF] Brockwell | Times series : theory and methods[END_REF]) and this implies (see [START_REF] Böttcher | Norms of Teplitz matrices with Fisher-Hartwig symbols[END_REF])

D 1,N = o(N 2α 1 ) and D 2,N = o(N 2α 2 ).
Then we have the upper bound

T N (f 1 )T N (f 2 ) -T 1,N T 2,N ≤ D 1,N T 2,N + D 2,N T 1,N + D 1,N D 2,N
and (see [START_REF] Böttcher | Norms of Teplitz matrices with Fisher-Hartwig symbols[END_REF])

D 1,N T 2,N ≤ D 1,N T 2,N = o(N 2α 1 )O(N 2α 2 ) = o(N 2α 1 +2α 2 ) D 2,N T 1,N ≤ D 2,N T 1,N = o(N 2α 2 )O(N 2α 1 ) = o(N 2α 1 +2α 2 ). D 1,N D 2,N ≤ D 1,N D 2,N = o(N 2α 1 )o(N 2α 2 ) = o(N 2α 1 +2α 2 ). Hence T N (f 1 )T N (f 2 ) = T 1,N T 2,N + o(N 2α 1 +2α 2 ). Lemma 3 implies T 1,N T 2,N N = N 2α 1 +2α 2 -1 K N
and with Lemma 4 we obtain lim

N →+∞ K N = K α 1 α 2 that
ends the proof in the case where the regular function equals 1. Now assume that c 1 , c 2 are any continuous positive functions in L ∞ (T). Let c1 and c2 defined by ∀j ∈ {1, 2} cj (θ) = c j (θ) if θ = 1 and cj (1) = 0. If f1 = |1 -χ| -2α 1 c1 and f2 = |1 -χ| -2α 2 c2 we have (see [START_REF] Böttcher | Norms of Teplitz matrices with Fisher-Hartwig symbols[END_REF])

T N f1 = o(N 2α 1 ) TN f2 = o(N 2α 2 ).
Hence

T N f1 T N f2 = o(N -2α 1 -2α 2 ). Since f 1 = |1-χ| -2α 1 (c 1 +c 1 (1)) and f 2 = |1-χ| -2α 2 (c 2 + c 2 (1)) we have T N (f 1 )T N (f 2 ) -T N c 1 (1)|1 -χ| -2α 1 T N c 2 (1)|1 -χ| -2α 2 = o(N 2α 1 +2α 2 )
and we finally get, via the beginning of the proof

T N (f 1 )T N (f 2 ) = N 2α 1 +2α 2 C α 1 C α 2 c 1 (1)c 2 (1) K α 1 α 2 + o(N 2α 1 +2α 2 )
which is the expected formula. We are therefore left with proving Lemma 4. Proof of the lemma 4: Fix µ, 0 < µ < 1 sufficiently close to 1 such that µ > max(1

-2α 1 , 1 -2α 2 , 1 2 ). Put k 1 N (x, y) = k N (x, y) if |x -y| > N µ-1 , 0 otherwise k 2 N (x, y) = k N (x, y) if |x -y| < N µ-1 , 0 otherwise k 1 α 1 ,α 2 ,N (x, y) = k α 1 ,α 2 (x, y) if |x -y| > N µ-1 , 0 otherwise. k 2 α 1 ,α 2 ,N (x, y) = k α 1 ,α 2 (x, y) if |x -y| < N µ-1 , 0 otherwise. If we denote by K 1 N , K 1 α 1 ,α 2 ,N , K 2 α 1 ,α 2 ,N the integral operator on L 2 (0, 1) with the kernels h 1 N , h 1 N , k 1 N k 1 α 1 ,α 2 ,N , k 2 α 1 ,α 2 ,
N respectively. We have

K α 1 ,α 2 -K N ≤ K 1 α 1 ,α 2 ,N -K 1 N + K 2 α 1 ,α 2 ,N + K 2 N .
Hence we have to show that lim

N →+∞ K 1 α 1 ,α 2 ,N -K 1 N = 0, lim N →+∞ K 2 α 1 ,α 2 ,N = 0, lim N →+∞ K 2 N = 0.
First we prove the following lemma.

Lemma 5 When N goes to the infinity

K 1 α 1 ,α 2 ,N -K 1 N → 0 Proof : To prove that K 1 α 1 ,α 2 ,N -K 1 N → 0 it suffices to show that |k 1 N (x, y) -k 1 α 1 ,α 2 | converges uniformly to zero for |x -y| > N µ-1 .
First we may assume that x < y and we consider the case

[N x] > N µ and [N y] < N -N µ . Next we study the cases [N x] ≤ N µ and [N y] ≥ N -N µ .
For |x -y| > N µ-1 we have to consider the difference

S N (x, y) = 1 N N u=0,u =[N x],u =[N y] [N x] N - u N 2α 1 -1 [N y] N - u N 2α 2 -1 - 1 0 |x -t| 2α 1 -1 |y -t| 2α 2 -1 dt.
Let S i,N (x, y), 1 ≤ i ≤ 7 be the following differences

S 1,N (x, y) = 1 N [N x]-N µ 1 u=0 [N x] N - u N 2α 1 -1 [N y] N - u N 2α 2 -1 - [Nx] N -N µ 1 -1 0 |x -t| 2α 1 -1 |y -t| 2α 2 -1 dt, S 2,N (x, y) = 1 N [N x]-1 [N x]-N µ 1 +1 [N x] N - u N 2α 1 -1 [N y] N - u N 2α 2 -1 - [Nx]-1 N [Nx] N -N µ 1 -1 + 1 N |x -t| 2α 1 -1 |y -t| 2α 2 -1 dt, S 3,N (x, y) = 1 N [N x]+N µ 2 [N x]+1 [N x] N - u N 2α 1 -1 [N y] N - u N 2α 2 -1 - [Nx] N +N µ 2 -1 [Nx]+1 N |x -t| 2α 1 -1 |y -t| 2α 2 -1 dt, S 4,N (x, y) = 1 N [N y]-N µ 3 [N x]+1+N µ 2 [N x] N - u N 2α 1 -1 [N y] N - u N 2α 2 -1 - [Ny] N -N µ 3 -1 [Nx]+1 N +N µ 2 -1 |x -t| 2α 1 -1 |y -t| 2α 2 -1 dt, S 5,N (x, y) = 1 N [N y]-1 [N y]-N µ 3 +1 [N x] N - u N 2α 1 -1 [N y] N - u N 2α 2 -1 - [Ny]-1 N [Ny]+1 N -N µ 3 -1 |x -t| 2α 1 -1 |y -t| 2α 2 -1 dt, S 6,N (x, y) = 1 N [N y]+N µ 4 [N y]+1 [N x] N - u N 2α 1 -1 [N y] N - u N 2α 2 -1 - [Ny] N +N µ 4 -1 [Ny]+1 N |x -t| 2α 1 -1 |y -t| 2α 2 -1 dt, S 7,N (x, y) = 1 N N [N y]+N µ 4 +1 [N x] N - u N 2α 1 -1 [N y] N - u N 2α 2 -1 - 1 [Ny]+1 N +N µ 4 -1 |x -t| 2α 1 -1 |y -t| 2α 2 -1 dt with 0 < µ 1 < µ, 0 < µ 2 < µ, 0 < µ 3 < µ, 0 < µ 4 < µ. We can remark that S 1,N (x, y) ∼ [Nx] N -N µ 1 -1 0 [N x] N -t 2α 1 -1 [N y] N -t 2α 2 -1 -(x -t) 2α 1 -1 (y -t) 2α 2 -1 dt.
We may study the two differences

S ′ 1,N (x, y) = [Nx] N -N µ 1 -1 0 [N x] N -t 2α 1 -1 -(x -t) 2α 1 -1 [N y] N -t 2α 2 -1 dt and S ′′ 1,N (x, y) = [Nx] N -N µ 1 -1 0 (x -t) 2α 1 -1 [N y] N -t 2α 2 -1 -(y -t) 2α 2 -1 dt. Since | [N x]-x x-t | ≤ N -µ 1 we have [N x] N -t 2α 1 -1 -(x -t) 2α 1 -1 = O(N -µ 1 )
and

|S ′ 1,N (x, y)| ≤ O(N -µ 1 ) [Nx] N -N µ 1 -1 0 [N y] N -t 2α 2 -1 dt = O(N -µ 1 ) = o(1).
The same method provides

S ′′ 1,N (x, y)| = O(N -µ ) = o(1)
. As previously we have now

S 2,N (x, y) ∼ [Nx]-1 N [Nx] N -N µ 1 -1 + 1 N [N x] N -t 2α 1 -1 [N y] N -t 2α 2 -1 -(x -t) 2α 1 -1 (y -t) 2α 2 -1 dt.
Obviously we have to consider the differences

S ′ 2,N (x, y) = [Nx]-1 N [Nx] N -N µ 1 -1 + 1 N [N x] N -t 2α 1 -1 -(x -t) 2α 1 -1 [N y] N -t 2α 2 -1 dt and S ′′ 2,N (x, y) = [Nx]-1 N [Nx] N -N µ 1 -1 + 1 N (x -t) 2α 1 -1 [N y] N -t 2α 2 -1 -(y -t) 2α 2 -1 dt.
With the main value theorem we can write

S ′ 2,N (x, y) = -(-2α 1 + 1) [N x] N -x [Nx]-1 N [Nx] N -N µ 1 -1 + 1 N c 2α 1 -2 x,N (t) [N y] N -t 2α 2 -1 dt with c x,N (t) > N -1 and [Nx]-1 N [Nx] N -N µ 1 -1 + 1 N [N y] N -t 2α 2 -1 dt = O(N µ 1 -µ ). So S ′ 2,N (x, y) = O(N µ 1 -µ)-2α 1 +1
). We can remark that -2α 1 + 1µ < 0 ⇐⇒ -2α 1 + 1 < µ. Hence if -2α 1 + 1 < µ and µ 1 sufficiently little we have S ′ 2,N (x, y) = o(1). Likewise we have S ′′ 2,N (x, y) = O N -1+(µ-1)(2α 2 -2) . Hence µ > -2α 2 +1 -2α 2 +2 ⇒ S ′′ 2,N (x, y) = o(1), and since

-2α 2 + 1 > -2α 2 +1
-2α 2 +2 we have S ′′ 2,N (x, y) = o(1). We prove exactly as previously

µ > -2α 1 + 1 and µ > -2α 2 + 1 ⇒ S 3,N = o(1) µ 2 > 0 and µ 3 > 0 ⇒ S 4,N = o(1)
Swapping x and y we obtain µ > -2α 2 + 1 and µ > -2α 1 +1 -2α 1 +2 then S 5,N (x, y) = o(1). µ > -2α 2 + 1 and µ > -2α 1 +1

-2α 1 +2 then S 6,N (x, y) = o(1). µ > 0 and µ 4 > 0 then S 7,N (x, y) = o(1). To complete the proof we have still to bound the integrals

[Nx] N -N µ 1 -1 + 1 N [Nx] N -N µ 1 -1 |x -t| 2α 1 -1 |y -t| 2α 2 -1 dt, [Nx]+1 N [Nx]-1 N |x -t| 2α 1 -1 |y -t| 2α 2 -1 dt [Nx] N +N µ 2 -1 + 1 N [Nx] N +N µ 2 -1 |x -t| 2α 1 -1 |y -t| 2α 2 -1 dt, [Ny] N -N µ 3 -1 + 1 N [Ny] N -N µ 3 -1 |x -t| 2α 1 -1 |y -t| 2α 2 -1 dt [Ny]+1 N [Ny]-1 N |x -t| 2α 1 -1 |y -t| 2α 2 -1 dt, [Ny] N +N µ 4 -1 + 1 N [Ny] N +N µ 4 -1 |x -t| 2α 1 -1 |y -t| 2α 2 -1 dt
which are obviously in o(1)with the hypotheses on µ.

Assume now 1 -N µ-1 > y > N µ-1 > x > 0. For this case we have to consider the decomposition S N (x, y) =

6 i=1 S i,N (x, y) with S 1,N (x, y) = 1 N [N x]-1 u=0 [N x] N - u N 2α 1 -1 [N y] N - u N 2α 2 -1 - [Nx]-1 N 0 |x -t| 2α 1 -1 |y -t| 2α 2 -1 dt,
and S i,N defined as S i+1,N in the previous case. We still consider the two differences

S ′ 1,N (x, y) = [Nx]-1 N 0 [N x] N -t 2α 1 -1 -(x -t) 2α 1 -1 [N y] N -t 2α 2 -1 dt and S ′′ 1,N (x, y) = [Nx]-1 N 0 (x -t) 2α 1 -1 [N y] N -t 2α 2 -1 -(y -t) 2α 2 -1 dt.
We have

S ′ 1,N (x, y) ≤ N (µ-1)(2α 2 -1) O ( [N x] N ) 2α 1 -x 2α 1 = N (µ-1)(2α 2 -1) O(N -2α 1 ).
We can remark that (µ -1)

(2α 2 -1) -2α 1 < 0 ⇐⇒ µ > 2α 1 2α 2 -1 + 1. Since 1 -2α 1 > 2α 1 2α 2 -1 + 1 the hypotheses on µ give S ′ 1,N (x, y) = o(1). Moreover [N y] N -t 2α 2 -1 -(y -t) 2α 2 -1 = O(N -µ ) and S ′′ 1,N (x, y) = O(N -µ ) = o(1)
. The differences S i,N for 2 ≤ i ≤ 6 are as in the first case. The case N -N µ < [N y] < N can be tackled identically.

2

Proof of K 2 α 1 ,α 2 ,N → 0 From the lemma 1 we have, for g ∈ L 2 (T) et y ∈ [0, 1] K 2 α 1 ,α 2 ,N (g)(x) = 1 0 k α 1 ,α 2 (x, y)g(y)dy = x+N µ+1 x-N µ-1 f α 1 ,α 2 (x, y)g(y)dy ≤ x+N µ+1 x-N µ-1 H α 1 ,α 2 |x -y| 2α 1 +2α 2 -1 g(y)dy = K ′2 α 1 ,α 2 ,N (g)(y)
where K ′2 α 1 ,α 2 ,N is the integral operator on L 2 (0, 1) with kernel

k ′ α 1 ,α 2 ,N (x, y) = H α 1 ,α 2 |x -y| 2α 1 2α 2 -1 if |x -y| < N µ-1 and k α 1 ,α 2 ,′ N (x, y) = 0 otherwise. If g 2 = 1we have 1 0 |K 2 α 1 ,α 2 ,N (g)(x)| 2 dx = = 1 0 1 0 k α 1 ,α 2 ,N (x, y)g(y)dy 2 dx ≤ 1 0 1 0 k α 1 ,α 2 ,N (x, y)|g(y)|dy 2 dx ≤ 1 0 1 0 k ′ α 1 ,α 2 ,N (x, y)|g(y)|dy 2 dx ≤ K ′2 α 1 ,α 2 ,N 2 
. [START_REF] Böttcher | Norms of Teplitz matrices with Fisher-Hartwig symbols[END_REF]). Proof of K 2 N → 0 As in [START_REF] Böttcher | Norms of Teplitz matrices with Fisher-Hartwig symbols[END_REF] we define the integral operator K2

Hence K 2 α 1 ,α 2 ,N ≤ K ′2 α 1 ,α 2 ,N = O N (µ-1)(2α 1 2α 2 ) = o(1) (see
N on L 2 (0, 1) with the kernel k2 N defined by k 2 N in the staircase-like bordered strip |[N x] -[N y]| < N µ and be zero otherwise. On the squares where k2

N (x, y) -k 2 N (x, y) = 0 we have |[N x] -[N y]| ∼ N µ
and, as for the proof of the lemma 4, for (x, y) in this squares

k2 N (x, y) -k 2 N (x, y) ∼ 1 0 |x -t| 2α 1 -1 |y -t| 2α 2 -1 dt
and always with the lemma 1

| k2 N (x, y) -k 2 N (x, y)| ≤ H α 1 ,α 2 |x -y| 2α 1 +2α 2 -1 = O(N (µ-1)(2α 1 +2α 2 -1)
). As the difference h2 N (x, y)h 2 N (x, y) is supported in about 4(N -N µ ) = O(N ) squares of side length 1 N we have the squared Hilbert-Schmidt norm

K2 N -K 2 N = O N 1 N 2 N (µ-1)(4α 1 +4α 2 -2) . If 2α 1 + 2α 2 -1 > 0 we have (µ -1)(4α 1 + 4α 2 -2) -1 < 0 and K2 N -K 2 N → 0. ( 2 
) Otherwise since µ > 1 2 > -4α 1 -4α 2 +1 -4α 1 -4α 2 +2
we have also [START_REF] Bercu | Large deviations for quadratic forms of stationnary Gaussian processes[END_REF]. We are therefore with proving K2 N → 0. Let B N be the matrix such

(B N ) k+1,l+1 = C α 1 C α 2 u=0,u =k,u =l |k -u| 2α 1 -1 |l -u| 2α 2 -1 if |k -l| ≤ N µ and (B N ) k+1,l+1 = 0
otherwise. We have to prove the following technical lemma

Lemma 6 ∃ M α 1 ,α 2 > 0 such for k = l B k+1,l+1 ≤ M α 1 ,α 2 |k -l| 2α 1 +2α 2 -1 Proof : Assume l > k and write N u=0,u =k,u =l |k -u| 2α 1 -1 |l -u| 2α 2 -1 = k-1 u=0, |k -u| 2α 1 -1 |l -u| 2α 2 -1 + + l-1 k+1 |k -u| 2α 1 -1 |l -u| 2α 2 -1 + N l+1 |k -u| 2α 1 -1 |l -u| 2α 2 -1 .
The Euler and Mac-Laurin formula provides

k-1 u=0,u =k |k -u| 2α 1 -1 |l -u| 2α 2 -1 = = k-1 0 (k -u) 2α 1 -1 (l -u) 2α-1 du + 1 2 (l -k + 1) 2α 2 -1 + k 2α 1 -1 l 2α 2 -1 (1 + o(1)) .
Since 2α 1 -1 < 0 and 2α 2 -1 < 0 one can find easily M 1 > 0 such that

(l -k + 1) 2α 2 -1 + k 2α 1 -1 l 2α 2 -1 < M 1 (l -k) 2α 1 +2α 2 -1 .
And we have also

k-1 0 (k -u) 2α 1 -1 (l -u) 2α-2 du =(l -k) 2α 1 +2α 2 -1 k l-k 1 u 2α 1 -1 (1 + u) 2α 2 -1 du ≤(l -k) 2α 1 +2α 2 -1 +∞ 1 u 2α 1 -1 (1 + u) 2α 2 -1 du.

Analogously one can show that

l-1 u=k+1 |u -k| 2α 1 -1 |l -u| 2α 2 -1 = = l-1 k+1 (u -k) 2α 1 -1 (l -u) 2α-1 du + 1 2 (l -k -1) 2α 2 -2 + (l -k -1) 2α 1 -1 (1 + o(1)) and l-1 k+1 (u -k) 2α 1 -1 (l -u) 2α-1 du = (l -k) 2α 2 -1 l-k-1 1 v 2α 1 -1 1 - v l -k 2α 2 -1 dv = (l -k) 2α 1 +2α 2 -1 1-1 l-k 1 l-k w 2α 1 -1 (1 -w) 2α 2 -1 dw ≤ (l -k) 2α 1 +2α 2 -1 1 0 w 2α 1 -1 (1 -w) 2α 2 -1 dw.
The last sum provides

N u=l+1 |u -k| 2α 1 -1 |l -u| 2α 2 -1 = N l+1 (u -k) 2α 1 -1 (u -l) 2α-1 du + 1 2 (l -k + 1) 2α 1 -2 + (N -k) 2α 1 -1 (N -k) 2α 2 -1 (1 + o(1)) .
We have

(N -k) 2α 1 -1 (N -k) 2α 2 -1 ≤ (l -k) 2α 1 +2α 2 -2 ≤ (l -k) 2α 1 +2α 2 -1 and N l+1 (u -k) 2α 1 -1 (u -l) 2α-1 du = (l -k) 2α 2 -1 N -k l+1-k v 2α 1 -1 v l -k -1 2α 2 -1 dv = (l -k) 2α 1 +2α 2 -1 N-k l-k 1+ 1 l-k w 2α 1 -1 (w -1) 2α 2 -1 dw ≤ (l -k) 2α 1 +2α 2 -1 +∞ 1 w 2α 1 -1 (w -1) 2α 2 -1 dw
that ends the proof of the lemma. 2

Using lemma 3 we can write

H2 N = 1 N N 2α 1 +2α 2 +1 B N . (3) 
Consider now the matrix

C N defined by (C N ) k+1,l+1 = 0 for |k -l| ≥ N µ , (C N ) k+1,l+1 = M α 1 α 2 |k -l| -2α 1 -2α 2 -1 for 0 < |k -l| < N µ , (C N ) k+1,k+1 = C α 1 C α 2 ∞ u=0 u -2α 1 -2α 2 -2 if -2α 1 -2α 2 -1 < 0, (C N ) k+1,k+1 = 2N -2α 1 -2α 2 -1 1 0 | k N -t| -2α 1 -2α 2 -2 dt if -2α 1 -2α 2 -1 > 0. If x(x 1 , • • • , x N +1 ) and y(y 1 , • • • , y N +1 ) are two vectors of R N +1 we have B N (x)|y = N +1 i=1   N +1 j=1 (B N ) i,j x j   y i ≤ N +1 i=1   N +1 j=1 (B N ) i,j |x j |   |y i | ≤ N +1 i=1   N +1 j=1 (C N ) i,j |x j |   |y i | and B N ≤ C N . But C N ≤ O( N µ i=1 i -2α 1 -2α 2 -1 = O N µ(-2α 1 -2α 2 ) .
and from the equality (3)

K2 α 1 ,α 2 ,N = O N (2α 1 +2α 2 )(1-µ)
hence K2 α 1 ,α 2 ,N → 0 that achieves the proof of the lemma 4. Assume y > x. We have

x 0 (x -t) 2α 1 -1 (y -t) 2α 2 -1 dt = x 0 u 2α 1 -1 (y -x + u) 2α 2 -1 du = (y -x) 2α 2 -1 x 0 u 2α 1 -1 (1 + u y -x ) 2α 2 -1 du = (y -x) 2α 1 +2α 2 -1 x y-x 0 v 2α 1 -1 (1 + v) 2α 2 -1 dv. Consequently x 0 (x -t) 2α 1 -1 (y -t) 2α 2 -1 dt ≤ (y -x) 2α 1 +2α 2 -1 ∞ 0 v 2α 1 -1 (1 + v) 2α 2 -1 dv.
We can also write

y x (t -x) 2α 1 -1 (y -t) 2α 2 -1 dt = y-x 0 u 2α 1 -1 (y -x -u) 2α 2 -1 du = (y -x) 2α 2 -1 y-x 0 u 2α 1 -1 (1 - u y -x ) 2α 2 -1 du = (y -x) 2α 1 +2α 2 -1 y-x 0 v 2α 1 -1 (1 -v) 2α 2 -1 dv and y x (t -x) 2α 1 -1 (y -t) 2α 2 -1 ≤ (y -x) 2α 1 +2α 2 -1 1 0 v 2α 1 -1 (1 -v) 2α 2 -1 dv.
Finally we have

1 y (t -x) 2α 1 -1 (t -y) 2α 2 -1 dt = 1-y 0 (u + y -x) 2α 1 -1 u 2α 2 -1 du = (y -x) 2α 1 -1 1-y 0 u y -x + 1 2α 1 -1 u 2α 2 -1 du = (y -x) 2α 1 +2α 2 -1 1-y y-x 0 (v + 1) 2α 1 -1 v 2α 2 -1 dv and 1 y (t -x) 2α 1 -1 (t -y) 2α 2 -1 dt ≤ (y -x) 2α 1 +2α 2 -1 +∞ 0 (v + 1) 2α 1 -1 v 2α 2 -1 dv.
thus it implies that

1 0 |x -u| 2α 1 -1 |y -u| 2α 2 -1 du ≤ H α 1 α 2 |y -x| 2α 1 +2α 2 -1
with

H α 1 α 2 = B(-2α 1 , -2α 2 ) + B(2α 1 , 3 -2α 1 -2α 2 ) + B(2α 2 , 3 -2α 1 -2α 2 ).
To obtain the lower bound we write,

x 0 (x -u) 2α 1 -1 (y -u) 2α 2 -1 du ≥ x 0 (y -u) 2α 1 +2α 2 -2 du
that is also

x 0 (x -u) 2α 1 -1 (y -u) 2α 2 -1 du ≥ y 2α 1 +2α 2 -1 -(y -x) 2α 1 +2α 2 -1 2α 1 + 2α 2 -1 and x 0 (x -u) 2α 1 -1 (y -u) 2α 2 -1 du ≥ 0.
Likewise we have

1 y (u -x) 2α 1 -1 (y -u) 2α 2 -1 du ≥ 0.
Since we have also

y x (u -x) 2α 1 -1 (y -u) 2α 2 -1 du ≥ (y -x) 2α 1 -2α 2 -1
we can conclude that

1 0 |x -u| 2α 1 -1 |y -u| 2α 2 -1 du ≥ |y -x| 2α 1 +2α 2 -1 .

Proof of Theorem 4

Taking into account that

1 0 |x -t| 2α 1 -1 |y -t| 2α 2 -1 dt ≤ H α 1 α 2 |x -y| 2α 1 +2α 2 -1
we get K α 1 ,α 2 ≤ K α 1 +α 2 where K α 1 +α 2 is the integral operator on L 2 (0, 1) with kernel (x, y) → |x -y| 2α 1 +2α 2 -1 (see the demonstration of K α 1 ,α 2 ,N goes to zero in the proof of Lemma 5). Using the following proposition (see [START_REF] Böttcher | Norms of Teplitz matrices with Fisher-Hartwig symbols[END_REF])

Proposition 1 If f = |χ -χ 0 | -2α c with c ∈ L ∞ (T)
continuous and nonzero at χ 0 ∈ T and α ∈]0, 1 2 [, if K α is the integral operator on L 2 (0, 1) with kernel (x, y) → |x -y| 2α-1 then we have

T N (f ) ∼ N 2α C α K α c(χ 0 )
and ψ(α) ≤ K α ≤ 1 α we obtain the upper bound for K α 1 +α 2 . Let 1 be the function which is identically 1 on [0, 1]. We have, from Lemma 1

K α 1 ,α 2 ≥ K α 1 ,α 2 1 1 = K α 1 ,α 2 1 ≥ K α 1 +α 2 1 . Since K α 1 +α 2 1(1)(x) = 1 2(α 1 +α 2 ) x 2(α 1 +α 2 ) + (1 -x) 2(α 1 +α 2 )
, we obtain that K α 1 ,α 2 is greater than or equal to

1 4(α 1 + α 2 ) 1 0 x 2(α 1 +α 2 ) + (1 -x) 2(α 1 +α 2 ) 2 dx = ψ(α 1 , α 2 ).
This prove the lower bound for K α 1 ,α 2 . 

(M ) = v<-S 0 σ α (M -v)ĉ(v) + S 0 ≥v≥-S 0 σ α (M -v)ĉ(v) + v>S 0 σ α (M -v)ĉ(v) Obviously v<-S 0 σ α (M -v)ĉ(v) ≤ max w∈Z | σ α (w)| v<-S 0 |ĉ(v)| and if c ∈ A(r, T) and S 0 = N ν 0 < ν < 1 we can conclude v<-S 0 σ α (M -v)ĉ(v) = O(N -rν ). Now if ν is such that -rν < 2α -1 we obtain v<-S 0 σ α (M -v)ĉ(v) = o(N 2α-1 ). To have rν < 2α + 1 with ν ∈]0, 1[ and α ∈]0, 1 2 [ we must choose r in ]0, 1]. Moreover if α ∈] -1 2 , 0[ we must pick α in [2, +∞[. Clearly we have also v>S 0 σ α (M -v)ĉ(v) = o(N 2α-1 ). Moreover we have, if |M | ≥ 2S 0 , S 0 ≥v≥-S 0 σ α (M -v)ĉ(v) = C α |M | 2α-1 c(1) (1 + o(1))
that is the announced result.

Second step : two singularities

With the same notations than previously we can consider the Fourier coefficients of the function σ = σ α 2 (χ 0 χ)σ α 1 c with α 1 < α 2 and χ 0 = 1. Following the first step we can assume c = 1 without lost of generality. For all M ∈ Z we have

σ α 2 (χ 0 χ) = |1 -χ 0 χ| α 2 (M ) = χ -M 0 σ α 2 (M ).
Let ǫ > 0 and S 0 > 0 such that S > S 0 implies

• -S≤v≤S σ α 1 (v)(χ -v 0 ) = σ α 1 (χ -1 0 )(1 + R 1 ) with |R 1 | < ǫ. • -S≤v≤S σ α 2 (v)(χ -v 0 ) = σ α 2 (χ -1 0 )(1 + R 2 ) with |R 2 | < ǫ. • For all S such that |S| > S 0 we have σ 1 (S) = C α 1 |S| -2α 1 -1 (1 + R 1,S ) with R 1,S = O(ǫ).
• For all S such that |S| > S 0 we have

σ 2 (S) = C α 2 |S| -2α 2 -1 (1 + R 2,S ) with R 2,S = O(ǫ). Since σ(M ) = v∈Z σ α 1 (M -v)χ -v 0 σ α 2 (v) and σ(-M ) = v∈Z σ α 1 (M -v)χ v 0 σ α 2 (v)
we can assume, without loss of generality, that M > 0. The aim of the rest of this demonstration is to prove that for M sufficiently large we have the formula

σ(M ) = C α 1 |M | 2α 1 -1 c(1) n j=2 |χ 0 -χ| -2α j (1 + R M ) with |R M | = O(ǫ).
Let ν be a fixed real such 0 < ν < 1. We write

σ(M ) = 5 i=0 Σ i (M ).
where

Σ 1 (M ) = v≥M +M ν σ α 1 (M -v)χ -v 0 σ α 2 (v) Σ 2 (M ) = M -M ν <v<M +M ν σ α 1 (M -v)χ -v 0 σ α 2 (v) Σ 3 (M ) = M ν ≤v≤M -M ν σ α 1 (M -v)χ -v 0 σ α 2 (v) Σ 4 (M ) = -M ν <v≤M ν σ α 1 (M -v)χ -v 0 σ α 2 (v) Σ 5 (M ) = v≤-M ν σ α 1 (M -v)χ -v 0 σ α 2 (v). Assume now |M ν | > S 0 . We have Σ 1 (M ) = C α 1 C α 2 v≥M +M ν (v -M ) 2α 1 -1 v 2α 2 -1 χ -v 0 (1 + R 1 (M ))
with R 1 (M ) = O(ǫ). An Abel summation provides

v≥M +M ν (v -M ) 2α 1 -1 v 2α 2 -1 χ -v 0 = v≥M +M ν (v -M ) 2α 1 -1 v 2α 2 -1 -(v + 1 -M ) 2α 1 -1 (v + 1) 2α 2 -1 τ v + (M ν ) 2α 1 -1 (M + M ν ) 2α 2 -1 τ S 0 (M )-1
with τ w = w h=1 χ -h 0 . For each v ≥ M + M ν the main value theorem gives us a real

c v v < c v < v + 1 such that (v -M ) 2α 1 -1 v 2α 2 -1 -(v + 1 -M ) 2α 1 -1 (v + 1) 2α 2 -1 = = (-c v -M ) 2α 1 -2 c 2α 2 -2 v ((c v -M )(2α 2 + 1) + c v (2α 1 + 1))
from this equality we infer

(v -M ) 2α 1 -1 v 2α 2 -1 -(v + 1 -M ) 2α 1 -1 (v + 1) 2α 2 -1 = O (v -M ) 2α 1 -2 v 2α 2 -2 and v≥M +M ν (v -M ) 2α 1 -1 v 2α 2 -1 -(v + 1 -M ) 2α 1 -1 (v + 1) 2α 2 -1 τ v = = v≥M +M ν O (v -M ) 2α 1 -2 v 2α 2 -2 = O (M + S 0 (M )) 2α 2 -1 = o(M 2α 1 -1 ) Since (M ν ) 2α 1 -1 (M + M ν ) 2α 2 -1 τ S 0 (M )-1 = o(M 2α 1 -1 )
we have Σ 1 (M ) = o(M 2α 1 -1 ), and Σ 1 (M ) = O(ǫM 2α 1 -1 ) for a sufficiently large M . The bounds M > M ν > S 0 implies

Σ 2 (M ) = M 2α 2 -1 C α 2 |1 -χ 0 | 2α 1 χ -M 0 (1 + R 2 (M ))
with R 2 (M ) = O(ǫ)). Then -α 2 < -α 1 provides Σ 2 (M ) = o(M 2α 1 -1 ). The hypothesis on M gives us

Σ 3 (M ) = C α 1 C α 2 M -M ν v=M ν (M -v) 2α 1 -1 v 2α 2 -1 χ -v 0 (1 + R 3 (M ))
with R 3 (M ) = O(ǫ). Always with an Abel summation we obtain 

M -M ν v=M ν (M -v) 2α 1 -1 v 2α 2 -1 χ -v 0 = A 1 + A 2

Références

  If λ k,N 1 ≤ k ≤ N + 1 are the eigenvalues of T N (f ) with λ 1,N ≤ λ 2,N • • • ≤ λ N +1,N we have lim N →=+∞ λ 1,N = m f and lim N →+∞ λ N +1,N = M f

2. 2

 2 Several Fisher-Hartwig singularities Let r > 0, we denote by A(T, r) the set {g ∈ L 1 (T) | u∈Z |u| r |ĝ(u)| < ∞}. We first state the following lemma Lemma 2 Put σ = R j=1 |χχ j | -2α j c where ∀j, χ j ∈ T and α 1 > max 2≤j≤R (α j ). If c is a regular positive function with c ∈

2 4Demonstration of Lemma 1 and Theorem4 4 . 1

 241 Proof of Lemma 1

5 Demonstration of Theorem 5 5. 1 Demonstration of Lemma 2 5. 1 . 1

 551211 First step : one singularity Put σ α = |1-χ| -2α and σ = |1-χ| -2α c with c ∈ A(r, T), where r will be precise later. First we prove σ(M ) = |M 2α-1 |c(1) (1 + o(1)) uniformly in M . Of course we have for all M ∈ Z σ(M ) = u+v=M σ α (u)ĉ(v). Let ǫ > 0 and an integer S 0 > 0 such that ∀S|S| ≥ S 0 |s|≤S 0 ĉ(s) = c(1) + R S and σ α (S) = C α |S| -2α-1 (1 + r S ) with |R S | ≤ ǫ and |r S | ≤ ǫ. We have σ

5. 2 1 ψ 2 = q j=1 |χ j -χ| -2β j c 2 and ψ 1 ,

 21221 Proof of Theorem 5 and Corollary 2The proof is the same than for the theorem 3. We can write T N ( f1 ) = T1,N + D1,N andT N ( f2 ) = T2,N + D2,N , with if k = l T1,N k+1,l+1 = c 1 (1)C α |l -k| 2α-1 p j=1 |1χ j | -2α j T2,N k+1,l+1 = c 2 (1)C β |l -k| 2β-1 q j=1 |1χ j | -2β j and T1,N k+1,k+1 = 0, T2,N k+1,k+1= 0. Then D1,N and D2,N are Toeplitz matrices with ( D1,N ) k+1,l+1 = o|k-l| 2α-1 and ( D2,N ) k+1,l+1 = o|k-l| 2β-1 . hence we have (see[START_REF] Böttcher | Norms of Teplitz matrices with Fisher-Hartwig symbols[END_REF]) D1,N = o(N 2α ) and D2,N = o(N 2β ). As for the demonstration of Theorem 3 we haveT N ( f1 )T N ( f2 ) = T1,N T2,N + o(N 2α2β ) = CN 2α2β K α,β + o(N 2α+2β ) with C = c 1 (1)c 2 (1)C α C β p j=1 |1χ j | -2α j q j=1 |1χ j | -2β j .Corollary 2 is a direct consequence of the equalityT N (|χ 0 -χ| -2α ψ 1 ) = ∆ 0 (χ 0 )T N |1 -χ| -2α ψ 1,χ 0 ∆ -1 0 (χ 0 ) and T N (|χ 0 -χ| -2β ψ 2 ) = ∆ 0 (χ 0 )T N |1 -χ| -2β ψ 2,χ 0 ∆ -1 0 (χ 0 )where ∆ 0 (χ 0 ) is as in the introduction andψ 1 = p j=1|χ j -χ| -2α j c χ 0 (χ) = ψ 1 (χ 0 χ) and ψ 2,χ 0 (χ) = ψ 2 (χ 0 χ).

with

As previously for each integer v such that

The study of the function

Moreover it is easily seen that

Hence for sufficiently large M we may write Σ 3 (M ) = O(M 2α 1 -1 ). We obtain also

and as for Σ 1 we have Σ 5 (M ) = o(M 2α 1 -1 ). Finally we have obtained the asymptotic expansion

that was the aim of our demonstration.

5.1.3 n and n + 1 singularities.

Assume that for ǫ > 0 and a sufficiently large M we have

j=2 |χχ 0 | -2α j c c ∈ A(r, T) 0 < r < 1 and α 1 > α j , ∀j, 2 ≤ j ≤ n + 1, we prove exactly as for the precedent point that σ ′ has the same property that σ, that ends the proof of the present lemma.