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ABSTRACT

An SOS-based blind equalization algorithm for the SIMO

channel has recently been proposed that has an unprecedented

quadratic complexity in the channel memory, compared to all

existing SOS-based techniques whose complexity is cubic

in this regard. In this paper, we show that this technique

can be adapted to the MIMO channel and we prove that its

complexity is maintained independently from the number of

input/output channels. Simulation tests are reported that sus-

tain the feasibility of this technique in practical observation

conditions.

1. INTRODUCTION

Recent developments in wireless communication systems

include the introduction of Multiple-Input Multiple-Output

(MIMO) channels that enable many useful functionalities:

increasing channel capacity, signal enhancement through re-

ception diversity, direction of arrival estimation and, relevant

to this paper, blind equalization using Second-Order Statis-

tics (SOS). These techniques (such that [2, 4, 3], among many

others) are preferred to Higher-Order Statistics techniques,

such that [6], which require large sample sizes, unaffordable

in a time-varying environment. Blind equalization is sought

after because it suppresses the need for training sequences.

Hence, a larger bandwidth is made available to the system

users. Real-time implementation of blind SOS-based tech-

niques is hindered by a complexity that is cubic in both the

number of receiving antennas and the channel memory. In

practice, while the former is limited, the latter is typically

large. In fact, such complexity is uncommon, compared to

non-blind (supervised) equalization techniques which have

a quadratic complexity. Hence, the introduction of the first

SOS-based blind equalization technique with a quadratic

complexity [7] is an important step towards rendering blind

equalization attractive for practical implementation.

Originally proposed for Single-Input Multiple-Output

(SIMO) channels, we extend the so-called compaction based

algorithm [7] to MIMO channels. The principle of channel

compaction is the processing of small-sized sub-blocks of

the channel correlation matrix, instead of the whole channel

correlation matrix. Such sub-blocks are found that have an

interesting kernel structure leading to a subspace technique

with a negligible complexity. For instance, linear transfor-

mation are derived from these sub-blocks that shorten the

channel response by one or more taps, hence, progressively

reducing Inter-Symbol Interference (ISI) until complete com-

plete Zero-Forcing (ZF) equalization is achieved. As a result,

we obtain the first MIMO SOS-based blind channel equal-

ization technique with a quadratic complexity. Equalizers

computed in this manner are to be used in a non-trivial man-

ner in order to generate an instantaneous mixture of data

from the different users. In a last step, data streams relative

to the different system users are differentiated using appro-

priate source separation techniques. Simulations examples

are conducted that show the effectiveness of this unprece-

dented quadratic-complexity subspace technique in blindly

equalizing arbitrary MIMO channels from a limited number

of noise-corrupted snapshots.

We, first, present the MIMO model in Sec. 2. In Sec.

3, we explain the principle of blind channel compaction, a

channel order reduction technique serving as the basis of the

proposed blind equalization technique. A new ZF equaliza-

tion technique is detailed in Sec. 4. Some practical issues

are addressed in Sec. 5 before simulations are conducted and

commented on in Sec. 6. A conclusion is given in Sec. 7.

2. DATA MODEL

The well-known MIMO channel model is adopted here,

where the c-th receiving antenna, c = 1, · · · , C2, delivers,

at time index t, an observation y(c)(t) that is a superposi-

tion of C1 data streams s(1)(t), · · · , s(C1)(t) (corrupted by

noise and ISI) that originate from different C1 transmitting

antennas. Propagation from the i-th transmitting antenna

to the j-th receiving antenna is modeled as an impulse re-

sponse hi,j = [hi,j
0 , · · · , hi,j

M ]T where M is the largest

order among all impulses responses hi,j , i = 1, · · · , C1

and j = 1, · · · , C2. The C2-dim MIMO channel output

y(t)
def
= [y(1)(t), · · · , y(C2)(t)]T is expressed as function of



the C1-dim input s(t)
def
= [s(1)(t), · · · , s(C1)(t)]T as follows

y(t) = H
[

sT (t), · · · , sT (t − M)
]T

+ n(t)

def
= x(t) + n(t)

Above, in H
def
=

[

H(0), · · · ,H(M)

]

, H(k) is the C2×C1 k-th

tap of the MIMO channel whose l-th row is
[

h1,l
k , · · · , hC1,l

k

]

.

The noise vector n(t) is defined analogously to output vector

y(t). Successive outputs are stacked into the C2L-dim vector

yL(t)
def
=

[

yT (t) · · ·yT (t − L + 1)
]T

= HL

[

s(1)(t), · · · , s(C1)(t), · · · ,

s(1)(t − M − L + 1), · · · ,

s(C1)(t − M − L + 1)
]T

+ nL(t)

where HL
def
=









H 0 · · · 0

0 H · · · 0
. . .

0 · · · 0 H









is the C2L×C1(M +L) chan-

nel filtering matrix, 0 is C2 × C1 and nL(t) is defined simi-

larly as yL(t). We let Ds
def
= Diag(σ1, · · · , σC1

), where σ2
c

stands for the power of symbols from user c and σ2
n is the

noise power. The channel correlation matrix is equal to

R
y
L

def
= E

[

yL(t)yH
L (t)

]

= HL

(

I⊗ D2
s

)

HH
L + σ2

nI (1)

= RL + σ2
nI

where RL
def
= E

[

xL(t)xH
L (t)

]

is the correlation matrix of

the noise-free output. For (1) to hold, we assume (as com-

monly the case in SOS-based techniques such as [2, 4, 3])

that we have i.i.d. symbols uncorrelated from each other and

from the white noise, all being zero-mean. To simplify no-

tation, we drop index L from matrices RL and HL. The

latter can be made left-invertible by deploying enough re-

ceiving antennas [5]. We also handle correlation coefficients

(that are sub-blocks of the correlation matrices) defined as

Γk
def
= E

[

x(t + k)xH(t)
]

and Γ
y
k

def
= E

[

y(t + k)yH(t)
]

,

for k = 0, · · · , M . Outputs are processed by a linear equal-

izer

G
def
=

[

GT
(0), · · · ,G

T
(L−1)

]T

where coefficients G(k) are C2 × C2, resulting in an C2-

dim output GTyL(t), or equivalently, in a channel-equalizer

combined response GTHL. ZF equalization, with eventu-

ally a non-zero delay, is achieved when the latter has the form

[· · · ,0,0,W,0,0, · · ·], where blocks are C2 × C1. The so-

generated output is, then, an instantaneous mixture of output

symbols.

3. BLIND CHANNEL COMPACTION

Blind channel compaction is a channel output processing

technique introduced in [7] that builds a sequence of equiv-

alent SIMO channels with a decreasing order, which ulti-

mately suppresses ISI. We extend it here to MIMO channels.

For this purpose, we adapt the notation HL to introduce the

C2L ×C1(M
′ + L) filtering matrix of an M ′-order arbitrary

channel with response H′ as follows

TL {H′}
def
=











H′0 · · · 0

0 H′ · · · 0

. . .

0 · · · 0 H′











.

We also define a new, but equivalent, MIMO channel

F
def
=

[

H(0)Ds, · · · ,H(M)Ds

]

def
=

[

F(0), · · · ,F(M)

]

through which symbol sources can be seen as having unit

power. In fact, R
y
L = TL {F}TH

L {F} + σ2
nI and

Γk =
[

F(k), · · · ,F(M)

] [

F(0), · · · ,F(M−k)

]H

We can assume that any C2 columns of H are linearly inde-

pendent. Consequently, the rank of Γk is equal to min{(M −
k +1)C1, C2} (in other words, Γk is full column rank, unless

it is large). We assume that C2 is a multiple of 2C1 and that

M + 1 ≥ C2/(2C1). We define

K
def
= M + 1 − C2/(2C1)

so that M−K+1 = C2/(2C1). If K is positive, then the rank

of the C2-square ΓK is given by (M − K + 1)C1 = C2/2.

We form a C2 × C2/2 matrix U (resp. V) whose columns

form an orthonormal set of vectors left (resp. right) orthog-

onal to ΓK , i.e. left orthogonal to
[

F(K), · · · ,F(M)

]

(resp.

to
[

F(0), · · · ,F(M−K)

]

). We can assume (with probability

1) that, if M − K < K , i.e. if K ≥ (M + 1)/2, then
[

F(K), · · · ,F(M)

]

is not related to
[

F(0), · · · ,F(M−K)

]

, and,

so, a vector can not be both left and right orthogonal to ΓK .

In such circumstances, the C2-square [U,V] is full rank. It

is, then, easy to verify that

[U,V]
H

F
def
=

[

Fleft,0C2/2,(M+1−K)C1

0C2/2,(M+1−K)C1
,Fright

]

(2)

where Fleft def
= UH

[

F(0) · · ·F(K−1)

]

and

Fright def
= VH

[

F(M−K+1) · · ·F(M)

]

are C2/2×KC1 matri-

ces. Each row in (2) can be interpreted as an impulse response

of order K − 1 only. However, the right hand side of (2) can

not be considered as a MIMO channel of order K − 1 since

none of the columns is strictly zero. One more step is needed



to achieve this goal. Thanks to the (block) Toeplitz structure

of the channel filtering matrix, we can extend (2) as follows

(

I ⊗ [U,V]
H

)

TM+1 {F} =





Fleft,0

0C2M,C1
,TM

{

F(1)
}

,0
0,Fright





(3)

where

F(1) =

[

0C2/2,(M−K)C1
,Fright

Fleft,0C2/2,(M−K)C1

]

is an (M − 1)-order MIMO channel in the strict sense.

As we are to develop a blind technique based on channel

SOS, we seek a relationship between the correlation matrices

relative to the original and shortened MIMO channels. The

C2M -square (noise-free) correlation matrix of F(1) can be

reconstructed from that of F as follows. By left-multiplying

(3) by
[

0C2M,C2/2, IC2M ,0C2M,C2/2

]

, then calculating the

outer product, we obtain the relationship

TM

{

F(1)
}

TH
M

{

F(1)
}

=





0C2/2,C2M

I

0C2/2,C2M





T
(

I ⊗ [U,V]
H

)

TM+1 {F}

×TH
M+1 {F} (I ⊗ [U,V])





0C2/2,C2M

I

0C2/2,CM





Channel compaction relies on the correlation coefficients

rather than on the correlation matrix. Hence, we transform

the above relationship into one between the correlation coef-

ficients Γ
(1)
0 , · · · ,Γ

(1)
M−1 of the compacted impulse response

F(1) and the original correlation coefficients Γ0, · · · ,ΓM .

After tedious manipulations, one can prove that

[

Γ
(1)
0 , · · · ,Γ

(1)
M−1

]

=

[[

VHΓ0

UHΓH
1

]

V,

[

VHΓ1

UHΓ0

]

[U,V] ,

· · · ,

[

VHΓM

UHΓM−1

]

U

]

Naturally, this elementary step is to be repeated to ul-

timately reach an (equivalent) zero-order channel i.e., one

with no ISI. We, hence, form a sequence F(0), · · ·F(M) with

C2-rows and, respectively, (M + 1)C1, · · · , C1 columns.

Actually, what we obtain are the associated SOS terms

Γ
(i)
0 , · · · ,Γ

(i)
M−i, i = 1, · · · , M .

At last, we obtain Γ
(M)
0 = F(M)

(

F(M)
)H

where F(M) is

actually C2×C1. This has been the description of an M -steps

blind procedure that reduces the MIMO channel order from

M to zero. In the next section, we show how this principle

can be used to achieve ZF equalization.

4. COMPACTION-BASED EQUALIZATION

The purpose of this section is to show how ZF equalizers are

built such that the combined channel-equalizer is ISI-free. We

extend (3) to a filtering matrix with an arbitrary size L,
(

I ⊗ [U,V]
H

)

TL {F}

=





Fleft,0
0C2(L−1),C1

,TL−1

{

F(1)
}

,0C2(L−1),C1

0,Fright





In particular, rows C2/2 + 1, · · · , C2L − C2/2 verify

[

0C2(L−1),C2/2, I,0
]

(

I ⊗ [U,V]
H

)

TL {F}

=
[

0C2(L−1),C1
,TL−1

{

F(1)
}

,0C2(L−1),C1

]

The left hand side represents combined channel-equalizer re-

sponses that are zero-padded (i.e. shortened), as can be seen

on the right hand side. Hence, we can progressively reduce

ISI using the following sequence of matrices

G(i) def
=

(

I ⊗
[

U(1),V(1)
]

∗
)





0C2/2,C2(L−1)

I

0C2/2,C2(L−1)





· · ·
(

I⊗
[

U(i),V(i)
]

∗
)





0C2/2,C2(L−i)

I

0C2/2,C2(L−i)





i = 1, · · · , min{M, L}, where U(i) and V(i) are deduced

from Γ
(i−1)
0 , · · · ,Γ

(i−1)
M−i+1 the same way U(1) def

= U and

V(1) def
= V are deduced from Γ0, · · · ,ΓM . In fact, we have

(

G(i)
)T

TL {F} =
[

0C2(L−i),iC1
,TL−i

{

F(i)
}

,0
]

where F(i) has M − i + 1 taps only. Each of the C2(L − i)
columns of G(i) can be seen as an L-taps equalizer for which

the combined impulse response has a maximum of M − i+1
non-zero taps. Using a similar proof in [7], we can show that

matrices G(i) have the following interesting structure

G(i) =





[

G
(i)
2

0

]

,





0C2,C2

G
(i)
1 ,G

(i)
2

0



 ,





02C2,C2

G
(i)
1 ,G

(i)
2

0



 ,

· · · ,





0

G
(i)
1 ,G

(i)
2

0C2,C2



 ,

[

0

G
(i)
1

]





where iC2 × C2/2 matrices G
(i)
1 and G

(i)
2 are defined itera-

tively, as: G
(1)
1

def
=

(

U(1)
)∗

, G
(1)
2

def
=

(

V(1)
)∗

, and for i ≥ 2

G
(i)
1

def
=

[ [

G
(i−1)
2

0C2,C2/2

]

,

[

0C2,C2/2

G
(i−1)
1

] ]

(

U(i)
)

∗

(4)

G
(i)
2

def
=

[ [

G
(i−1)
2

0C2,C2/2

]

,

[

0C2,C2/2

G
(i−1)
1

] ]

(

V(i)
)

∗

(5)



From the equalization point-of-view, G(i) is equivalent to

G
(i)
1 and G

(i)
2 that verify

(

G
(i)
1

)T

Ti {F} =
[

0C2/2,i−1, [0, IC2/2]F
(i),0C2/2,i

]

(

G
(i)
2

)T

Ti {F} =
[

0C2/2,i, [IC2/2,0]F(i),0C2/2,i−1

]

They reduce the channel order from M to a desired M−i. We

let Fup
def
=

[

IC2/2,0
]

F(M) and Fdown
def
=

[

0, IC2/2

]

F(M)

so that G
(M)
1 and G

(M)
2 , now denoted as G1 and G2, respec-

tively, verify

GT
1 TM {F} =

[

0C2/2,C1(M−1),Fdown,0C2/2,C1M

]

GT
2 TM {F} =

[

0C2/2,C1M ,Fup,0C2/2,C1(M−1)

]

Given the definition of F, this is equivalent to have

GT
1 HM =

[

0C2/2,C1(M−1),FdownD
−1
s ,0C2/2,C1M

]

GT
2 HM =

[

0C2/2,C1M ,FupD
−1
s ,0C2/2,C1(M−1)

]

We recognize above combined channel-equalizer responses

that are ISI-free, hence achieving ZF equalization. Let’s have

our equalizers GT
1 and GT

2 process a set of W channel out-

puts y(t), · · · ,y(t − W + 1). Thanks to the above relation-

ships, we obtain

GT
1 yM (t) = FdownD

−1
s s(t − M + 1) + GT

1 nM (t)

GT
2 yM (t) = FupD

−1
s s(t − M) + GT

2 nM (t)

From the above, we can see that columns of G1 and G2 act

as ZF equalizers in the sense that they deliver (combinations

of) inputs that have been emitted by the channel some time

earlier. However, the delay is different for each family of

equalizers. In order to benefit from the total set of computed

equalizers, we arrange their respective outputs in the follow-

ing matrix

[

GT
1 [yM (t − 1), · · · ,yM (t − W + 1)]
GT

2 [yM (t), · · · ,yM (t − W + 2)]

]

(6)

which can be easily verified to be equal (up to an additive

noise term) to

[

Fdown

Fup

]

D−1
s







s(1)(t − M) · · · , s(1)(t − M − W + 2)
...

s(C1)(t − M), · · · , s(C1)(t − M − W + 2)







Hence, if we (linearly) combine the channel outputs, using

our equalizers following (6), we obtain an instantaneous mix-

ture of source symbols. Individual symbol streams can be re-

trieved using appropriate source separation algorithms, a reg-

ular step in SOS-based blind equalization of MIMO channels

[3].

5. ALGORITHM DESCRIPTION

Developments have so far assumed noise-free SOS. Noise

power σ2
n needs to be estimated. Its contribution is removed

from channel SOS (from Γ
y
0 actually). This needs to be

achieved without compromising the main advantage of the

proposed blind equalization technique, i.e. the quadratic

complexity. Such a goal is reached thanks to the relationship

Γ
y
0 +

∑M
k=1

[

Γ
y
k + (Γy

k)
H

]

=
∑C1

c1=1

(

∑M
i=0 F

(c1)
(i)

) (

∑M
i=0 F

(c1)
(i)

)H

+ σ2
nI

extended from a similar result in [7]. Hence, σ2
n is the lowest

eigenvalue of the positive-definite left hand side above, with

multiplicity C2 − C1, or the average of the C2 − C1 lowest

eigenvalues if SOS are estimated. Finally, the equalization

algorithm can be described as follows:

1. Estimate Γ
(0)
j = E

[

x(n)xH(n − j)
]

, j = 0 · · · , M

2. Initialize i = 0. While i ≤ M , repeat

(a) Set m = M − i and

k = max
{

m + 1 − C2

2C1

, 1 + ⌊m
2 ⌋

}

(b) Let uj (resp. vj) be the left (resp. right) unit-

norm singular vector associated to the j-th low-

est singular value of Γ
(i)
k . Built U(i+1) def

=
[

u1, · · · ,uC2/2

]

and V(i+1) def
=

[

v1, · · · ,vC2/2

]H

(c) Calculate G
(i)
1 and G

(i)
2 using (4)-(5)

(d) For j = 0, · · · , m − 1, calculate

Γ
(i+1)
j =

[[

(

V(i+1)
)H

Γ
(i)
j

(

U(i+1)
)H

Γ
(i)
j−1

]

V(i),

[

(

V(i+1)
)H

Γ
(i)
j+1

(

U(i+1)
)H

Γ
(i)
j

]

U(i)

]

and increment i by 1

(e) Break if i > M

(f) Repeat m − k times

i. Set U(i) =
[

0, IC2/2

]T

and V(i) =
[

IC2/2,0
]T

ii. Repeat steps (2c), (2d) and (2e)

(g) Set G1
def
= G

(M)
1 and G2

def
= G

(M)
2 and generate

new ISI-free outputs using (6).

Since the blind algorithm processes channel SOS in the

form of C2 × C2 matrices Γk, it is independent from C1, ex-

cept for rank computation. Hence, the overall computation for

large M is the same as that of the algorithm [7] originally de-

veloped for SIMO channels, i.e. of order O((6+C2)C
2
2M2).

This complexity will not be affected by the source separation

step (next section) since this one does not depend on M , but

on C1 and C2 instead, which both take limited values in prac-

tice.



6. SIMULATIONS

To demonstrate the feasibility of blind MIMO channel equal-

ization using the proposed quadratic-complexity subspace al-

gorithm, we test randomly generated ISI channels driven by

i.i.d. unit-variance QAM symbols. After application of the

proposed equalizers, the instantaneous source mixture is sep-

arated using the JADE algorithm [1]. The number of trans-

mitting and receiving antennas have been fixed to 2 and 4,

respectively. Channel coefficients of the MIMO channel have

been generated as unit-norm i.i.d. random variables. Equal-

izers are computed from the channel correlation matrix esti-

mated from a limited number of source symbols (500 in Fig.

1.a and 1000 in Fig. 1.b). The so-obtained equalizer is later

tested with 200 QAM source symbols from each user. De-

tected symbols (i.e. 200) relative to source 1 are represented

in Fig. 1 for a noise variance equal to σ2
n = 0.1. Source sym-

bols are, hence, shown to be recovered with an undetermined

rotation ambiguity, inherent to blind equalization, and that is

usually combatted using differential encoding.

7. CONCLUSION

Channel compaction is based on the proved rank deficiency

of some small-sized sub-blocks of the MIMO channel correla-

tion matrix. This property is exploited to construct a subspace

technique that forces to zero some leading/trailing terms of

the MIMO channel impulse response. Because this procedure

is to be repeated a number of times not larger than the chan-

nel memory M , the overall complexity is in M2, unlike all

existing comparable techniques whose complexity is at least

in M3. The feasibility of this blind equalization technique in

realistic conditions is proved by simulations.
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