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ABSTRACT

In the plethora of second-order statistics (SOS) based blind

channel equalization techniques, only two algorithms are

able to perform equalization with a pre-specified delay. De-

lay selection is a compelling feature in order to reduce noise

enhancement of Zero-Forcing (ZF) equalizers. We show that

channel output shifted correlation matrices with different

time lags can be combined to obtain a rank-deficient SOS-

based matrix whose kernel is made of ZF equalizers of a

pre-determined delay. Contrarily to existing algorithms, such

a ZF equalizer is obtained at a low complexity: It involves

a single Eigen Vector Decomposition (EVD) and does not

require prior knowledge nor estimation of the noise power.

Such a straightforward estimation translates, also, into better

equalization performance at low channel SNR, as confirmed

by simulations.

1. INTRODUCTION

Blind equalization is a classic topic of statistical signal pro-

cessing where the input of an unknown linear filter is to be

restored from the noise-corrupted filter output. Among many

engineering applications, blind equalization is of relevance,

primarily, to communication systems, where it allows to save

bandwidth, otherwise spent on channel training. An algo-

rithm computes the equalizer taps using the statistics of the

channel output. Naturally, SOS are preferred to the less accu-

rately estimated higher-order statistics. However, the receiver,

then, needs to display at least two receiver antennas and/or

sample the channel output at a rate higher than the Baud-

rate. Very often, the so-called subspace algorithms identify

a full subspace of ZF equalizers that restore the input, with

the same delay but with different SNRs. At last, the opti-

mal combination of these equalizers is found. In the process,

many eigen/singular vector decompositions (EVD/SVD) are

needed.

These are ZF equalizers that may result in significant

noise enhancement if the channel SNR is low. Furthermore,

the amount of noise enhancement depends significantly on

the equalization delay. A recent result [8] is more specific

as it proves that all delays larger than the channel order

are expected to lead to very comparable performance. This

phenomenon is particularly severe at low SNR. Hence, it is

important that the (blind) equalization algorithm detects all

possible ZF equalizers with a delay that can be controlled.

Linear prediction (LP) [1], probably the most referenced

blind equalization algorithm, does not offer such a function-

ality: performance is not optimum and delay is fixed to zero.

In [5], performance is made optimum but the zero delay, un-

changed, leads to poor equalization performance [4]. Some

other algorithms, for which the delay can be fixed, do not

detect all the possible equalizers [3, 4], and hence, are not

guaranteed to reach optimality. Up to our knowledge, the

only existing algorithms that compute ZF equalizers with

optimum performance and controllable delay are [2, 9]. They

behave in a similar manner, in that they achieves the lowest

Mean Square Error (MSE) among all ZF equalizers by: (i)

first, detecting (the subspace of) all ZF equalizers with the

specified length and delay, then, (ii) a criterion from [5, 6]

is applied to select, within this subspace, the minimum MSE

(MMSE) equalizer. The advantage of [9] is a complexity

(typically) 4 times lower than for [2]. The two algorithms

have the same asymptotic performance (for a large number

of observations) but [2] performs better when the number of

snapshots is limited.

The objective of this paper is to propose a new algorithm,

with the same features as [2, 9], i.e. able to compute to the

optimum (MMSE) linear equalizer and set the equalization

delay to an arbitrarily chosen value. It involves less computa-

tion and shows performance better than both. This advantage

can be explained by a number of SVD/EVD lower than for

[2, 9]. We know that such decompositions are responsible for

the majority of the computation load [14] and are sensitive to

the channel condition (number of snapshots, noise level and

near-singularity of the correlation matrix) [15].

The paper is organized as follows. First, we recall the data

model in Sec. 2. In Sec. 3, we detail the proposed algorithm

and compare it in Sec. 4 with the algorithms from [5, 2]. A

conclusion is given in Sec. 5. Matrices (resp. vectors) are rep-

resented by bold or calligraphic upper case (resp. bold lower

case) characters. Vectors are by default in column orientation,

while The following notations are used. 0a,b is the a× b zero



matrix. Ia is the a × a identity matrix. Ja
def
=

[

0 0
Ia−1 0

]

is

the a × a (down) shifting matrix. We denote J−k
a

def
=

(

JT
a

)k
.

Dimensions are dropped when they can be inferred from the

context. ‖.‖ denotes the Euclidean norm. A ⊗ B is the Kro-

necker product between matrices A and B defined such that

its (i, j) block is ai,jB.

2. DATA MODEL
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Fig. 1. Equalized SIMO channel.

When a transmitted signal is received by a fractionally

spaced and/or multi-sensor receiver, the channel can be mod-

eled as a Single Input Multiple Output (SIMO) channel. As

depicted in Fig. 1, a set of C sub-channels are driven by

a common scalar input s(n). The impulse response of the

c-th sub-channel is
[

h
(c)
0 · · ·h

(c)
M

]

, M being the largest or-

der among all sub-channels. It is stored in the c−th row of

the C × (M + 1) matrix H, that represents the impulse re-

sponse of the SIMO channel. The (k + 1)-th column hk
def
=

[

h
(1)
k · · ·h

(C)
k

]T

of H represents the C-dim k-th tap of the

SIMO channel, k ∈ {0, · · · , M}. The C-dim SIMO output

y(t)
def
=

[

y(1)(t) · · · y(C)(t)
]T

is corrupted by additive white

Gaussian noise (AWGN) n(t), defined similarly as y(t). The

channel input-output relationship is given by

y(t) = HsM+1(t) + n(t),

where sl(t)
def
= [s(t) · · · s(t − l + 1)]

T
for any l. To exploit

time-invariance of the channel, we stack L successive outputs

into the CL-dim vector yT
L(t)

def
=

[

yT (t) · · ·yT (t − L + 1)
]T

which is related to the source symbols following

yL(t) = HLsM+L(t) + nL(t)

where

HL
def
=





H 0 · · · 0
. . .

0 · · · 0 H





is the CL × (M + L) channel filtering matrix. There, nL(t)
is defined similarly as yL(t) and 0 is the C-dim zero vector.

The matrix HL is full column rank if [7]

L ≥ M. (1)

It is also required that the transfer functions relative to the

different sub-channels do not have any common zero. This

condition is widely verified in practice [7].

Blind subspace techniques make use of the channel SOS,

represented by correlation matrices

R
(i)
L

def
= E

[

yL(i + i′)yH
L (i′)

]

=







Γi · · · Γi+L−1

...
. . .

...

Γi−L+1 · · · Γi







= σ2
sHLJi

M+LHH
L + σ2

n

(

Ji
L ⊗ IC

)

, (2)

where Γk
def
= E

[

y(t + k)yH(t)
]

. A majority of techniques

[11, 1, 10] use the standard correlation matrix RL
def
= R

(0)
L .

However, shifted correlation matrices have been shown to be

useful to directly detect ZF equalizers [9, 2]. We assume in-

dependent and identically distributed (i.i.d.) symbols that are

also uncorrelated from the white noise components, in order

for (2) to hold. We also assume the transmitted symbols and

the noise samples to be zero-mean and denote by σ2
s and σ2

n

their respective powers. These assumptions are common to all

existing SOS-based blind channel identification, equalization

and shortening techniques.

Channel outputs are fed to an (L − 1)-order linear

equalizer g. The equalizer impulse response is denoted by

g
def
= [g0, · · · ,gL−1]

T
, where gk

def
=

[

g
(1)
k , g

(2)
k , · · · , g

(C)
k

]T

is the k-th equalizer tap, using similar notations as for

the channel impulse response. An (L − 1)-order equal-

izer g achieves ZF equalization with delay d iff1 gHH =
[01,d w 01,M+L−1−d] for some arbitrary scalar w. The

equalizer output z(t) = gH
[

yT (t) yT (t − 1) · · ·
]T

re-

stores the symbols with delay d and attenuation w. Signal

and noise components have power σ2
s |w|2 and σ2

n‖g‖
2, re-

spectively. The associated (normalized) MSE is defined as

MSE
def
= E

[

|s(t − d) − z(t)|
2
]

. The ZF equalizer with the

lowest MSE, referred to here as the MMSEZF equalizer, is [5]

(HH)† [· · · 0 1 0 · · ·]
T

where 1 is at position d+1. It has been

shown in [8] that for d = M, . . . , L− 1, all MMSEZF equal-

izer are expected to show comparable equalization MSE.

However, for delays outside this range, performance degrade

very significantly.

1For notation simplicity, we adopt here an altered definition of the ZF

equalizer, which , in reality, should verify gT H = [· · · , 0, 1, 0, · · ·].



3. THEORETICAL DEVELOPMENT

The idea of this paper is to combine shifted correlation matri-

ces in order to obtain an SOS-derived expression equal to

HLTL+MHH
L (3)

where

Tn
def
=







t0 · · · t−(n−1)

...
. . .

...

tn−1 · · · t0







is an arbitrarily chosen Toeplitz matrix. In a second step,

we choose TL+M such that the matrix HLTL+MHH
L is one

whose (signal and/or noise) subspace has a special property,

useful for identification and/or equalization purposes. For in-

stance, using (2), one can prove that

L+M−1
∑

i=−(L+M−1)

tiR
(i)
L = σ2

sHLTL+MHH
L + σ2

n (TL ⊗ IC)

Since we are completely free to choose TL+M , we will

choose one with a particular property. To determine what

would be the suitable choice of . . . , t−1, t0, t1, . . ., we in-

vestigate the properties of the noise subspace of the matrix

(3), assumed to be rank deficient. Let f (L) and f (R) be,

respectively, left and right orthogonal to HLTL+MHH
L .

Then TL+MHH
L f (R) = 0 and TH

L+MHH
L f (L) = 0, as

a consequence of HL being left invertible. We choose

the TL+M to have a rank L + M − 1 and ed+1 to be

its unique (up to a scaling and a rotation) right orthog-

onal vector, d = 0, · · · , L + M − 1. This implies that

t−d = · · · = t0 = · · · = tL+M−1−d = 0. This is also

row L + M − d of TL+M , so that we also have eL+M−d

necessarily left orthogonal to the same TL+M . Hence, we

can write

TL+M
def
=





0 0 U

0 0 0

L 0 0





where L and U are, respectively, d lower and L + M − d− 1
upper triangular matrices. For TL+M to be deficient by one,

we need L and U to be both invertible, i.e., at least t−(d+1)

and tL+M−d to be non-zero. Consequently,

HH
L f (R) = α(R)ed+1

HH
L f (L) = α(L)eL+M−d

The above is true for any TL+M verifying t−(d+1) 6= t−d =
· · · = t0 = · · · = tL+M−1−d = 0 6= tL+M−d. For the re-

maining t−(L+M−1), · · · , t−(d+2), tL+M−d+1, tL+M−1, they

are chosen such that TL+M is well conditioned. By checking

TL+MTH
L+M , we realize that, apart from zero, the remaining

singular values of TL+M have the same magnitude as those

of L and U. To ensure the best condition number, we would

like all singular values to have the same magnitude, say one.

A trivial way to do so is simply to choose L and U to be

identity matrices. Hence, all ti are zero, except t−(d+1) and

tL+M−d, both equal to one. We redefine Tn as T
(d)
n , the

n × n Toeplitz matrix whose only non-zero diagonals are the

(d + 1) upper diagonal and the (L + M − d) lower diagonal.

Because HL is full column rank, HLT
(d)
L+MHH

L has rank

L+M−1. Let N(R) and N(L) be its CL×[(C−1)L−M+1]
right and left kernel respectively. For any [(C−1)L−M+1]-
dim f , we have

HH
L N(R)f = α(R)ed+1

HH
L N(L)f = α(L)eL+M−d

for some undetermined α(R) and α(L). Hence, N(R)f and

N(L)f are ZF equalizers with a delay of, respectively, d and

L + M − d − 1.

To focus on d-delay equalizers, they are located in the

right kernel of HLT
(d)
L+MHH

L and in the left kernel of

HLT
(L+M−d+1)
L+M HH

L S. Blind equalization is made possi-

ble because we can calculate HLT
(d)
L+MHH

L S as

R = R
−(d+1)
L + R

(L+M−d)
L − σ2

n

(

T
(d)
L ⊗ I

)

(4)

Using the above development means that we have to perform

SVD of two matrices: HLT
(d)
L+MHH

L S and

HLT
(L+M−d+1)
L+M HH

L S. Since computation burden is an is-

sue, we will focus on a particular parametrization of the

equalizer, for instance judicious choices of d and L that

increases performance and reduce computation.

First, we notice that T
(d)
L is zero when both d + 1 and

L + M − d are larger or equal to L; i.e.

L − 1 ≤ d ≤ M (5)

Then, the computation (estimation) or σ2
n is not needed in (4),

to the point that it can be assumed to be equal to zero (or any

arbitrary value). Taken the condition (1) into consideration,

condition (5) leads to the following possible choices

(L, d) ∈ {(M, M − 1), (M, M), (M + 1, M)}

For the above selected equalizer length and delay, the noise

power is not needed (to be estimated), and SVD of R is less

motivated. As shown in [8], near-optimal equalization perfor-

mance is met at any delay larger than the channel order, and,

of course, the larger the equalizer, the better the performance.

Consequently, we choose

(L, d) = (M + 1, M)

In this case, we also have d + 1 = L + M − d, i.e. the

matrix HLT
(d)
L+MHH

L is Hermitian. Left and right kernels are

identical, and can be computed using EVD, instead of SVD.



Because HLT
(d)
L+MHH

L is now Hermitian, its left and

right kernels N(R) and N(L) are commonly referred to as

N. It is now obtained by EVD, rather than by SVD of

HLT
(d)
L+MHH

L . There, lie all possible ZF equalizers, in-

cluding undesirable ones (restoring no signal because are

left orthogonal to H). Instead of excluding these ones by

projecting N on the signal subspace, which would require

an EVD of the CL-square matrix R, we propose to conduct

this elimination indirectly by retaining, among all vectors

(equalizers) in the column span of N, the one that restores the

signal with the largest SNR. A ZF equalizer can be written as

Nf , where f is [(C − 1)L − M + 1]-dim. It has a combined

(with the channel) response equal to HHNf = αed+1. It

generates a signal components with power σ2
s |α|

2 and a noise

components with a power σ2
s‖Nf‖2 = σ2

s‖f‖
2, assuming N

is made by orthonormal columns (which is the case when it is

obtained as a result of an EVD, as the case here). Maximiz-

ing the equalizer output SNR implies maximizing the ratio

|α|2/‖f‖2, or equivalently fHNHHHHNf/‖f‖2. Hence,

the optimal equalizer is given by Nf where f is the eigen vec-

tor associated to the largest eigenvalue of NH
(

R − σ2
nI

)

N,

or equivalently, the largest eigenvalue of NHRN. Hence we

can describe the procedure as follows

1. Set d = M and L = M + 1

2. Calculate R = Rd+1
L +

(

Rd+1
L

)H
which is nothing but











0 ΓH
M · · · ΓH

1

ΓM

. . .
. . .

...
...

. . .
. . . ΓH

M

Γ1 · · · ΓM 0











3. Perform EVD of R and form N whose columns are

eigen vectors associated to the (C−1)L−M+1 eigen-

value with the lowest magnitude2.

4. Determine the unit-norm right eigen vector f associated

to the largest eigenvalue of NNRN

5. Calculate the equalizer g
def
= (Nf)

∗

The procedure does not require estimation of the noise

power, a feature shared with the SS algorithm [11] only. In

addition to the EVD of the CL-square R, its involves, in step

(4), the EVD of a matrix of dimension (C − 1)L−M + 1 =
(C − 2)M + C. If C = 2, this EVD has a complexity that

does not depend on the channel order so that the whole pro-

cedure require only one EVD. Among all blind (equalization

and identification) algorithms, only the LP algorithm [1, 5]

exhibits such a feature.

2Matrix R is Hermitian, but not necessarily positive definite.

4. SIMULATIONS

The proposed algorithm is tested and compared to the two ma-

jor techniques: the LP algorithm for zero-delay equalization

(we implement the optimized version in [5]) and the MD al-

gorithm [2] for a delay-controllable equalization. As a bench-

mark, we use the well-referenced SIMO channel from [11]

that has C = 4 sub-channels and an order M = 4. The

channel is driven by unit-variance i.i.d. QPSK symbols. The

equalizer length is set to L = M + 1 and the delay is set to

d = M , as explained in Sec. 3. The channel SNR is defined

as

E
[

‖x(t)‖2
]

/E
[

‖n(t)‖2
]

= σ2
s‖h‖

2/
(

Cσ2
n

)

An estimated ZF equalizer is tested with a sequence

s(0), · · · , s(N − 1) of randomly generated source symbols

(N = 200). To account for scale and rotation ambiguities

systematically encountered in blind techniques, performance

is evaluated in terms of the MSE on the equalized symbols

sequence, defined [13] as

E
[

minβ ‖sN (N − 1 − d) − κzN (N − 1)‖
2
]

/
(

σ2
sN

)

where

κ is complex-valued. W.r.t. this equalization MSE, equalizers

that are equal up to a multiplicative factor are equivalent.

This MSE can be proved to be equal to [5]

1

σ2
sN

[

‖sN(N − 1)‖2 −

(

sH
N(N − 1)zN (N − 1)

‖zN (N − 1)‖

)2
]

.

Results are averaged over 100 Monte Carlo runs and are

summarized in Fig. 2. Clearly, the proposed algorithm ex-

hibits the same asymptotic performance as the MD algorithm.

Both significantly outperform the optimum (but zero-delay)

LP algorithm [5] at low-to-mederate SNR, a fact confirmed in

the low sample size case.

5. CONCLUSION

A two-step procedure is defined to, first, locate the subspace

of all ZF equalizers with a specific length and (more impor-

tantly) delay, then, second, find the best (MMSE) equalizer

within this subspace. The latter step is not needed in the

practical case of two sub-channels. The short procedure

means limited error propagation and, consequently, better

performance, at low SNR for instance.
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Fig. 2. MSE on equalized symbols.


