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ABSTRACT

This paper derives the optimal single input multiple output

(SIMO) maximum likelihood sequence estimation (MLSE)

receiver for the detection of quadrature amplitude modula-

tions corrupted by potentially noncircular, stationary white or

colored zero-mean Gaussian noise. It is proved that this re-

ceiver is composed by a widely linear (WL) filter followed

by a modified version of the Viterbi algorithm. This WL lin-

ear filter is interpreted for complex-valued signal of interest

(SOI) symbols as two WL multidimensional matched filter

(WL MMF) that reduce to a single WL MMF for real-valued

SOI symbols. The performance improvements of this receiver

with respect to the standard SIMO MLSE are proved and il-

lustrated.

Index Terms— Single input multiple output, Maximum

likelihood sequence estimation, Noncircular interference.

1. INTRODUCTION

The MLSE for a digital QAM sequence is an optimal equal-

ization technique in the sense that is minimizes the probability

of a sequence error. The original MLSE algorithm has been

applied to a single antenna receiver under the assumption of

Gaussian circular white noise in the baseband [1]. Different

extensions have been proposed that include Gaussian circular

colored noise and multisensor receivers (see e.g., [2, 3, 4, 5]).

In radio mobile communication systems, the noise is

mainly due to co-channel interference that exhibits the same

features as the SOI. The MLSE of the SOI symbols using the

exact statistical properties of the interference would require

joint detection of the SOI and the interference, a rather in-

volved task. Here, we derive the SIMO MLSE receiver under

the assumption that the complex amplitude of the interference

is potentially noncircular, stationary white or colored and fur-

thermore zero-mean Gaussian distributed. Despite that this

latter assumption is not valid in the context of radio mo-

bile communication systems, where the complex amplitudes

of the SOI and interference are cyclostationnary and non-

Gaussian distributed, we will prove that the derived MLSE

receiver outperforms the MLSE receiver that does not take

into account the potential noncircularity of the interference.

To the best of our knowledge, few works about SIMO MLSE

receivers for noncircular interferences have been published

in the literature. Among them, [6] has derived the MLSE

receiver in the context of real-valued SOI with no interfer-

ence intersymbol and [7] has proposed a suboptimal MLSE

receiver under the assumption of cyclostationarity and rec-

tilinearity of the interference. Note that some other works

have taken into account the potential noncircularity of the

interference by proposing some suboptimal receivers (see,

e.g., [8]).

The paper is organized as follows. In Section 2, the SIMO

MLSE receiver is derived for the detection of linear modula-

tion corrupted by noncircular interference, from a general de-

tection approach. It is proved that this receiver is composed

by a WL linear filter that catches the sufficient statistics fol-

lowed by a modified version of the Viterbi algorithm. This

WL linear filter is interpreted in Section 3 for complex-valued

SOI symbols as two WL multidimensional matched filters

(WL MMF) that reduce to a single WL MMF for real-valued

SOI symbols. The SNR of the current symbol with respect

to the noise power at its output is compared to those obtained

for the MLSE receiver under the standard assumption of cir-

cular noise in Section 4. Finally, a numerical illustration is

given in Section 5 to quantify the gain in performance of the

MLSE receiver derived under the assumption of noncircular

w.r.t. circular noise.

2. SIMO MLSE RECEIVERS

2.1. Detection problem

Consider the general framework of the detection of a deter-

ministic multidimensional continuous-time signal s(m)(t) ∈
C

N , m = 1, ...,M that is corrupted by an additive zero-mean

Gaussian stationary noise n(t). The observed signal is

x(t) = s(m)(t) + n(t), m = 1, ...,M. (1)

To properly derive the ML detector from the continuous-time

signal (1), we use an orthonormal representation of x(t) [9,

Chap. 4]. Once a convenient set S of orthonormal real-valued

scalar signals {φk(t)}k=1,...,K has been adopted, each signal

(Re(s(m)(t)), Im(s(m)(t))) is completely determined by the



2Kth vector s of its real-valued coefficients in this basis. Pro-

jecting x(t) on this basis, the 2Kth vector x = s(m) + n ∈
R

2K is obtained.

When n(t) is now circular, spatially and temporally white

with spectral power density σ2IN , it is straightforward to

prove that the real-valued vector n is zero-mean Gaussian dis-

tributed with covariance matrix σ2

2 I2K . Note that x by itself

does contain all data from x(t) that is relevant to the ML de-

tection of m [10, Chap. 4]. Consequently the ML estimator of

m is given by m̂ = Argminm ||x − s(m)||2. Then to return

to continuous-time signals, we note that the complementary

part of the projection of n(t) on S is orthonormal to S and

we thus obtain equivalently

m̂ = Argmin
m

∫ +∞

−∞
||x(t)− s(m)(t)||2dt. (2)

Then when n(t) is potentially noncircular, spatially and tem-

porally colored, we can extend the whitening approach used

for scalar-valued circular colored noise in [2] and [9, Chap.

4]. Here the statistical properties of n(t) are characterized by

the covariance matrix

Rñ(τ) = E[ñ(t)ñH(t− τ)] =

[
Rn(τ) Cn(τ)
C∗

n(τ) R∗
n(τ)

]

of the augmented vector ñ(t)
def
= [nT (t),nH(t)]T where

Rn(τ)
def
= E[n(t)nH(t−τ)] and Cn(τ)

def
= E[n(t)nT (t−τ)]

are the covariance and complementary covariance of n(t). To

derive the ML detector, we prove in the Appendix the follow-

ing result:

If the Fourier transform1 Rn(f) of Rn(τ) is invertible for

all values of f (this is the case when n(t) is comprised

by a sum of independent interferers and circular spatially

and temporally white background noise), there exists a WL

N × 2N causal and causally invertible whitening filter

(W1(t),W2(t)) such that:

nw(t) = W1(t) ⋆ n(t) +W2(t) ⋆ n
∗(t)

is both circular, and temporally and spatially white, i.e.,

E[nw(t)n
H
w (t− τ)] = δ(τ)IN and E[nw(t)n

T
w(t− τ)] = 0N

where ⋆ is the convolution product and δ is the delta distribu-

tion.

Using the whitening model xw(t) = s
(m)
w (t) + nw(t)

where xw(t)
def
= W1(t)⋆x(t)+W2(t)⋆x

∗(t) and s
(m)
w (t)

def
=

W1(t) ⋆ s
(m)(t) +W2(t) ⋆ s

∗(m)(t) that is equivalent to (1),

the ML of m is now given from (2) by

m̂ = Argmin
m

∫ +∞

−∞
||xw(t)− s(m)

w (t)||2dt, (3)

1All Fourier transforms of scalars x, vectors x and matrices X use the

same notation where τ is simply replaced by f .

which is equivalent from the Parseval’s theorem and the Ap-

pendix to

m̂=Argmin
m

∫ +∞

−∞
[x̃(f)−s̃(m)(f)]HR−1

ñ
(f)[x̃(f)−s̃(m)(f)]df

(4)

where x̃(f) = [xT (f),xH(−f)]T and s̃(m)(f) = [s(m)T (f)

s(m)H(−f)]T , Fourier transforms of x̃(t)
def
= [xT (t),xH(t)]T

and s̃(m)(t)
def
= [s(m)T (t), s(m)H(t)]T , respectively because

R−1
ñ

(f) = WH
ñ (f)Wñ(f) where Wñ(f) is defined by (15).

2.2. Derivation of the SIMO MLSE receiver

Let us apply the previous result to the detection of the se-

quence {ak}k=0,...,K−1 of the following MAQ’s complex am-

plitude transmitted on a selective fading channel

s(m)(t)=
√
πs

K−1∑

k=0

akg(t−kT ), with g(t)=v(t)⋆h(t) (5)

where v(t) and h(t) denote the transmitted and channel base-

band impulse response, respectively and m = 1, ...,M with

M = (cardA)K where A is the symbol set {ak}. Consider-

ing only terms that depend on the symbols ak in (4), the se-

quence {ak}k=0,...,K−1 which minimizes the MLSE criterion

(4) is equivalently the sequence that minimizes the following

metric

Λ(a0, .., aK−1)=
√
πs

K−1∑

k=0

K−1∑

k′=0

Re(a∗kak′rk−k′ + akak′r′k−k′)

− 2

K−1∑

k=0

Re(a∗kyk), (6)

where

yk =

∫ +∞

−∞
gH
1 (f)R−1

ñ
(f)x̃(f)ei2πkfT df, (7)

rk =

∫ +∞

−∞
gH
1 (f)R−1

ñ
(f)g1(f)e

i2πkfT df,

r′k =

∫ +∞

−∞
gH
2 (f)R−1

ñ
(f)g1(f)e

i2πkfT df,

with g1(f)
def
=

[
g(f)
0

]
and g2(f)

def
=

[
0

g∗(−f)

]
, with

g(f) = v(f)h(f).
When the symbols ak are real-valued, 2Re(a∗kyk) = akzk

of (6), where now

zk = 2Re(yk) =

∫ +∞

−∞
g̃H(f)R−1

ñ
(f)x̃(f)ei2πkfT df, (8)

with with g̃(f) = [gT (f),gH(−f)]T .

{yk}k=0,...,K−1 and {zk}k=0,...,K−1 are sufficient statis-

tics of the detection problem that can be interpreted as the



outputs at time kT of the WL multidimensional filters whose

frequency responses are respectively

wH
1 (f) = gH

1 (f)R
−1
ñ

(f) and w̃H(f) = g̃H(f)R−1
ñ

(f), (9)

where the input is x̃(t). Assuming that the output ISI of this

filter is limited to L preceding and L following sampling in-

stants, metric (6) satisfies Λ(a0, ..., ak) = Λ(a0, ..., ak−1) +
λ(yk, ak, ..., ak−L) and consequently the Viterbi algorithm

can be applied to efficiently minimize this metric.

3. INTERPRETATION OF THE SIMO MLSE

RECEIVER

When n(t) is circular, the WL filters (9) reduce respectively

to the linear filter gH(f)R−1
n (f) and to the real part of this

filtering, that are interpreted [12] as the linear matched filter

(called MMF in [3]) that maximizes the output power of the

current symbol with respect to the noise power, i.e., the SNR

at the symbol sampling instant.

On the other hand, when n(t) is noncircular, the inter-

pretation of the WL filter (9) is more involved for complex-

valued ak, because substituting (5) into (7), we obtain a con-

tribution of both ak and a∗k

yk =
√
πs [r0ak+r′0a

∗
k+

∑

l 6=k

(rlak−l+r′la
∗
k−l)]+nk, (10)

where nk
def
=
∫ +∞
−∞ gH

1 (f)R−1
ñ

(f)ñ(f)ei2πkfT df is proved to

be zero-mean noncircular complex Gaussian distributed with

E(nln
∗
l−k) = rk and E(nlnl−k) = r′k.

However with,

x̃(t)=
√
πs [

K−1∑

k=0

akg1(t−kT )+

K−1∑

k=0

a∗kg2(t−kT )]+ ñ(t),

it is clear that the WL filter wH
1 (f) (9) can be interpreted as

a WL matched filter that maximizes the output power of the

current symbol ak with respect to the noise power, among the

WL filters.

In the particular case of real-valued symbols x̃(t) =√
πs

∑K−1
k=0 akg̃(t − kT ) + ñ(t) and thus w̃(f) is clearly

interpreted as a WL matched filter.

4. PERFORMANCE ANALYSIS FOR REAL-VALUED

SYMBOLS

For real-valued symbols, zk =
√
πs[rr,0ak+

∑
l 6=k rr,lak−l]+

nr,k (with rr,k
def
= 2Re(rk + r′k) and nr,k

def
= 2Re(nk)) and

the SNR =
πsE(a2

k)r
2
r,0

E(n2
r,k

)
at time kT which is maximized by the

WL MMF w̃H(f), takes the value

SNRnc = πsE(a
2
k)

∫ +∞

−∞
g̃H(f)R−1

ñ
(f)g̃(f)df. (11)

As for the circular Gaussian case, the purpose of the Viterbi

algorithm is to deal with the WL MMF output ISI and the

performance of the MLSE algorithm is thus directly related

to this SNR.

It is interesting to compare this SNRnc, to the SNR ob-

tained at the output of the MMF derived under the assump-

tion of real-valued symbols and circular noise for which zk =

2Re[
∫ +∞
−∞ gH(f)R−1

n (f)x(f)ei2πkfT df ], but used with non-

circular noise. This SNR is given by2

SNRc =
2πsE(a

2
k)

∫ +∞
−∞ gH(f)R−1

n (f)g(f)df

1 +
Re(

∫
+∞

−∞
gH(f)R−1

n (f)Cn(f)R
∗−1
n (−f)g∗(−f)df)∫

+∞

−∞
gH(f)R−1

n (f)g(f)df

where Rn(f) and Cn(f) are the Fourier transforms of re-

spectively E[n(t)nH(t)] and E[n(t)nT (t)]. We have from

the inclusion principle: SNRnc ≥ SNRc.

5. NUMERICAL ILLUSTRATION

To gain some insight into relation (11), we consider here the

special case where v(t) is a raise cosine pulse shape filter (real

valued 1/2 Nyquist filter with
∫ +∞
−∞ v2(t)dt = 1) and h(t) is

a specular channel with a flat fading on each path, i.e.,

h(t) =

M∑

m=1

βmδ(t− τm)sm, with β1 = 1, (βm)m 6=1 ∈ C,

Furthermore to obtain interpretable closed-form expressions,

we assume that τm−τ ′m = km,m′T with km,m′ ∈ Z and n(t)
temporally white (i.e., Rñ(τ) = δ(τ)Rñ). In this case, it is

straightforward to prove that

SNRnc=2πsE(a
2
k)

M∑

m=1

(
|βm|2sHmAnsm+Re(β2

msTmD∗
nsm)

)

SNRc=
2πsE(a

2
k)

(∑M

m=1 |βm|2sHmR−1
n sm

)2

∑M

m=1

(
|βm|2sHmR−1

n sm+Re(β2
msTmR∗−1

n C∗
nR

−1
n sm)

) ,

with R−1
ñ =

[
An Dn

D∗
n A∗

n

]
. Naturally, we note that SNRnc

reduces to SNRc for circular noise (Dn = Cn = 0). We

note that SNRnc is the sum of the SNRnc obtained for each

path of the channels, in contrast to SNRc whose expression is

more involved because the filter gH(f)R−1
n (f) is no longer

matched to non circular noise.

To further illustrate, we assume that the noise is com-

posed of a single rectilinear interference (where v(t) has a

zero roll-off) that is synchronized with the SOI and a circu-

lar spatially and temporally white background noise. More

precisely Rn = π1j1j
H
1 + η2IN and Cn = π1e

2iφ1j1j
T
1 .

2Note that this SNR is different from the SNR

πsE(|ak|
2)

∫
+∞

−∞
gH(f)R−1

n (f)g(f)df obtained by [12], under the

assumption of both circular noise and complex valued symbols.



In this case Fig.1, compares SNRnc to SNRc as a func-

tion of the phase φ1, in the scenario of BPSK SOI and inter-

ference symbols with N = 2, M = 2 with τ1 = 0, the first

components of the steering vectors s1, s2 and j1 are equal to

1, πs/η2 = 10 and π1/η2 = 100. This figure that exhibits

the mean values of SNRnc and SNRc over 50000 random

channels (uniformly and independently distributed SOI and

interference DOAs and β2 with |β2| ≤ 1) shows that in this

scenario the MLSE receiver derived under the assumption of

noncircular noise largely outperforms those derived under the

assumption of circular noise.
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Fig.1 Mean values of SNRnc and SNRc.

6. CONCLUSION

We have introduced and analyzed the SIMO MLSE receiver

under the assumption of stationary noncircular Gaussian

noise. The extension of this SIMO MLSE receiver and its

performance analysis under the more realistic assumption of

cyclostationary noncircular Gaussian noise in under way.

7. APPENDIX

We extend here the celebrated spectral factorization theorem

to wide-sense stationary (WSS) complex-valued continuous-

time process n(t) ∈ C
N (i.e., where real and imaginary parts

are jointly WSS). For this, we consider the associated real-

valued n̄(t)
def
= [Re(nT (t)), Im(nT (t))]T and augmented

processes ñ(t)
def
= [nT (t),nH(t)]T related by

ñ(t)=Tn̄(t) and n̄(t)=
1

2
TH ñ(t) with T

def
=

[
I iI
I −iI

]
. (12)

If the spectral factorization theorem applies to the real-valued

stationary continuous-time process3 n̄(t), there exists a causal

and inversible causal transfer function G(f) ∈ C
2N×2N such

that Rn̄(f) = G(f)GH(f) with G∗(f)= G(−f). Conse-

quently Wn̄(f)
def
= G−1(f) satisfies

Wn̄(f)Rn̄(f)W
H
n̄ (f) = I2N and W∗

n̄(f) = Wn̄(−f).
(13)

Then using relation (12), Rn̄(f) =
1
4T

HRñ(f)T, we obtain

Wñ(f)Rñ(f)W
H
ñ (f) = I2N , (14)

3This is in particular the case for power spectral density Rñ(f) rational

function in ei2πf for which Rn(f) is invertible for all values of f , see e.g.

[11, Appendix A6.1].

where Wñ(f) =
1

2
√
2
TWn̄(f)T

H is structured as

Wñ(f) =

[
W1(f) W2(f)
W∗

2(−f) W∗
1(−f)

]
(15)

thanks to (13). Its inverse Fourier transform Wñ(t) is struc-

tured as Wñ(t) =

[
W1(t) W2(t)
W∗

2(t) W∗
1(t)

]
and consequently

nw(t)
def
= W1(t) ⋆n(t)+W2(t) ⋆n

∗(t) is both circular, and

temporally and spatially white.
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