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Direction Finding Antenna Arrays for the

Randomly Located Source

Houcem Gazzah and Jean-Pierre Delmas

Abstract

We consider the problem of sensor placement for estimating the direction of arrival of a narrow-band

source randomly located in the far-field of a planar antenna array. Performance is evaluated by means of

the expectation of the conditional Cramer Rao bound, normalized to that of the uniform circular array.

Two cost functions are obtained, relative to azimuth and elevation, respectively. They depend on the

array geometry as well as the distribution of the source azimuth. A class of uniform antenna arrays

is investigated. It is adapted to the particular probabilistic distribution of the azimuth, while ensuring

protection against array ambiguities. Using an exhaustive search procedure, we either seek the same

reduction of both cost functions, or rather focus on one in particular. In the first approach, we achieve a

reduction of almost 36% of both, regardless of the source azimuth distribution. In the second approach,

we can obtain larger reductions for the targeted parameter. In both cases, optimal arrays are close to the

V shape, for which performance analysis is conducted and closed-form expressions are obtained.

I. INTRODUCTION

Direction of Arrival (DOA) is a topic of the utmost importance in statistical signal processing. A set of

sensors collect signal snapshots to estimate the source DOA. Estimation accuracy depends on the sensor

positions, in a way that has remained largely unquantified [1], [2], mainly because of the complexity

of the Cramer Rao Bound (CRB), even in the single source case [3]. Because of the intricate original

expression of the CRB [3], early attempts to achieve array optimization were conducted mostly using

heuristic techniques [4], [5]. A recent simplification of the CRB of the planar antenna array shows a

convenient sinusoidal dependency on the source azimuth [6], as long as the array geometry is concerned.

Other parameters are eliminated by normalizing to the uniform circular array (UCA).
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Estimation accuracy increases if sensors are allowed to occupy a larger region [4], at the expense

of increased array ambiguities [7]. They occur when two (first-order ambiguity) or more (higher-order

ambiguity) steering vectors at different look directions are linearly dependent [8]. A robust manner to

avoid ambiguities is to impose a regular (half-wavelength) spacing between adjacent sensors, because,

then, the matrix of steering vectors is less likely to be close to singularity [7]. Global optimization of the

array geometry, now function of a set of angular parameters, can be achieved by exhaustive search, an

approach followed in [9], [10] to design optimal arrays for a source with a fixed DOA. The main outcome

was a set of optimal isotropic arrays whose CRB for azimuth and elevation, just like for the UCA, do

not depend on the actual source azimuth. However, they are 29% lower than their UCA counterparts.

In wireless cellular systems, for example, the DOA distribution around the base station is sought after

in order to improve the network design, performance, and services [11]. The incorporation of such a

knowledge into the array optimization procedure is expected to further improve DOA estimation accuracy.

The application of the theory of Bayesian estimation to this situation leads to the expected CRB (ECRB) as

a performance measure. Normalization to the ECRB of the UCA results in two cost functions (relative to

the azimuth and elevation angles) that depend only on the array geometry and on the Probability Density

Function (PDF) of the source azimuth. By taking the DOA distribution into consideration, we obtain

arrays with better estimation capabilities, but we also prove that optimal (minimizing the CRB) isotropic

arrays are not optimal (i.e., do not minimize the ECRB) even in the case of a uniformly distributed DOA,

contrary to claims in [4, Sec. V] and [12, Sec. V].

Two optimization approaches are proposed, depending on whether the two DOA angles are treated

equally, or whether one is prioritized over the other. In the first approach, numerical examples show a

reduction, w.r.t. the UCA, of the ECRB of 36% on both azimuth and elevation angles. This performance

is achieved by arrays that are not isotropic, an improvement w.r.t. [9], [10] where optimal isotropic arrays

achieve a 29% reduction. In the second approach, the emphasis is put on one DOA angle in particular

(the azimuth angle for example) and the associated ECRB can be further reduced.

The exhaustive search procedure is computation-consuming for large array sizes. Also, optimal arrays

have systematically shown a V-like structure. V arrays have already been shown to be near-optimum for

CRB-based geometry optimization [9], [10]. This motivates a detailed analysis of the performance of V

arrays and their subsequent optimization. Interestingly, for large-sized V arrays, the normalized (w.r.t.

the UCA) ECRB is shown to be independent of the array size. Analytical expressions are obtained that

determine the shape, the orientation and the DOA estimation accuracy of the optimal V array in the

presence of a source with a known arbitrary azimuth distribution.
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We denote by E [·] the expectation operator. In Sec. II, we introduce the observation model and recall

previous results. In Sec. III, we develop a Bayesian CRB based criterion and apply it to uniform arrays.

Sec. IV presents a detailed study of V arrays. Finally, a conclusion is given in Sec. V.

II. DATA MODEL AND PERFORMANCE CRITERIA

We consider an antenna array made of M identical and omni-directional sensors in the (x, y) plane.

The position of the m-th sensor is given by γm=̂ρm exp (jφm) where ρm is the distance to the origin

and φm is the angle to [O,x). A far-field source is emitting a narrow-band signal s(t) with wavelength λ.

The DOA is specified by azimuth Φ and elevation Θ, so that the snapshot collected by sensor m at time

index t is xm(t) = exp
[

2jπ ρm

λ
sin(Θ) cos (Φ − φm)

]

s(t) + nm(t), where nm(t) represents the ambient

additive noise collected by sensor m. Snapshots x(t1), · · · ,x(tN ), where x(t)=̂ [x1(t) · · · xM (t)]T , are

used to estimate the source DOA, i.e., parameters Φ and Θ, using a variety of algorithms.

Under the assumptions of (i) circular, Gaussian, zero-mean and mutually independent source and noise

signals with respective power σ2
s and σ2

n; (ii) independent and identically distributed source snapshots

and (iii) noise samples collected from different sensors and/or at different time indexes are mutually

independent; the (concentrated) CRB [3, rel.(39)] has been greatly simplified (under no additional

assumptions) [6] to obtain, in particular, CΦΦ = A
sin2(Θ)B (Φ) and CΘΘ = A

cos2(Θ)B
(

Φ + π
2

)

, where

A is a constant that depends on the array size, the observation SNR and the number of snapshots. Only

B (Φ) =̂ {S0 + ℜ [S1 exp(−2jΦ)]} /(S2
0 − |S1|2) depends on the array geometry through

S0 =̂
M
∑

m=1

∣

∣

∣

∣
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, (1)

S1 =̂
M
∑

m=1

(

γm

λ

)2

− 1

M

(

M
∑

m=1

γm

λ

)2

. (2)

This simple sinusoidal form allows one to analyze the impact of the array geometry on DOA estimation,

and, ultimately, to optimize such a geometry [9]. Of a particular interest are arrays (like the UCA for

example) for which S1 is zero and, as a consequence, B (Φ) is a constant. We refer to them as isotropic

arrays because, for a given elevation angle, the CRBs on azimuth and elevation do not depend on the

actual azimuth angle. Non-trivial optimal isotropic antenna arrays obtained in [10] achieve a CRB that is

29% (for large-sized arrays) lower than that of the UCA, and so for both azimuth and elevation angles.

In this paper, we do not require arrays to be isotropic and, so, S1 is not necessarily equal to zero.

In practice, there are situations where a priori knowledge is available about the DOA parameters

with (Φ,Θ) following some known joint distribution. We adopt a Bayesian approach by using [13,
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p. 6] the expectation of the conditional CRBs (ECRB) C̄ΦΦ=̂EΦ,Θ(CΦΦ) and C̄Θ,Θ=̂EΦ,Θ(CΘΘ) as

criteria to minimize. The ECRB was also used in [4] as a cost function, but only the azimuth DOA

angle was considered therein. Advantageously, these cost functions inherit the convenient structure of

the CRB. If we assume the azimuth and elevation angles to be independently distributed, we have

C̄ΦΦ = A E
[

1
sin2(Θ)

]

E [B (Φ)] and C̄Θ,Θ = A E
[

1
cos2(Θ)

]

E
[

B
(

Φ + π
2

)]

.

Because the above expressions have separate terms in Φ and Θ, where only the Φ-dependent term is

function of the array geometry, the use of a reference antenna renders the criterion (and any subsequent

optimization) independent of the source elevation. The UCA, our reference antenna, has M sensors spaced

by d and verifies BUCA=̂B (Φ) = 4λ2 sin2(π/M)/(Md2). If we denote by ϕΦ(x)=̂E [exp(jΦx)] the

characteristic function relative to the random parameter Φ, we straightforwardly obtain

C̄ΦΦ

C̄ΦΦ|UCA
=

1

BUCA

S0 + ℜ [S1ϕΦ(−2)]

S2
0 − |S1|2

(3)

C̄ΘΘ

C̄ΘΘ|UCA
=

1

BUCA

S0 −ℜ [S1ϕΦ(−2)]

S2
0 − |S1|2

. (4)

Obviously, in the case of a randomly (not only uniformly, as assumed in [14]) distributed azimuth

angle, an isotropic array (one for which S1 equals zero) exhibits the same normalized ECRB for azimuth

and elevation that, furthermore, does not depend on the source probabilistic distribution. However, the

opposite is not true: The normalized ECRBs can be independent of Φ without the array being necessarily

isotropic. In fact, the normalized ECRBs do not depend on the azimuth if

ℜ [S1ϕΦ(−2)] = 0. (5)

Except when the array is isotropic (i.e., S1 = 0), we can rewrite the above as

E [cos(2Φ)] cos [arg(S1)] + E [sin(2Φ)] sin [arg(S1)] = 0. (6)

This relationship between the probabilistic distribution of the azimuth and the array geometry ensures

that the two normalized ECRBs are identical, reducing (3) and (4) to a unique performance measure

C̄ =
1

BUCA

S0

S2
0 − |S1|2

, (7)

Condition (5) is satisfied when the antenna is isotropic and/or when the distribution is uniform over

[−π, π), but also if ϕΦ(−2) = E [exp(2jΦ)] = 0, which is not only the case of the uniform distribution.

III. OPTIMIZATION OF UNIFORM ARRAYS

The design of antenna arrays is made difficult by the requirement that the array be ambiguity-free.

Formally, rank ambiguity occurs when steering vectors corresponding to different look directions are
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linearly dependent [8], and a number of sufficient conditions have been developed to prevent this from

taking place. We have chosen to implement the weakest condition [8, Th. 9] because it only involves

spacings between sensors, while other conditions involve orientation (angular) parameters as well [15],

[16], [17]. The condition [8, Th. 9] applies to a set of three arbitrarily chosen sensors. It ensures that two

steering vectors (associated with two different look directions) are not colinear. However, this does not

prevent them from nearly being so. In fact, the definition of ambiguity is sometimes extended to include

cases where the matrix of steering vectors is close to singular [18]. This is particularly severe for non

uniform arrays, for which the inter-sensor spacing is not constant [7]. The problem is intractable even

in the simplest case of linear arrays [18]. By imposing a constant inter-sensors spacing, our approach

is sub-optimal in the strict sense, but is robust from the ambiguity point-of-view. It is also interesting

from the analytical and computational points-of-view, as we obtain expressions in terms of bounded

parameters, which are amenable to global optimization by systematic search.

We assume sensors to be placed at a constant spacing d along a curve originating at the origin,

following the relationship γm = γm−1 + d exp(jψm−1). The normalized sensor coordinates γm/d are

function only of the M−1 angular parameters ψ1, · · · , ψM−1, each in [−π, π). Thanks to this structure, the

optimization problem is rendered independent of the actual spacing d. In fact, if we introduce the following

d-independent parameters that describe the array geometry: T0=̂
λ2

d2 S0 =
∑M

m=1
|γm|2

d2 − 1
M

∣

∣

∣

∑M
m=1

γm

d

∣

∣

∣

2

and T1=̂
λ2

d2 S1 =
∑M

m=1
γ2

m

d2 − 1
M

(

∑M
m=1

γm

d

)2
, then, (3) and (4) can be updated as follows

C̄ΦΦ

C̄ΦΦ|UCA
=

1

B
T0 + ℜ [T1ϕΦ(−2)]

T 2
0 − |T1|2

(8)

C̄ΘΘ

C̄ΘΘ|UCA
=

1

B
T0 −ℜ [T1ϕΦ(−2)]

T 2
0 − |T1|2

(9)

where B=̂4 sin2(π/M)/M does not depend on d neither. The above (8) and (9) form two cost functions

that depend on the probabilistic distribution of the azimuth via ϕΦ(−2) and on the array geometry via

T0 and T1, i.e. via ψ1, · · · , ψM−1.

A. Unprioritized Approach

By unprioritized, we mean that both azimuth and elevation are of equal importance and the same level

of enhancement (w.r.t. the UCA) is required, i.e. (8) and (9) should be the same. This yields to the

condition (5) and that (8) and (9) reduce to (7). On one hand, we minimize (7), which is a function of

S0 and |S1|, that remain unchanged if the antenna array is rotated. On the other hand, and independently

from (7), we have to respect the constraint (6), which is a function of the argument of S1. In fact,
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minimizing (7) and then using the constraint in (6) for fixing the orientation gives the same solution

obtained from minimizing (3) and (4) under the constraint in (6). Optimizing the cost function (7) helps

determine the shape of the optimal array, while solving the constraint (6) helps fix its orientation. These

two independent steps are detailed now.

The minimization of the cost function C̄ in (7) is equivalent to maximizing

T0 −
|T1|2
T0

. (10)

This is to be compared to optimal isotropic arrays obtained in [10] where the above was maximized

under the constraint of T1 equal to zero. By relaxing this constraint, we are able to obtain non-isotropic

arrays that outperform any isotropic array from the Bayesian point-of-view, i.e., in terms of the ECRB.

Notice that (i) arrays that are obtained one from the other by axis-symmetry w.r.t. the x-axis and (ii)

arrays that are rotated versions of each other, have identical T0 and |T1|. Hence, the second sensor can be

fixed with x = d (i.e., ψ1 = 0) while the third sensor can be constrained to be in the positive y semi-plane

(i.e., positive ψ2). For m > 2, ψm spans the interval [−π, π). If we adopt a step dψ (fixed to dψ = π/50 in

our calculations), the so-implemented exhaustive grid-search involves testing 2M−3(π/dψ)M−2 candidate

tuples ψ2, · · · , ψM−1, among which we pick the tuple with the largest T0 − |T1|2/T0.

Normalized ECRB C̄ M = 4 M = 5 M = 6 M = 7 M = 8 M = 9 M = 10 M = 11 M = 12

Optimal array 1 0.7306 0.7039 0.6805 0.6689 0.6597 0.6540 0.6494 0.6461

Optimal isotropic array 1 0.8075 0.8005 0.7617 0.7566 0.7441 0.7398 0.7331 0.7302

TABLE I

NORMALIZED ECRBS OF OPTIMAL ARRAYS [MAXIMIZING T0 − |T1|2/T0, I.E. (10)] AND OF OPTIMAL

ISOTROPIC ARRAYS (MAXIMIZING T0 UNDER T1 = 0 [9]).

Optimal arrays obtained for M less than or equal to 9 exhibit a concave geometry. Hence, in order

to reduce the complexity burden (exponential in M ), we impose, for M larger than 9, that the array

has a concave geometry, i.e. ψm ≥ ψm−1 for m ≥ 2. While this significantly limits the search area, it

may possibly lead to suboptimal solutions. Except when M = 4 (the optimal array is the UCA), the

so-computed optimal arrays are not isotropic (i.e., they have non-zero T1). As the number of sensors

increases, the ECRB of the optimal array is reduced by 36% compared to the UCA, and by 10% compared

to optimal isotropic arrays obtained [9], as can be seen in Tab. I.
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For an arbitrary distribution of the azimuth and a predetermined number of sensors M , the array

obtained using the above procedure has the appropriate shape but needs to be oriented in order to satisfy

(6). The normalized ECRB for the optimal array, however, is what is reported in Tab. I. If T †
1 is relative to

the array obtained by maximizing (10) and T1 is relative to the optimal array, then we have T1 = T †
1 e

2jΥ.

Consequently, the rotation is simply given by Υ = [arg(T1) − arg(T †
1 )]/2, where the argument of T1 is

obtained by solving (6) rewritten as E [cos(2Φ)] cos [arg(T1)] + E [sin(2Φ)] sin [arg(T1)] = 0.

B. Prioritized Approach

In the general case, we have two potentially distinct normalized ECRBs (8) and (9), relative to the

azimuth and elevation angles. We suggest the following ad-hoc criterion:

Min
C̄ΦΦ

C̄ΦΦ|UCA
subject to C̄Θ,Θ ≤ C̄Θ,Θ|UCA. (11)

where all parameters ψ1, · · · , ψM−1 are allowed to span the interval [−π, π). The rationale behind this

criterion is that, in many practical situations, the azimuth angle is more important than the elevation

angle. The objective here is to find an array that minimizes the MSE on the azimuth angle while not

deteriorating, w.r.t. the UCA, the MSE on the elevation angle.

We illustrate this optimization procedure for an azimuth distribution
∑3

p=1
1

3σp

√
2π

exp
[

− (Φ−Ωp)2

2σ2

p

]

corresponding to three equally probable look directions at Ω1 = 0◦, Ω2 = 90◦ and Ω3 = 200◦, known

with an uncertainty of σ1 = σ2 = σ3 = 10◦. The optimal array is shown in Fig. 1, along with the source

azimuth PDF (in polar coordinates). The normalized ECRBs on azimuth and elevation angles [i.e., (8)

and (9), respectively] are equal to 67.47% and 73.31%, respectively. With reference to the UCA, not only

do we obtain a significant reduction of the MSE on the azimuth angle, but also a significant reduction

of the MSE on the elevation angle, even though this is not the objective of the optimization procedure.

In order to compare results with the unprioritized approach, notice that the optimal array [the 6-sensors

array in Tab. I, rotated to satisfy (6), i.e., to ensure tan [arg(S1)] = −1.1920] delivers a normalized

ECRB equal to 70.39% (see Tab. 1) for both azimuth and elevation angles.

IV. OPTIMIZATION OF V-SHAPED ARRAYS

The optimization problems in Sec. III have been solved numerically, but not analytically. While this

has been useful to define a procedure to adapt the array geometry to the probabilistic distribution of

the azimuth, we remain short of physical insight into this inter-dependency. Interestingly, optimal arrays

computed in Sec. III-A (where we have assumed a concave geometry for M > 9) and Sec. III-B show a
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Fig. 1. Optimal placement of 6 sensors (marked by ’*’ dots) to fit a particular PDF of the azimuth angle (marked

by solid line). The curve is a polar representation of the prior distribution of the azimuth angle [For a point M of

the curve, distance OM represents the PDF at the azimuth angle Φ = [Ox,OM)] .

V-like geometry. This concurs with [10], where V arrays were shown to be near-optimum in estimating

the DOA of a fixed source and suggests that performance analysis of V arrays is meaningful to evaluate

the potential of ECRB-optimized arrays. We revisit the developments in Sec. III in the case of a V-shaped

array. The V array geometry is function of only two parameters and, more interestingly, the analysis can

be made independent of the array size M when M is large enough.

For simplicity, we assume odd M (even M leads to the same asymptotic expressions [10]). Sensor 1

is placed at the origin. Sensors 2k (resp. 2k + 1), k = 1, · · · , (M − 1)/2, form a branch at an angle ∆1

(resp. ∆2) from the x-axis. We assume ∆1 and ∆2 to be both in [0, 2π). Following similar steps as in

[6], [9], [10], we obtain the following approximations for large M

T0 ≃ 5 − 3 cos(∆1 − ∆2)

96
M3

T1 ≃ 5 cos(∆1 − ∆2) − 3

96
exp[j(∆1 + ∆2)]M

3. (12)

The above expressions in M3 suggest that the analysis for large M may be applicable to practical V

arrays (a comparable analysis in [6, Sec. V] has shown to be accurate for M as low as 5). Notice that

for large M , B ≃ 4π2/M3. After tedious manipulations, (8) and (9) are shown to be independent of M :

C̄ΦΦ

C̄ΦΦ|UCA
≃ 3

2π2

5 − 3 cos(∆1 − ∆2) + [5 cos(∆1 − ∆2) − 3]ℜ [exp[j(∆1 + ∆2)]ϕΦ(−2)]

sin2(∆2 − ∆1)
(13)
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C̄ΘΘ

C̄ΘΘ|UCA
≃ 3

2π2

5 − 3 cos(∆1 − ∆2) − [5 cos(∆1 − ∆2) − 3]ℜ [exp[j(∆1 + ∆2)]ϕΦ(−2)]

sin2(∆2 − ∆1)
.(14)

We can see from the expression of T1 in (12) that the V array is isotropic iff the angle between the

two branches is equal to ∆2 −∆1 = arccos(3/5), i.e. ∆2 −∆1 = 53.13◦, in accordance with [9]. Then,

the right-hand side in (13) and (14) becomes equal to 15/(2π2) = 76%, i.e., a reduction of the ECRB

(and also of the CRB) of 24% compared to the UCA, on both the azimuth and elevation DOA, and so

regardless of the actual distribution of the DOA of the randomly located source.

A. Unprioritized Approach

We now refer to the analysis in Sec. III-A and impose that the normalized ECRBs on the azimuth and

elevation are identical. By comparing (13) and (14), this is true when the V antenna is isotropic [i.e.,

∆2 − ∆1 = arccos(3/5)] and/or ℜ [exp[j(∆1 + ∆2)]ϕΦ(−2)] = 0. Given the expression of T1 in (12),

arg(T1) = ∆1 + ∆2, so that the condition (6) for non-isotropic V shaped arrays translates into

E [cos(2Φ)] cos (∆1 + ∆2) + E [sin(2Φ)] sin (∆1 + ∆2) = 0. (15)

The performance measure (7), then equal to C̄ = 3
2π2

5−3 cos(∆1−∆2)
sin2(∆2−∆1)

, reaches a minimum when ∆2 −
∆1 = arccos (1/3), i.e., ∆2 − ∆1 = 70.52◦. This optimal V array is not isotropic and achieves

C̄ =
27

4π2
= 0.6839. (16)

This is significantly lower than for the isotropic V array (for which C̄ equals 76%) and quite close to

optimal arrays obtained in Sec. III-A (for which C̄ approaches 64%).

B. Prioritized Approach

We study the following two functions r1(∆1,∆2) and r−1(∆1,∆2) corresponding to the right-hand

side of (13) and (14), i.e. the normalized ECRBs on azimuth and elevation, respectively,

rǫ(∆1,∆2)=̂
3

2π2

5 − 3 cos(∆1 − ∆2) + ǫ [5 cos(∆1 − ∆2) − 3]ℜ [exp[j(∆1 + ∆2)]ϕΦ(−2)]

sin2(∆2 − ∆1)
.

We set ǫ = 1 (resp. −1) if we are interested in minimizing the ECRB (normalized w.rt. the UCA) on

the azimuth angle Φ (resp. elevation angle Θ). We also define

α=̂|ϕΦ(2)|. (17)

We prove that the minimum of rǫ(∆1,∆2) is given by

min
∆1,∆2

rǫ(∆1,∆2) =
3

4π2

(3 − 5α)2

5 − 3α− 4
√

1 − α2
, if α 6= 3

5 (18)

=
24

5π2
, if α = 3

5 . (19)
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It is met at rǫ(∆
†
1,∆

†
2) = min∆1,∆2

rǫ(∆1,∆2) iff the following three conditions are satisfied

cos(∆†
1 − ∆†

2) =
4
√

1 − α2 + 3α − 5

5α− 3
(20)

cos(∆†
1 + ∆†

2) = ǫ
E [cos (2Φ)]

α
(21)

sin(∆†
1 + ∆†

2) = ǫ
E [sin (2Φ)]

α
. (22)

At the same time, the other cost function takes on

r−ǫ(∆
†
1,∆

†
2) =

3

16π2

5α− 3√
1 − α2

(

5α+ 3 +
(5 + 3α)(3 − 5α)

3α− 5 + 4
√

1 − α2

)

(23)

Notice that conditions (20)-(22) do not define a unique V array. For instance, if we let

∆3=̂ arccos
[(

4
√

1 − α2 + 3α− 5
)

/(5α − 3)
]

and ∆4 be the angle in [0, 2π) whose cosine and sine

are given by the right-hand side in (21)-(22), respectively; and if we define ∆5=̂(∆4 − ∆3)/2 and

∆6=̂(∆3 + ∆4)/2, then, we can prove that there are, in fact, two distinct V arrays solutions of our

optimization problem. They are given by (∆1,∆2) equal to (∆5,∆6) and (∆5 + π,∆6 + π).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Parameter α

Fig. 2. Normalized ECRBs achieved by the optimal V array, as a function of parameter α. Solid (dash-dotted) line

refers to the normalized ECRB for the angle of interest (resp. on the other angle), i.e. (18) [resp. (23)].

We, first, study (18) that expresses the minimum normalized ECRB achievable by a V array, relative

to our parameter of interest (azimuth Φ if ǫ = 1 or elevation Θ if ǫ = −1). This minimum normalized

ECRB is actually independent of the parameter of interest. It is presented by the solid line in Fig. 2 and

is observed to decrease with α, ranging from 68% for α = 0 (the unprioritized approach in Sec. IV-A)

to 15.2% for α = 1 (the case of a deterministic prior, for example).
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The V array that minimizes the normalized ECRB for the DOA angle of interest does not minimize

the normalized ECRB for the other DOA angle, except when α = 0, i.e., when array and source fit the

condition (5) of the unprioritized approach. The ECRB (normalized w.r.t. the UCA) on the DOA angle

other than the angle of interest is presented by the dashed line in Fig. 2. Interestingly, it is inferior to

1 when α is less than 0.59. For such a distribution, the minimization of the normalized ECRB for a

given angle (say for example azimuth) is not obtained at the expense of the normalized ECRB for the

other angle (here, the elevation) in the sense that the latter is always less than 1, i.e., not degraded w.r.t.

the UCA. For the typical case of an azimuth distributed as a Gaussian random variable with standard

deviation σ, ϕΦ(−2) = exp
(

−2σ2
)

and this situation takes place for σ larger then 58.85◦.

The V array is characterized by its shape (the angle ∆2 − ∆1 between the two branches) and its

orientation (angle ∆1). The first parameter ∆2 − ∆1 is the same, whether we intend to minimize the

normalized azimuth ECRB or the normalized elevation ECRB, as a result of (20) being independent of

ǫ. For a fixed optimal V array (i.e., a fixed ∆2−∆1), there are 4 possible optimal orientations (i.e., ∆1).

Two of them (rotation one of the other by 180◦) minimize the MSE of the azimuth angle. The other two

(also, rotation one of the other by 180◦) minimize the MSE of the elevation angle.

V. CONCLUSION

Using elements from Bayesian estimation theory, we propose CRB-based antenna array DOA estimation

performance criteria that take into account the availability of some prior information about the source

(azimuth) angle. We define array geometry optimization problems in order to achieve improvement

w.r.t. the commonly used UCA, and solve them by exhaustive search. Optimum arrays are obtained

that minimize the normalized ECRB following two alternative strategies: (i) the two DOA parameters

(azimuth and elevation) are declared of equal importance and the same reduction is required for both

or, instead, (ii) emphasis is put on one of the angles. The constraint (i) leads to (large-sized) arrays

that reduce the ECRB by 36% compared to similarly sized and spaced UCA, and so regardless of the

available DOA prior information. By relaxing this constraint, approach (ii) leads to arrays with much

lower normalized ECRB for one of the DOA angles. In all circumstances, optimal antenna arrays obtained

here significantly outperform arrays in [10] and outperform UCAs even further, from the MSE point-of-

view. The attractiveness of this analysis is further increased by the fact that optimum performance can be

closely approached by V shaped arrays whose shape, orientation and performance are given analytically.
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