
HAL Id: hal-00746280
https://hal.science/hal-00746280

Submitted on 28 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time-domain formulation in computational dynamics for
linear viscoelastic media with model uncertainties and

stochastic excitation
Christian Soize, Igor E. Poloskov

To cite this version:
Christian Soize, Igor E. Poloskov. Time-domain formulation in computational dynamics for linear
viscoelastic media with model uncertainties and stochastic excitation. Computers & Mathematics
with Applications, 2012, 64 (11), pp.3594-3612. �10.1016/j.camwa.2012.09.010�. �hal-00746280�

https://hal.science/hal-00746280
https://hal.archives-ouvertes.fr


Time-domain formulation in computational dynamics

for linear viscoelastic media with model uncertainties

and stochastic excitation

C. Soize∗,a, I. E. Poloskovb

aLaboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd

Descartes, 77454 Marne-la-Valle, France
bFaculty of Mechanics and Mathematics, Perm State National Research University, 15 Bukirev

street, 614 990 Perm, GSP, Russia

Abstract

The paper is devoted to the computational time-domain formulation of linear vis-

coelastic systems submitted to a nonstationary stochastic excitation and in pres-

ence of model uncertainties which are modeled in the framework of the proba-

bility theory. The objective is to introduce and to develop an adapted and com-

plete formulation of such a problem in the context of computational mechanics.

A reduced-order model in the time domain with stochastic excitation is derived

from the computational model. For the reduced-order model, the stochastic mod-

eling of both computational model-parameters uncertainties and modeling errors

is carried out using the nonparametric probabilistic approach and the random ma-

trix theory. We present a new formulation of model uncertainties to construct the

random operators for viscoelastic media. We then obtained a linear Stochastic

Integro-Differential Equation (SIDE) with random operators and with a stochastic

nonhomogeneous part (stochastic excitation). A time discretization of this SIDE is

proposed. In a first step, the SIDE is transformed to a linear Itô Stochastic Differ-

ential Equation (ISDE) with random operators. Then the ISDE is discretized using

an extension of the Störmer-Verlet scheme which is a particularly well adapted al-

gorithm for long-time good behavior of the numerical solution. Finally, for the

stochastic solver and statistical estimations of the random responses, we propose

to use the Monte Carlo simulation for Gaussian and non-Gaussian excitations.
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1. Introduction

It is well known that the computational models in linear viscoelastic dynamics

can be analyzed in the frequency domain which constitutes an alternative ap-

proach to the time-domain formulation. Such a frequency-domain approach is

nowadays very efficient considering the developments of massively parallel com-

puters, because there are no data exchange between the calculations performed at

each frequency. Nevertheless, the frequency approach is not really appropriate if

additional local nonlinearities are added to the linear viscoelastic dynamical sys-

tem yielding nonlinear dynamical systems. In such a case, the time formulation is

better adapted.

In the present work, we are interested in the time-domain formulation of linear vis-

coelastic systems submitted to nonstationary stochastic excitation and in presence

of uncertainties which are modeled in the framework of the probability theory.

The time formulation is then proposed, developed and validated in this context of

linear stochastic integro-differential equations with random operators and with a

stochastic nonhomogeneous part (stochastic excitation). Although such systems

could be analyzed in the frequency domain, it is interesting to present a complete

analysis in the time domain in order to propose a general methodology which has

the capability to analyze such systems with additional local nonlinearities, that is

the case, for instance, of vibro-impact systems made up of a linear viscoelastic

medium with stops. In addition, we are mainly interested in the response to tran-

sient excitation.

The time-domain formulation for dynamics of viscoelastic structures has been

previously studied (see for instance [28, 43, 49, 60]), in particular for approximat-

ing the time-domain integral operator using either a sequence of linear differential

operators acting on additional hidden variables (see for instance [19, 45]) or the

fractional derivative operators (see for instance [4, 18, 20, 24, 63]). A lot of pa-

pers using different existing time-domain viscoelastic modeling for many applica-

tions have been published and we cannot refer here all these works. Many works

have been published in the context of random vibration of viscoelastic systems

submitted to stochastic excitation in the context of analytical approach of simple

mechanical systems but there are no works in the context of computational me-

chanics for analyzing general complex mechanical systems.
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Concerning uncertainties modeling in computational mechanics, the most popu-

lar method is the parametric probabilistic approach which consists in modeling

the uncertain parameters of the computational model by random variables and

then in constructing the probabilistic model of these random variables using the

available information. Such an approach is very well adapted and very efficient

to take into account the uncertainties on the computational model parameters as

soon as the probability theory can be used. Many works have been published and

a state-of-the-art can be found, for instance, in [17, 27, 44, 46, 64, 65, 73, 75].

Concerning model uncertainties induced by modeling errors, today, it is well un-

derstood that the prior and posterior probability models of the uncertain parame-

ters of the computational model are not sufficient and do not have the capability to

take into account model uncertainties in the context of computational mechanics

as explained in [70]. The nonparametric probabilistic approach of both the com-

putational model-parameters uncertainties and modeling errors has been proposed

as a way to take into account modeling errors at the operators level by introduc-

ing random operators and not at the model output level by introducing an additive

noise [70, 71, 72, 75]. A few works have been carried out on viscoelastic struc-

tures with uncertain parameters for simple mechanical systems (see for instance

[23]) and no works can be found concerning the probabilistic approach of model-

ing errors for viscoelastic media.

At the knowledge of the authors, there is no work published that concerns meth-

ods in the time-domain formulation for analyzing general linear viscoelastic sys-

tems submitted to nonstationary stochastic excitations and in presence of both the

computational model-parameters uncertainties and model uncertainties induced

by modeling errors. In this paper, we present such an approach in the time do-

main for computational models of general linear viscoelastic systems submitted

to stochastic excitation and in presence of model uncertainties. Concerning uncer-

tainties modeling, we propose a new extension of the nonparametric probabilistic

approach of uncertainties for viscoelastic media. The objective of this paper is

to present an adapted and complete formulation of the problem in the context of

computational mechanics.

Principal notations used for tensors and Fourier transform

(i) Let S = {Sjkℓm}jkℓm be a fourth-order real tensor and let η = {ηℓm}ℓm be

a second-order real tensor. The contraction S : η of S with η is a second-order

tensor such that {S : η}jk =
∑

ℓm Sjkℓmηℓm.
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(ii) Fourth-order tensor S is said to be symmetric if Sjkℓm = Skjℓm = Sjkmℓ =
Sℓmjk and is said to be positive (or positive definite) if, for all non zero second-

order tensor η, we have
∑

jkℓm Sjkℓmηjkηℓm ≥ 0 (or
∑

jkℓm Sjkℓmηjkηℓm > 0). If

tensor S is positive definite, then there exists a positive constant cS (the smallest

positive eigenvalue of S) such that
∑

jkℓm Sjkℓmηjkηℓm ≥ cS
∑

jk η
2
jk.

(iii) Let τ 7→ g(τ) be an integrable real function defined on R =]−∞ ,+∞[. The

Fourier transform of g is defined as the complex continuous function ω 7→ ĝ(ω) on

R such that ĝ(ω) =
∫
R
e−iωτg(τ) dτ and which is such that lim|ω|→+∞ ĝ(ω) = 0.

(iv) Let X be any set and let B be any subset of X . The indicator function x 7→
1B(x) from X into R is such that 1B(x) = 1 if x ∈ B and 1B(x) = 0 if x /∈ B.

2. Boundary value problem in time domain for computational dynamics of

linear viscoelastic media

We consider a linear viscoelastic medium occupying an open bounded domain Ω
of R3, with boundary ∂Ω = Γ0 ∪ Γ, in a Cartesian frame (Ox1x2x3). Let x =
(x1, x2, x3) be any point in Ω and let dx = dx1 dx2 dx3. The external unit normal

to ∂Ω is denoted by n = (n1, n2, n3). Let u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) be

the displacement field defined on Ω. On part Γ0 of the boundary, there is a Dirich-

let condition u = 0. Consequently, there will be no rigid body displacements.

This hypothesis can be released in the developments presented in this paper. A

surface force field, f surf(x, t) = (f surf
1 (x, t), f surf

2 (x, t), f surf
3 (x, t)), is applied to part

Γ on the boundary and will be random. In addition, there is a volume force field,

f vol(x, t) = (f vol
1 (x, t), f vol

2 (x, t), f vol
3 (x, t)) applied in Ω and will be random. We

are interested in the linear transient response of this viscoelastic medium around a

static equilibrium considered as the reference configuration defined by Ω. It is as-

sumed that there is no prestress. The boundary value problem in the time domain

is written, for all t in ]0 , T ], with T a finite positive real number, as

ρ
∂2u

∂t2
− divσ = f vol in Ω ,

u = 0 in Γ0 ,

σ n = f surf in Γ ,

(1)

where ρ(x) is the mass density which is assumed to be a positive-valued bounded

function on Ω, σ(x, t) is the second-order stress tensor, in which {divσ(x, t)}j =
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∑3
k=1 ∂σjk(x, t)/∂xk and where {σ(x, t) n}j =

∑3
k=1 σjk(x, t)nk(x). Let ε(x, t)

be the strain tensor defined by

εjk(x, t) =
1

2

(
∂uj(x, t)

∂xk

+
∂uk(x, t)

∂xj

)
. (2)

The stress tensor σ(x, t) will be related to the strain tensor ε(x, t) by a constitutive

equation which is nonlocal in time for a linear viscoelastic material and which

will be detailed in Section 3. Finally, for the time-evolution problem, the initial

conditions are chosen such that, for all x in Ω,

u(x, 0) = 0 ,
∂u

∂t
(x, 0) = 0 . (3)

3. Viscoelastic constitutive equation

In this Section, we use the linear viscoelastic theory presented in [77] and consider

strongly dissipative materials. This assumption will imply that the operators of

the problem, which belong to the set of all the positive linear operators, will be, in

fact, in the subset of all the positive-definite operators. Others presentations can

be found, for instance, in [15, 35, 51, 56]. In order to simplify the notation, x is

removed from the equations appearing in this Section. Consequently, σ(x, t) and

ε(x, t) are rewritten as σ(t) and ε(t). It is assumed that

σ(t) = 0 , ε(t) = 0 , for t ≤ 0 . (4)

In linear viscoelasticity, the constitutive equation is written, for all t > 0, as

σ(t) =
∫ t

0
C(t − τ) : ε̇(τ) dτ , in which τ 7→ C(τ) is the fourth-order tensor-

valued relaxation function defined on R+ = [0 ,+∞[. Performing an integration

by parts and since ε(0) = 0, this constitutive equation can be rewritten as

σ(t) = C(0) : ε(t) +

∫ t

0

Ċ(t− τ) : ε(τ) dτ

= C(0) : ε(t) +

∫ t

0

Ċ(τ) : ε(t− τ) dτ , (5)

where the function τ 7→ Ċ(τ) is defined on R∗+ =]0 ,+∞[ as the first deriva-

tive of C with respect to τ and such that Ċ(0) = limτ↓0 Ċ(τ) = Ċ(0+). The

fourth-order tensor C(0) is called the initial elasticity and in the right-hand side

of Eq. (5), the second term is called the hereditary response. We introduce the
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fourth-order tensor-valued function τ 7→ H(τ) defined on R =]−∞ ,+∞[ such

that

H(τ) = 0 for τ < 0 , H(0) = Ċ(0+) , H(τ) = Ċ(τ) for τ > 0 . (6)

Consequently, H is a causal function because the support of function H is R+. In

addition, it is assumed that function H is integrable on R (that is to say on R+).

Taking into account Eq. (6), Eq. (5) can be rewritten as

σ(t) = C(0) : ε(t) +

∫ t

0

H(τ) : ε(t− τ) dτ . (7)

Using Eqs. (4) and (6), Eq. (7) can also be written as

σ(t) = C(0) : ε(t) +

∫ +∞

−∞

H(τ) : ε(t− τ) dτ . (8)

Let H∞ be the fourth-order tensor defined by

H∞ =

∫ +∞

0

H(τ) dτ . (9)

Since C(t) = C(0) +
∫ t

0
Ċ(τ) dτ , the equilibrium modulus is introduced as the

fourth-order tensor C∞ = limt→+∞ C(t) and is such that

C∞ = C(0) +H∞ . (10)

The viscoelastic material is dissipative which means that, for all t ≥ 0, we have∫ t

0
σ(τ) : ε̇(τ) dτ > 0. Using this inequality for sufficiently smooth ε with ε(0) =

0, Gurtin and Herrera [29] prove that initial elasticity C(0) and equilibrium mod-

ulus C∞ are positive-definite symmetric fourth-order tensors. Using thermody-

namics arguments, Coleman [13] has shown that C(0)−C∞ is a positive-definite

symmetric fourth-order tensor which means that H∞ = C∞−C(0) is a negative-

definite symmetric fourth-order tensor. Using a time-reversal argument, Day [16]

has shown that, for all t in R+, the fourth-order tensor C(t) is symmetric.

In the following, we will assume that C(0), C∞ and −H∞ are positive-definite

symmetric fourth-order tensors (strongly dissipative material) and that C(t) is

symmetric for all t in R∗+. Thus, for all t in R+, the fourth-order tensor H(t)
is symmetric.
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Assuming that ε is an integrable function on R+, taking the Fourier transform of

Eq. (8) yields

σ̂(ω) = (C(0) + Ĥ(ω)) : ε̂(ω) . (11)

Let

ĤR(ω) = ℜe{Ĥ(ω)} , ĤI(ω) = ℑm{Ĥ(ω)} (12)

be the real part of Ĥ(ω) and its imaginary part.

For all ω in R, we define the fourth-order real elasticity tensor A(ω) and the

fourth-order real damping tensor B(ω), such that

σ̂(ω) = (A(ω) + i ω B(ω)) : ε̂(ω) . (13)

From Eqs. (11) and (13), we deduce that A(ω) + i ω B(ω) = C(0) + Ĥ(ω). We

then obtain

A(ω) = C(0) + ĤR(ω) , ω B(ω) = ĤI(ω) . (14)

For all x fixed in Ω and for all ω fixed in R, we have the following important prop-

erties for tensors A(x, ω) and B(x, ω) (which are denoted by A(ω) and B(ω), as

previously):

(i) Since H is a real tensor-valued function, we have ĤR(−ω) = ĤR(ω) and

ĤI(−ω) = −ĤI(ω). Taking into account Eq. (14), it can be deduced that

A(−ω) = A(ω) , B(−ω) = B(ω) . (15)

(ii) Due to Eqs. (9) and (14), and since ĤI(0) = 0, the negative-definite sym-

metric real fourth-order tensor H∞ can be written as H∞ = A(0) − C(0). Con-

sequently, A(0) = C∞, which appears as the equilibrium modulus tensor, is a

positive-definite symmetric real fourth-order tensor and corresponds to usual elas-

ticity coefficients of the material for a static deformation (t → +∞).

(iii) As explained above, it should be noted that, for all fixed τ in R+, the fourth-

order real tensor H(τ) is symmetric. We can then deduce that the fourth-order

real tensors A(ω) and B(ω) are symmetric,

Ajkℓm(ω) = Akjℓm(ω) = Ajkmℓ(ω) = Aℓmjk(ω) , (16)
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Bjkℓm(ω) = Bkjℓm(ω) = Bjkmℓ(ω) = Bℓmjk(ω) . (17)

(iv) The elasticity tensor A(ω) and the damping tensor B(ω) are positive-definite

symmetric real tensors and, for all second-order real tensor η, there are positive

constants cA(ω) and cB(ω) such that

∑

jkℓm

Ajkℓm(ω)ηjkηℓm ≥ cA(ω)

∑

jk

η2jk , (18)

∑

jkℓm

Bjkℓm(ω)ηjkηℓm ≥ cB(ω)

∑

jk

η2jk . (19)

(v) Since H is an integrable function, Ĥ is a continuous function on R and Ĥ(ω)
goes to zero when |ω| goes to infinity. Using Eqs. (12) and (14) yields

lim
|ω|→+∞

A(ω) = C(0) , lim
|ω|→+∞

ωB(ω) = 0 . (20)

Therefore, for high frequencies (ω → +∞), the viscoelastic material becomes an

elastic material with elasticity coefficients defined by initial elasticity tensor C(0)
which differs from C∞.

(vi) Since τ 7→ H(τ) is a causal and an integrable function on R+, for all real

ω, the real part [ĤR(ω)] and the imaginary part [ĤI(ω)] of the Fourier transform

[Ĥ(ω)] must satisfy relations involving the Hilbert transform (see [30, 52]), which

are also called the Kramers-Kronig relations [38, 40]). Consequently, taking into

account Eq. (14), tensor-valued functions A and B are not algebraically indepen-

dent but are linked by the Kramers-Kronig relations involving the Hilbert trans-

form. This means that, if B is given, then A is deduced from B and conversely. In

this section, we do not give these integral relations because they are not directly

used but it is assumed that the data related to the constitutive equation are such

that these integral relations are satisfied. Nevertheless, in Section 9, we will intro-

duce the Kramers-Kronig relations for the operators of the reduced-order model

for establishing the equations that will be useful in Section 10 for implementing

the nonparametric probabilistic approach of uncertainties at the operator level.

4. Weak formulation of the boundary value problem in the time domain

In this section, we construct the weak formulation of the boundary value problem

defined, for t in ]0 , T ], by Eq. (1) for which the constitutive equation is given by
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Eq. (7), with strain tensor ε given by Eq. (2), and with the initial conditions at

time t = 0, defined by Eq. (3).

We then introduce the admissible function space Cad of R3-valued functions x 7→
v(x) = (v1(x), v2(x), v3(x)) defined on Ω, such that

Cad = { v ∈ (H1(Ω))3 , v = 0 on Γ0 } , (21)

in which H1(Ω) is the Sobolev space of square integrable real functions on Ω
for which each partial derivative with respect to xj , for j = 1, 2, 3, is a square

integrable real function on Ω. The weak formulation is then written as follows.

For all fixed t in ]0 , T ], find the function, u(·, t) = {x 7→ u(x, t)}, in Cad such that,

for all v in Cad, we have

m(∂2
t u(·, t), v) + k0(u(·, t), v) +

∫ t

0

h(u(·, t− τ), v; τ) dτ = f(v; t) , (22)

in which the mass bilinear form (u(·, t), v) 7→ m(u(·, t), v) is defined by

m(u(·, t), v) =

∫

Ω

ρ(x) u(x, t) · v(x) dx . (23)

Reintroducing the full notation C(x, t) instead of the abbreviate notation C(t), the

initial elasticity bilinear form (u(·, t), v) 7→ k0(u(·, t), v), associated with initial

elasticity C(x, 0), is defined by

k0(u(·, t), v) =

∫

Ω

{C(x, 0) : ε(u(x, t))} : ε(v(x)) dx . (24)

Again, reintroducing the full notation H(x, τ) instead of the abbreviate nota-

tion H(τ), the hereditary bilinear form ({u(·, τ), τ ∈ [0, t]}, v) 7→
∫ t

0
h(u(·, t −

τ), v; τ) dτ , associated with relaxation function τ 7→ C(x, τ) through Eq. (6), is

such that

h(u(·, t− τ), v; τ) =

∫

Ω

{H(x, τ) : ε(u(x, t− τ))} : ε(v(x)) dx . (25)

The linear form v 7→ f(v; t) is defined by

f(v; t) =

∫

Ω

f vol(x, t) · v(x) dx +

∫

Γ

f surf(x, t) · v(x) ds(x) , (26)
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in which ds(x) is the measure on Γ.

Under the hypotheses introduced in Sections 2 and 3, and if, for all v, the function

t 7→ f(v; t) is bounded on [0 , T ], then (see for instance [15, 62, 77]), Eq. (23)

for t in ]0 , T ] with the initial conditions defined by Eq. (3), has a unique solution

t 7→ u(·, t) square integrable from [0 , T ] in Cad.

5. Computational model as an integro-differential equation in the time do-

main

For a given deterministic excitation represented by f(v, ·), the weak formulation

of the boundary value problem defined by Eqs. (22) with the initial conditions

defined by Eq. (3), is discretized by the usual finite element method. Let u(t) =
(u1(t), . . . , un(t)) be the deterministic vector in Rn of the n degrees of freedom

related to the spatial discretization of the deterministic field x 7→ u(x, t) (note

that the same notation has been used to represent the field and its finite spatial

discretization but no confusion can be induced with such a choice). Let f(t) =
(f1(t), . . . , fn(t)) be the corresponding finite element discretization of the linear

form v 7→ f(v, t) (with the same abuse of notation). We then obtained,

[M] ü(t) + [K0] u(t) +

∫ t

0

[N(τ)] u(t− τ) dτ = f(t) , t ∈]0 , T ] , (27)

u(0) = u̇(0) = 0 . (28)

Taking into account the results presented in Section 3, it can easily be proven

that the matrices [M] and [K0], associated with the bilinear forms m and k0, are

positive-definite symmetric (n× n) real matrices. The function τ 7→ [N(τ)] from

R into the set of all the symmetric (n× n) real matrices, such that
∫ t

0
[N(τ)] u(t−

τ) dτ is associated with the hereditary bilinear form, has a support which is R+

(that implies [N(τ)] = [0] for τ < 0) and is integrable on R.

Let

[N̂(ω)] =

∫ +∞

0

e−iωt[N(τ)] dτ (29)

be the Fourier transform of [N] which is written as

[N̂(ω)] = [N̂R(ω)] + i [N̂I(ω)] , (30)

[N̂R(ω)] = ℜe{[N̂(ω)]} , [N̂I(ω)] = ℑm{[N̂(ω)]}, (31)
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in which [N̂R(ω)] and [N̂I(ω)] are the real part and the imaginary part of [N̂(ω)].
Let [K(ω)] and [D(ω)] be the (n× n) real matrices defined by

[K(ω)] = [K0] + [N̂R(ω)] , ω [D(ω)] = [N̂I(ω)] . (32)

Taking into account the results given in Section 3, it can be proven that [D(ω)] and

[K(ω)] are positive-definite symmetric matrices and such that

[K(−ω)] = [K(ω)] , [D(−ω)] = [D(ω)] . (33)

In addition, for ω = 0, the symmetric real matrix [K(0)], constructed with the

equilibrium tensor C∞ defined by Eq. (10), is positive definite and can be written

as

[K(0)] = [K0] + [N∞] , [N∞] = [N̂R(0)] . (34)

in which the positive-definite symmetric real matrix [K0] is constructed with the

initial elasticity tensor C(0) and where [N∞] is a negative-definite symmetric real

matrix. Consequently, we have

[K0] = lim
|ω|→+∞

[K(ω)] . (35)

It should be noted that Eq. (27) corresponds to the most general formulation in

the time domain within the framework of the linear theory of viscoelasticity. An

approximation of the integral operator in the right-hand side of Eq. (27) can be

constructed in the time domain using a sequence of linear differential operators

acting on additional hidden variables (see for instance Chapter XII of [39] for a

general mathematical construction and see [19, 45] for developments in the frame-

work of viscoelasticity). This type of approximation can efficiently be described

using fractional derivative operators (see for instance [4, 18]).

6. Nonstationary stochastic model of transient excitation

It is now assumed that the excitation t 7→ f(t) from [0 , T ] into Rn is modeled

by a Gaussian nonstationary second-order centered Rn-valued stochastic process

{F(t), t ∈ [0 , T ]} defined on a probability space (Θ′, T ′,P ′). In this work, we

are interested in the time-domain formulation of linear viscoelastic media which

is particularly efficient for analyzing transient responses induced by a transient

excitation. Consequently, we will propose to represent stochastic process F as the

product of a deterministic matrix-valued continuous function t 7→ [O(t)] (which
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allows the time duration and the signal envelope to be controlled) with a Gaussian

stationary second-order centered RnV -valued stochastic process {V(t), t ∈ R}
defined as a vector-valued diffusion process. We can then write,

F(t) = [O(t)]V(t) , ∀t ∈ [0 , T ] , (36)

dV(t) = [S]V(t) dt+ [J] dW(t) , ∀t ∈]0 , T ] , (37)

with the initial condition

V(0) = VS a.s . (38)

In Eq. (37), W is the normalized RnW -valued Wiener stochastic process and this

equation must be read as an Itô linear stochastic differential equation for the RnV -

valued stochastic process V. The matrix [S] is given and is a (nV ×nV ) real matrix

and [J] is a given (nV × nW ) real matrix. It is assumed that matrix [S] is such that

Eq. (37) has a second-order solution V (stable system). The initial condition VS is

chosen in order that the stochastic solution V of Eqs. (37) and (38) be a stationary

stochastic process. Consequently, the probability distribution of random vector

VS is the invariant measure, that is to say, VS is a Gaussian second-order centered

vector with a covariance matrix corresponding to the Gaussian stationary second-

order centered solution. In Eq. (36), it is assumed that t 7→ [O(t)] is a continuous

function from [0 , T ] into the set of all the (n × nV ) real matrices. Therefore, F

is a Gaussian nonstationary second-order centered stochastic process indexed by

[0 , T ] with values in Rn and having almost surely continuous trajectories.

Let E be the mathematical expectation and let [RV (τ)] = E{V(t + τ)V(t)T}
be the matrix-valued autocorrelation function of the stationary stochastic process

V for which the matrix-valued spectral measure admits a matrix-valued spectral

density function [SV (ω)] with respect to dω which is such that

[RV (τ)] =

∫

R

eiωt [SV (ω)] dω . (39)

It can easily be proven that

[SV (ω)] =
1

2π
[ĥV (ω)] [ĥV (ω)]

∗ , (40)

in which ∗ means the conjugate and the transpose operations and where [ĥV (ω)]
is the (nV × nV ) complex matrix such that

[ĥV (ω)] = (iω [InV
]− [S])−1 [J] . (41)
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The matrix-valued autocorrelation function [RF (t, t
′)] = E{F(t)F(t′)T} of the

nonstationary stochastic process F is such that

[RF (t, t
′)] = [O(t)] [RV (t− t′)] [O(t′)]T , (42)

and can be written as

[RF (t, t
′)] =

∫

R

∫

R

eiωt−iω′t′ [SF (ω, ω
′)] dω dω′ . (43)

It can easily be proven that the matrix-valued spectral density function [SF (ω, ω
′)]

is written as

[SF (ω, ω
′)] =

1

(2π)2

∫

R

[Ô(ω − Ω)] [SV (Ω)] [Ô(ω′ − Ω)]∗ dΩ , (44)

in which [Ô(ω)] is the Fourier transform of [O(t)] such that

[Ô(ω)] =

∫

R

e−iωt [O(t)] dt . (45)

7. Computational model in the time domain with nonstationary stochastic

transient excitation

In Eq. (27), the deterministic excitation represented by function f is replaced by

the stochastic process F defined in Section 6. Therefore, the deterministic re-

sponse u becomes a Rn-valued stochastic process Uc indexed by [0 , T ] and de-

fined on probability space (Θ′, T ′,P ′). Taking account Eqs. (27) and (28), the

computational model in the time domain with nonstationary stochastic transient

excitation is written as

[M] Üc(t) + [K0]Uc(t) +

∫ t

0

[N(τ)]Uc(t− τ) dτ = F(t) , t ∈]0 , T ] , (46)

Uc(0) = U̇c(0) = 0 a.s , (47)

in which the Gaussian nonstationary second-order centered stochastic process F is

defined by Eqs. (36) to (38). It can be proven that {(Uc(t), U̇c(t)), t ∈ [0 , T ]} is a

Gaussian nonstationary second-order centered Rn×Rn-valued stochastic process.

Since stochastic process F has almost surely continuous trajectories, it can be

deduced that stochastic process Üc has also almost surely continuous trajectories.
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8. Vector basis for constructing the reduced-order model

This section deals with the construction of an adapted vector basis {ϕ1, . . . ,ϕn}
of Rn in order to construct a reduced-order model. We then introduce the sub-

space V m of Rn, spanned by {ϕ1, . . . ,ϕm} with m ≪ n. The reduced-order

model is obtained in projecting Eq. (46) on V m (see Section 9). There are several

approaches to construct such a vector basis. The most common approach consists

in using the elastic modes of an associated elastic conservative system. In the con-

text of the viscoelastic material, such elastic modes are not clearly defined. This

difficulty can be viewed in rewriting Eq. (27) in the frequency domain, that yields

(−ω2 [M] + iω [D(ω)] + [K(ω)]) û(ω) = f̂(ω) , (48)

in which [D(ω)] and [K(ω)] are defined by Eq. (32). A non usual eigenvalue

problem related to the conservative part of homogeneous Eq. (48) would be to

find ω and the assoicated vertor ϕ such that [K(ω)]ϕ = ω2 [M]ϕ. This problem

would become a usual generalized eigenvalue problem if [K(ω)] was independent

of ω or if [K(ω)] was a polynomial in ω with matrix coefficients (that is not the

case in the general framework of viscoelasticity). A way would be to construct

the vector basis with the Proper Orthogonal Decomposition (POD) method re-

lated to stochastic Eqs. (46) and (47) in which the stochastic process F is defined

in Section 6 for the Gaussian case, but which could be defined in another way

for a non-Gaussian case. Concerning the POD method, many works have been

published (see for instance [33]). Nevertheless, if the POD reduction seems very

efficient for the nonlinear static case or for the nonlinear dynamic case for which

only the first resonances are dominant in the nonlinear dynamical response, the

efficiency does not seem so clear in presence of a large number of resonances (see

for instance [61]). Concerning the use of the POD method for linear viscoelastic

dynamical system formulated in the frequency domain, only a few works have

been published (see for instance [9] in which only the first resonances are dom-

inant in the frequency responses). In the present work, we are interested in the

time-domain formulation of linear viscoelastic system for which the response to

transient excitation is studied (it should be noted that the extension of the lin-

ear equations which are presented to the cases of dynamical systems with local

nonlinearities, such as systems with stops, is straightforward; such nonlinear dy-

namical systems with linear viscoelastic constitutive equation requires the use of

a time formulation). In addition, the POD basis strongly depends on the excita-

tion. If the excitation is modified, in general, the POD basis has to be recomputed

to preserve a good speed of convergence for the reduced-order model. Finally,
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the use of a POD basis for the time formulation proposed in this work would re-

quire to solve the stochastic computational model defined by Eq. (46). In practice,

n can be very large (several millions) and therefore, the numerical effort would

be very important to construct a vector basis for which the potential gain is not

clearly identified. Nevertheless, the use of a POD basis could straightforwardly be

used in the methodology proposed in this work which is not devoted to the POD

method.

Case 1. For the low- and medium-frequency ranges, we then propose to use the

m first elastic modes of the elastic system corresponding to the viscoelastic sys-

tem for zero frequency (static case), solving the following generalized eigenvalue

problem

[K(0)]ϕ = λ [M]ϕ , (49)

in which [K(0)], defined by Eq. (34), is the positive-definite stiffness matrix con-

structed with the equilibrium tensor C∞ defined by Eq. (10), and where [M] is the

positive-definite mass matrix.

Case 2. For the high-frequency range, we propose to use the m first elastic modes

of the elastic system corresponding to the viscoelastic system for frequency ω =
+∞, solving the following generalized eigenvalue problem

[K(+∞)]ϕ = λ [M]ϕ , (50)

in which [K(+∞)] = [K0] is the positive-definite stiffness matrix constructed

with the initial elasticity tensor C(0) defined in Section 3.

For these two cases, we will denote the m first eigenvalues by 0 < λ1 ≤ . . . ≤ λm

and the associated eigenvectors by {ϕ1, . . . ,ϕm}. We then have [51]

< [M]ϕα ,ϕβ>= µαδαβ , < [K′]ϕα ,ϕβ>= λαδαβ , (51)

in which [K′] is [K(0)] or [K(+∞)], with δαβ the Kronecker symbol and where

µ1, . . . , µm are the positive generalized masses defining the normalization of the

eigenvectors with respect to the mass matrix.

9. Reduced-order model in the time domain with stochastic excitation

As explained in Section 8, Eq. (46) is projected on V m which is the subspace of

Rn, spanned by the m vectors {ϕ1, . . . ,ϕm}. In order to simplify the presenta-

tion, we will consider only Case 1 of Section 8 (the developments for case 2 is
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straightforward). Consequently, [K(0)]ϕ = λ [M]ϕ and Eq. (51) is rewritten as

< [K(0)]ϕα ,ϕβ>= λαδαβ and corresponds to Eq. (49). The (n×m) real matrix

[ϕ1 . . .ϕm] will be noted [Φ]. We then have

[Φ]T [M] [Φ] = [M ] , [Φ]T [K(0)] [Φ] = [K] , (52)

in which [M ] is the positive-definite diagonal (m × m) real matrix such that

[M ]αα = µα and where [K] is the positive-definite diagonal (m × m) real ma-

trix such that [K]αα = λα. Therefore, the Rn-valued stochastic process indexed

by [0 , T ] is given by the following reduced-order model with stochastic excitation,

Uc(t) = [Φ]Qc(t) , U̇c(t) = [Φ] Q̇c(t) , t ∈ [0 , T ] , (53)

[M ] Q̈c(t)+[K0]Qc(t)+

∫ t

0

[N(τ)]Qc(t−τ) dτ = [Φ]T F(t) , t ∈]0 , T ] , (54)

Qc(0) = Q̇c(0) = 0 a.s , (55)

in which

[K0] = [Φ]T [K0] [Φ] , [N(τ)] = [Φ]T [N(τ)] [Φ] . (56)

The matrix [K0] is a full positive-definite symmetric (m ×m) real matrix which

can be written as [K0] = [K] − [N∞] in which [N∞] = [Φ]T [N∞] [Φ] is a full

negative-definite symmetric (m × m) real matrix. The symmetric (m × m) real

matrix [N(τ)] is written as [N(τ)] = [Φ]T [N(τ)] [Φ]. The function τ 7→ [N(τ)] is

such that [N(τ)] = [0] for τ < 0 (causal function) and is integrable on R+. It can

be deduced that {(Qc(t), Q̇c(t)), t ∈ [0 , T ]} is a Gaussian nonstationary second-

order centered Rm×Rm-valued stochastic process. Since stochastic process F has

almost surely continuous trajectories, it can be deduced that stochastic process Q̈c

has also almost surely continuous trajectories.

From Eqs. (30) to (32), it can be deduced that the Fourier transform

[N̂(ω)] =

∫ +∞

0

e−iωt[N(τ)] dτ (57)

of [N ] is written as

[N̂(ω)] = [Φ]T [N̂(ω)] [Φ] = [N̂R(ω)] + i [N̂ I(ω)] , (58)

in which [N̂R(ω)] and [N̂ I(ω)] are the real part and the imaginary part of [N̂(ω)].
The (m×m) real matrices

[D(ω)] = [Φ]T [D(ω)] [Φ] , [K(ω)] = [Φ]T [K(ω)] [Φ] (59)
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are then written as

[K(ω)] = [K0] + [N̂R(ω)] , ω [D(ω)] = [N̂ I(ω)] . (60)

For all fixed ω, [D(ω)] and [K(ω)] are then positive-definite symmetric (m×m)
real matrices and, taking into account Eqs. (59) and (33), are such that

[K(−ω)] = [K(ω)] , [D(−ω)] = [D(ω)] . (61)

Since τ 7→ [N(τ)] is a causal and an integrable function on R+, for all real ω, the

real part [N̂R(ω)] and the imaginary part [N̂ I(ω)] of the Fourier transform [N̂(ω)]
must satisfy the following integral relations involving the Hilbert transform (see

[30, 52]),

[N̂R(ω)] =
1

π
p.v

∫

R

1

ω − ω′
[N̂ I(ω′)] dω′ , (62)

[N̂ I(ω)] = − 1

π
p.v

∫

R

1

ω − ω′
[N̂R(ω′)] dω′ , (63)

in which p.v denotes the Cauchy principal value defined, for a singulatity in y = 0,

as

p.v

∫

R

h(y) dy = lim
χ→+∞,η→0+

{
∫ −η

−χ

h(y) dy +

∫ χ

η

h(y) dy} . (64)

The projection of Eqs. (34) and (35) yields

[K(0)] = [K0] + [N∞] , [N∞] = [N̂R(0)] , (65)

[K0] = lim
|ω|→+∞

[K(ω)] , (66)

in which [K0] and [K(0)] are positive-definite symmetric real matrices and where

[N∞] = [K(0)]− [K0] is a negative-definite symmetric real matrix. Therefore, as

soon as the function [K(ω)] is known, [K0] can be calculated with Eq. (66) and

then, [N∞] = [K(0)] − [K0] can be deduced from Eq. (65). From Eqs. (60) and

(62), it can be deduced that, for all ω in R,

[K(ω)] = [K0] +
1

π
p.v

∫

R

ω′

ω − ω′
[D(ω′)] dω′ ∈ M+

m(R) . (67)

in which M+
m(R) is the set of all the positive-definite symmetric (m × m) real

matrices. In particular, for ω = 0, and since [D(−ω′)] = [D(ω′)], we obtain

[K(0)] = [K0]−
2

π

∫ +∞

0

[D(ω)] dω ∈ M+
m(R) . (68)
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Since [D(ω)] is a positive-definite symmetric real matrix for all ω, Eq. (68) shows

that

[N∞] = [N̂R(0)] = − 2

π

∫ +∞

0

[D(ω′)] dω′ = [K(0)]− [K0] (69)

is effectively a negative-definite symmetric real random matrix. It should be noted

that ω′ 7→ [D(ω′)] is an integrable function on R+ because ω′ 7→ ω′ [D(ω′)] =

[N̂ I(ω′)] is, as the imaginary part of the Fourier transform of an integrable func-

tion, a continuous function such that [N̂ I(ω′)] goes to zero as ω′ goes to +∞.

Comments about the gain obtained by the use of a reduced-order model. In com-

putational structural dynamics and for a large computational model of a complex

structure, if elastic modes are used as basis functions, then the ratio of the number

of degrees-of-freedom divided by the number of basis vectors is currently larger

than 1, 000 for a dynamic analysis in the low- and medium-frequency ranges (see

for instance [22]) and can be 10, 000 for a dynamic analysis in the low-frequency

range.

10. Stochastic modeling of both computational model-parameters uncertain-

ties and modeling errors using the nonparametric probabilistic approach

and the random matrix theory

This Section is devoted to the construction of the stochastic model of both compu-

tational model-parameters uncertainties and modeling errors using the nonpara-

metric probabilistic approach and the random matrix theory. The bases of this

approach can be found in [70, 71, 72], some theoretical extensions in [50, 75]

and, experimental validations and uncertainty quantification in [6, 10, 12, 21, 22,

25, 74]. This approach (which allows both the computational model-parameters

uncertainties and the model uncertainties induced by modeling errors to be taken

into account in computational model) consists in replacing the operators of the

reduced-order computational model by random operators. Applying this method-

ology to Eq. (54), the matrices [M ], [K0] and [N(τ)] of the family of matrices

{[N(τ)], τ ≥ 0} are then modeled by random matrices [M], [K0] and [N(τ)]. In

the framework of the nonparametric probabilistic approach of uncertainties, the

probability distributions and the generators of independent realizations of such

random matrices are constructed using the random matrix theory [48] and the

Maximum Entropy principle [36, 73] from the Information Theory [67]. The

Maximum Entropy principle consists in maximizing the entropy under the con-

straints defined by the available information. Consequently, it is important to
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define the algebraic properties of the random matrices for which the probability

distributions have to be constructed. In the present case, each random matrix [M]
or [K0] has a given mean value such that E{[M]} = [M ] or E{[K0]} = [K0], is

with values in the set of all the positive-definite symmetric real matrices. Concern-

ing the family of random matrices {[N(τ)], τ ≥ 0}, each random matrix [N(τ)]
has a given mean value such that E{[N(τ)]} = [N(τ)], is with values in the set of

all the symmetric real matrices and the family is made up of statistically depen-

dent random matrices. In addition, we will see that random matrix [K0] will be

statistically dependent of the family {[N(τ)], τ ≥ 0} of random matrices. In this

framework of the linear viscoelasticity, the construction cannot directly be made

with the basic known theory. The difficulty looks like to the one analyzed in [14]

for which a strict extension of the basic theory has been performed. For the lin-

ear viscoelastic theory, we then propose a new extension based on the use of the

Hilbert transform [52] in the frequency domain (also called the Kramers-Kroning

relations [38, 40]) and on the transformation of the stochastic modeling carried

out in the frequency domain to the time domain using an inverse Fourier trans-

form. It should be noted that the additional constraints related to the positivity of

certain operators must be taken into account as available information in order to

assure that the stochastic integro-differential equation with random operators and

with stochastic excitation has a unique second-order stochastic solution. In a first

Subsection, we will recall some main useful results concerning the nonparametric

probabilistic approach of uncertainties. In a second Subsection, we will present

the stochastic modeling of uncertainties in the context of linear viscoelasticity.

10.1. Basic ensembles of random matrices for the nonparametric probabilistic

approach of uncertainties

The Gaussian orthogonal ensemble (GOE) of random matrices [48] cannot be

used when positiveness property and integrability of the inverse are required.

Consequently, we need new ensembles of random matrices which will be used

to develop the nonparametric probabilistic approach of uncertainties in computa-

tional solid mechanics, and which differ from the GOE and from the other known

ensembles of the random matrix theory. Below, we summarize the construction

[70, 71] of the ensemble SG+
0 of random matrices [G0] defined on the probability

space (Θ, T ,P), with values in M+
m(R) and such that

E{[G0]} = [Im] , E{log(det[G0])} = χ , |χ| < +∞ , (70)

with [Im] the (m × m) identity matrix, log the Neperian logarithm and det the

determinant. The probability distribution P[G0] = p[G0]([G ]) d̃G is defined by a
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probability density function [G ] 7→ p[G0]([G ]) from M+
m(R) into R+ with respect

to the volume element d̃G on the set MS
m(R) of all the symmetric (m ×m) real

matrices, which is such that d̃G = 2m(m−1)/4Π1≤j≤k≤m dGjk. This probability

density function can then verify the normalization condition,

∫

M+
m(R)

p[G0]([G ]) d̃G = 1 . (71)

Let δ be the positive real number defined by

δ =

{
E{‖ [G0]− E{[G0]} ‖2F}

‖E{[G0]} ‖2F

}1/2

=

{
1

m
E{‖ [G0]− [Im] ‖2F}

}1/2

, (72)

which will allow the dispersion of the probability model of random matrix [G0]
to be controlled and where ‖ · ‖F is the Frobenius matrix norm. For δ such that

0 < δ < (m+1)1/2(m+5)−1/2, the use of the maximum entropy principle under

the constraints defined by the above available information yields the following

algebraic expression of the probability density function of random matrix [G0],

p[G0]([G ]) = 1M+
m(R)([G ])× CG0 ×

(
det [G ]

)(m+1)
(1−δ2)

2δ2 × e−
(m+1)

2δ2
tr[G ] , (73)

in which tr [G ] is the trace of matrix [G ] and with CG0 a positive constant such

that

CG0 =(2π)−m(m−1)/4

(
m+ 1

2δ2

)m(m+1)(2δ2)−1{
Πm

j=1Γ
(m+1

2δ2
+

1−j

2

)}−1

, (74)

and where, for all z > 0, Γ(z) =
∫ +∞

0
tz−1 e−t dt. Note that {[G0]jk, 1 ≤ j ≤ k ≤

m} are dependent random variables. If (m + 1)/δ2 is an integer, then this proba-

bility density function coincides with the Wishart probability distribution [1, 26].

If (n+1)/δ2 is not an integer, then this probability density function can be viewed

as a particular case of the Wishart distribution, in infinite dimension, for stochastic

processes [68]. It can be proven that E{‖[G0]
−1‖2F} < +∞. The generator of in-

dependent realizations (which is required to solve the random equations with the

Monte Carlo method) is constructed using the following algebraic representation.

Random matrix [G0] is written (Cholesky decomposition) as [G0] = [L]T [L] in

which [L] is an upper triangular (m×m) random matrix such that:
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(1) random variables {[L]jj′ , j ≤ j′} are independent;

(2) for j < j′, the real-valued random variable [L]jj′ is written as [L]jj′ = σmUjj′

in which σm = δ(m + 1)−1/2 and where Ujj′ is a real-valued Gaussian random

variable with zero mean and variance equal to 1;

(3) for j = j′, the positive-valued random variable [L]jj is written as [L]jj =
σm

√
2Vj in which Vj is a positive-valued gamma random variable whose proba-

bility density function is pVj
(v) = 1R+(v) 1

Γ(aj)
vaj−1 e−v, in which aj =

m+1
2δ2

+
1−j
2

. It should be noted that the probability density function of each diagonal ele-

ment [L]jj of the random matrix [L] depends on the rank j of the element.

Let 0 ≤ ε ≪ 1 be a positive number as small as one wants. The ensemble SG+
ε

is defined as the ensemble of all the random matrices such that

[G] =
1

1 + ε
{[G0] + ε [Im]} , (75)

in which [G0] is a random matrix which belongs to ensemble SG+
0 . Let [G] be

in SG+
ε with ε ≥ 0 fixed as small as one wants (possibly, ε can be equal to

zero and in such a case, SG+
ε = SG+

0 and then, [G] = [G0]). It can easily be

seen that E{[G]} = [Im], for all second-order random vector X with values in

Rm, E{XT [G]X} ≥ cεE{‖X‖2}, in which cε = ε/(1 + ε) and, for all ε ≥ 0,

E
{
‖[G]−1‖2F

}
< +∞.

10.2. Stochastic modeling of random matrix [M]
The random matrix [M] is defined on probability space (Θ, T ,P). There is no

available information concerning the statistical dependence of random matrix [M]
with random matrices [K0] and {[N(τ)], τ ≥ 0}. Therefore, the Maximum En-

tropy principle shows that [M] is independent of [K0] and {[N(τ)], τ ≥ 0}(see

[70]). The deterministic matrix [M ], introduced in Section 9, is positive definite

and consequently, can be written as [M ] = [LM ]T [LM ] in which [LM ] is an upper

triangular (m × m) real matrix. Using the nonparametric probabilistic approach

of uncertainties, the stochastic model of the positive-definite symmetric random

matrix [M] is then defined by

[M] = [LM ]T [GM ] [LM ] , (76)

where [GM ] is a random matrix belonging to ensemble SG+
ε defined in Sec-

tion 10.1 and whose probability distribution and generator of independent realiza-

tions depend only on dimension m and on the dispersion parameter δM .
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10.3. Stochastic modeling of the family of random matrices {[N(τ)], τ ≥ 0}
The family of random matrices {[N(τ)], τ ≥ 0} is defined on probability space

(Θ, T ,P). The nonparametric probabilistic approach of uncertainties then con-

sists in modeling the positive-definite symmetric (m × m) real matrices [D(ω)]
and [K(ω)] defined by Eq. (60) by random matrices [D(ω)] and [K(ω)] defined on

probability space (Θ, T ,P), with values in M+
m(R) and such that,

E{[D(ω)]} = [D(ω)] , E{[K(ω)]} = [K(ω)] , (77)

[D(−ω)] = [D(ω)] , [K(−ω)] = [K(ω)] . (78)

The methodology proposed for such a construction is the following. In the first

step, the stochastic model of [D(ω)] is constructed in the context of the nonpara-

metric probabilistic approach. In the second step, we deduce the stochastic model

of {[N(τ)], τ ≥ 0} from the stochastic model of [D(ω)].

First step. For all ω, the deterministic matrix [D(ω)] introduced in Section 9 is

positive definite and consequently, can be written as [D(ω)] = [LD(ω)]
T [LD(ω)]

in which [LD(ω)] is an upper triangular (m×m) real matrix. Using the nonpara-

metric probabilistic approach of uncertainties, the stochastic model of the family

{[D(ω)], ω ∈ R} of positive-definite symmetric random matrices, is defined as

follows. For all ω in R, we write

[D(ω)] = [LD(ω)]
T [GD] [LD(ω)] , (79)

where [GD] is a random matrix belonging to ensemble SG+
ε defined in Sec-

tion 10.1 and whose probability distribution and generator of independent realiza-

tions depend only on dimension m and on the dispersion parameter δD. Random

matrix [GD] does not depend on ω and is statistically independent of [GM ]. It

should be noted that the stochastic modeling of [D(ω)] could be improved in tak-

ing a frequency dependence for the positive-definite random matrix [GD] whose

mean function must be independent of the frequency and must be equal to the

unity matrix. This stochastic modeling which has been chosen corresponds to

a compromise between the stochastic complexity of the model and the available

information deduced from a physical support. The stochastic model defined by

Eq. (79) is carried out at the level of the damping operator of the dynamical sys-

tem in order to take globally into account the model uncertainties induced by

modeling errors (nonparametric probabilistic approach of model uncertainties). It

is not constructed at the level of the constitutive equation (parametric probabilistic
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approach of system-parameter uncertainties). In this framework, the construction

proposed is chosen to minimize the stochastic dimension of the stochastic model

of the damping operator that is to say, the statistical fluctuation of the normalized

damping operator [LD(ω)]
−T [D(ω)] [LD(ω)]

−1 is taken as a normalized positive-

definite random matrix [GD] independent of ω. The construction of a more sophis-

ticated stochastic modeling of the damping operator could be introduced if some

information based on a physical support were available concerning the modeling

errors.

Second step. Using the nonparametric probabilistic approach of uncertainties,

the stochastic model of the family {[N(τ)], τ ≥ 0} of deterministic matrices

is the family {[N(τ)], τ ≥ 0} of random matrices defined on probability space

(Θ, T ,P). The random function τ 7→ [N(τ)] must be almost surely a causal and

an integrable function on R. This means that, for all θ in Θ, the realization τ 7→
[N(τ, θ)] is a deterministic causal function on R (that is to say [N(τ, θ)] = [0] for

all τ < 0) and is integrable (that is to say, for all j and k,
∫ +∞

0
|[N(τ, θ)]jk| dτ <

+∞. By construction of the nonparametric stochastic model, for all τ , we have

E{[N(τ)]} = [N(τ)]. Let {[N̂(ω)], ω ∈ R} be the family of random (m×m) com-

plex matrices such that [N̂(ω)] =
∫ +∞

0
e−iωτ [N(τ)] dτ . Therefore, E{[N̂(ω)]} =

[N̂(ω)] in which [N̂(ω)] is defined by Eq. (57). Taking into account Eq. (60), the

random imaginary part [N̂
I
(ω)] of the Fourier transform [N̂(ω)] must be such that

[N̂
I
(ω)] = ω [D(ω)] . (80)

Since τ 7→ [N(τ)] is almost surely a causal and an integrable function on R, for all

real ω, the real part [N̂
R
(ω)] and the imaginary part [N̂

I
(ω)] of the Fourier trans-

form [N̂(ω)] must satisfy, almost surely, the following integral relations involving

the Hilbert transform (see [30, 52]),

[N̂
R
(ω)] =

1

π
p.v

∫

R

1

ω − ω′
[N̂

I
(ω′)] dω′ a.s , (81)

in which p.v is the Cauchy principal value defined by Eq. (64). Since [N̂
R
(−ω)] =

[N̂
R
(ω)], we will consider Eq. (81) for ω ≥ 0. From Eqs. (80) and (78), it can be

deduced that,

ω ≥ 0 , [N̂
R
(ω)] =

2

π
p.v

∫ +∞

0

ω′ 2

ω2 − ω′ 2
[D(ω′)] dω′ . (82)
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We now give another expression of Eq. (82) useful for computation. For ω = 0,

Eq. (82) yields

[N̂
R
(0)] = − 2

π

∫ +∞

0

[D(ω)] dω . (83)

As explained at the end of Section 9, ω 7→ [D(ω)] is almost surely integrable

on R+. For ω > 0, Eq. (82) can be rewritten as

[N̂
R
(ω)] =

2

π
p.v

∫ +∞

0

u2

1− u2
ω [D(ωu)] du =

2

π
lim
η→0+

{
∫ 1−η

0

+

∫ +∞

1+η

} . (84)

10.4. Stochastic modeling of random matrix [K0]

Considering Eq. (60), that is to say [K(ω)] = [K0] + [N̂R(ω)], the nonparametric

stochastic modeling of the positive-definite matrix [K0] leads us to introduce the

positive-definite random matrix [K0] defined on probability space (Θ, T ,P), such

that

ω ≥ 0 , [K(ω)] = [K0] + [N̂
R
(ω)] . (85)

Eq. (85) defines a constraint for the construction of the random matrix [K0]. Let

[D+] be the positive-definite random matrix defined by

[D+] = −[N̂
R
(0)] =

2

π

∫ +∞

0

[D(ω)] dω . (86)

From Eqs. (83), (85) and (86), it can be deduced that

[K(0)] = [K0]− [D+] . (87)

Since [N̂
R
(ω)] goes to [0] as ω goes to +∞, we obtain

lim
ω→+∞

[K(ω)] = [K0] = [K(0)] + [D+] . (88)

In the context of the linear viscoelasticity, for all ω ≥ 0, the random matrix [K(ω)]
must be positive definite almost surely (a.s). Consequently, [K(0)] must be con-

structed as a positive-definite random matrix and Eq. (87) allows the random ma-

trix [K0] to be constructed as [K0] = [K(0)] + [D+], which shows that [K0] is

positive definite a.s and is statistically dependent of [D+], that is to say of [GD].

The mean value of the positive-definite random matrix [K(0)] is the positive-

definite matrix which written as

E{[K(0)]} = [K0]−
2

π

∫ +∞

0

[D(ω)] dω . (89)
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Taking into account Eq. (68) yields

E{[K(0)]} = [K(0)] (90)

and thus, [K(0)] is a positive-definite symmetric real matrix which can be written

as [K(0)] = [LK(0)]
T [LK(0)] in which [LK(0)] is an upper triangular (m × m)

real matrix. Using the nonparametric probabilistic approach of uncertainties, the

stochastic model of the positive-definite symmetric random matrix [K(0)] is then

defined by

[K(0)] = [LK(0)]
T [GK(0)] [LK(0)] , (91)

where [GK(0)] is a random matrix belonging to ensemble SG+
ε defined in Sec-

tion 10.1 and whose probability distribution and generator of independent realiza-

tions depend only on dimension m and on the dispersion parameter δK(0). The

random matrix [K0] is then defined by

[K0] = [K(0)] + [D+] . (92)

10.5. Summarizing the construction procedure

We can now summarize the construction of the stochastic model of the family of

random matrices {[N(τ)], τ ≥ 0} and [K0].

• For ω ≥ 0, constructing the family [D(ω)] of random matrices such that

[D(ω)] = [LD(ω)]
T [GD] [LD(ω)]] in which the level of uncertainties is

controlled by the dispersion parameter δD and where [LD(ω)] is such that

[D(ω)] = [LD(ω)]
T [LD(ω)].

• For ω ≥ 0, defining the family [N̂
I
(ω)] of random matrices such that [N̂

I
(ω)] =

ω [D(ω)].

• Constructing the family {[N̂R
(ω)], ω ≥ 0} of random matrices using Eq. (82)

(or equivalently, Eqs. (83) and (84)).

• Defining the family {[N̂(ω)], ω ≥ 0} of random matrices such that [N̂(ω)] =

[N̂
R
(ω)] + i [N̂

I
(ω)].

• Computing the family {[N(τ)], τ ≥ 0} of random matrices such that [N(τ)] =

(2π)−1
∫
R
e+iω t [N̂(ω)] dω in which [N̂(−ω)] = [N̂

R
(ω)] − i [N̂

I
(ω)]. It

should be noted that the inverse Fourier transform can be rewritten as

[N(τ)] =
1

π

∫ +∞

0

{cos(ωτ) [N̂R
(ω)]− sin(ωτ) [N̂

I
(ω)]} dω . (93)
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• Constructing the random matrix [K(0)] = [LK(0)]
T [GK(0)] [LK(0)] in which

the level of uncertainties is controlled by the dispersion parameter δK(0) and

where [LK(0)] is such that [K(0)] = [LK(0)]
T [LK(0)].

• Computing the random matrix [D+] = −[N̂
R
(0)] = 2

π

∫ +∞

0
[D(ω)] dω.

• Defining the random matrix [K0] = [K(0)] + [D+].

• Verifying that, for all ω ≥ 0, [K(ω)] = [K0]+[N̂
R
(ω)] is effectively positive

definite a.s.

10.6. Remark concerning the positivity of random matrix [K(ω)]
As explained in Section 10.5, the last step of the probabilistic construction con-

sists in verifying that, for all ω ≥ 0, [K(ω)] is a positive-definite random ma-

trix. In the theory presented in Sections 3 to 5 and in Sections 7 to 9, such a

property holds for the mean value of [K(ω)]. This means that, for all ω ≥ 0,

[K(ω)] = E{[K(ω)]} is a positive-definite matrix. Using the nonparametric prob-

abilistic modeling presented in Sections 10.1 to 10.5, it is not self-evident that the

proposed probabilistic construction yields, for all ω ≥ 0, a random matrix [K(ω)]
which is positive definite a.s. For the general case, such a property seems difficult

enough to be proven under relatively simple hypotheses, because this depends on

the frequency variations of the stochastic process {[D(ω)], ω ≥ 0} which, taking

into account Eq. (79), directly depends on the frequency variations of the mean

value, {[D(ω)], ω ≥ 0}. Nevertheless, in this section, we present a complete

mathematical proof of such a property under a reasonable hypothesis which is of-

ten verified in the applications.

Since τ 7→ [N(τ)] is an integrable function on R+ a.s, then [N̂
I
(ω)] goes to 0 a.s

as ω goes to infinity. From Eq. (80), it can be deduced that [D(ω)] is a decreasing

function in ω, at least in 1/ω, as ω goes to infinity. So, we have the following

result:

If for all y in Rm, the random function ω 7→ Dy(ω) =< [D(ω)] y , y > is decreas-

ing a.s on R+, then, for all ω ≥ 0, [K(ω)] is positive definite a.s.

The proof is the following. From Eqs. (84), (85), (86) and (88), it can be deduced

that [K(ω)] = [K(0)] + [T(ω)] in which

[T(ω)] =
2

π
p.v

∫ +∞

0

1

1− u2
ω [D(ωu)] du .
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Since [K(0)] is a positive-definite random matrix, it is sufficient to prove, for all

ω ≥ 0, [T(ω)] is a positive random matrix, or equivalently, to prove that, for all

non zero y in Rm, Ty(ω) =< [T(ω)] y , y > is a positive random variable. It can

be seen that Ty(ω) can be written as

Ty(ω) =
2

π
p.v

∫ +∞

0

1

1− u2
ωDy(ωu) du .

Since ω 7→ Dy(ω) is assumed to be a decreasing function on R+, it can be seen

that, for all ω ≥ 0, the following two inequalities hold: if u ≥ 1, then Dy(ω) ≥
Dy(ωu), and if 0 ≤ u ≤ 1, then Dy(ωu) ≥ Dy(ω). Using the first inequality

yields

Ty(ω) ≥
2

π
ω lim

η→0+

{∫ 1−η

0

1

1− u2
Dy(ω) du+

∫ +∞

1+η

1

1− u2
Dy(ωu) du

}
.

In an other hand, it can easily be proven that

lim
η→0+

∫ 1−η

0

du

1− u2
= lim

η→0+

∫ +∞

1+η

du

u2 − 1
= lim

η→0+

1

2
log

2

η
,

which means that p.v
∫ +∞

0
du

1−u2 = 0. It can then be deduced that

Ty(ω) ≥
2

π
ω lim

η→0+

∫ +∞

1+η

1

u2 − 1
(Dy(ω)−Dy(ωu)) du .

Since for u ≥ 1 + η > 1, we have u2 − 1 > 0 and using the second inequality

allow us to deduce that, for all ω ≥ 0, Ty(ω) ≥ 0 and the proof is complete.

11. Stochastic reduced-order model in the time domain with stochastic exci-

tation and uncertainties

Taking into account the nonparametric stochastic modeling presented in Section 10,

for both the computational model-parameters uncertainties and the model uncer-

tainties induced by modeling errors, and from the reduced-order model in the time

domain with stochastic excitation presented in Section 9, we deduced the follow-

ing formulation for the stochastic reduced-order model in the time domain with

stochastic excitation and uncertainties.
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The Rn-valued stochastic process U indexed by [0 , T ] is such that

U(t) = [Φ]Q(t) , U̇(t) = [Φ] Q̇(t) , t ∈ [0 , T ] , (94)

[M] Q̈(t) + [K0]Q(t) +

∫ t

0

[N(τ)]Q(t− τ) dτ = [Φ]T F(t) , t ∈]0 , T ] , (95)

Q(0) = Q̇(0) = 0 a.s , (96)

in which the stochastic process F is defined by Eqs. (36) to (38). It can be de-

duced that {(Q(t), Q̇(t)), t ∈ [0 , T ]} is a non-Gaussian nonstationary second-

order centered Rm×Rm-valued stochastic process. Since the stochastic modeling

of uncertainties is such that (Q, Q̇) is a second-order stochastic process and since

stochastic process F has almost surely continuous trajectories, it can be deduced

that stochastic process Q̈ has also almost surely continuous trajectories.

Let G be the random quantity defined by G = {[GM ], [GD], [GK(0)], }. We in-

troduced the conditional stochastic solution {(Q(t |G), Q̇(t |G)), t ∈ [0 , T ]} of

Eq. (95), given G. Taking into account Section 9, it can easily be deduced that

the stochastic process {(Q(t |G), Q̇(t |G)), t ∈ [0 , T ]} is Gaussian. In particular,

if G = Im with Im = {[Im], [Im], [Im]}, then {(Q(t | Im), Q̇(t | Im)), t ∈ [0 , T ]}
= {(Qc(t), Q̇c(t)), t ∈ [0 , T ]}, in which the stochastic process (Qc, Q̇c) is defined

in Section 9.

The level of uncertainties is controlled by the three dispersion parameters δM , δD
and δK(0).

12. Time discretization of the stochastic integro-differential equation

It is well-known (see for instance [11]) that the solution of integro-differential

equations is a very difficult problem even for the deterministic case. Troubles

still more arise in the linear and the nonlinear stochastic cases. But in spite of

the existence of a few results concerning solvers for stochastic integro-differential

equations (see for instance [34, 42, 53, 76]), it is very useful to transform such

a stochastic integro-differential equation to a stochastic differential equation be-

cause there are many existing methods to study such a system (see for instance

[37, 41, 47]). Once the stochastic integro-differential equation is transformed in a

stochastic differential equation, we have then to introduce an integration scheme

to solve it.

28



12.1. Transforming the stochastic integro-differential equation to a stochastic dif-

ferential equation

We construct such transformation for Eq. (95) on the base of the scheme presented

in [54, 55]. For ease the further developments, we introduce the change s = t− τ
of integration variable τ that transforms Eq. (95) into the following equation,

[M] Q̈(t) + [K0]Q(t) +

∫ t

0

[N(t− s)]Q(s) ds = [Φ]T F(t) , t ∈]0 , T ] . (97)

We introduce the mesh {tk} with tk = k h for k = 0, 1, . . . kT and h = T/kT ,

where the positive integer number kT is selected to obtain a sufficient accuracy.

For all k fixed in {1, . . . , kT} and for all t fixed in the interval [tk−1, tk], the func-

tion s 7→ [N(t− s)] is approximated by the (m×m) real random matrix [N k(t)]
on the interval [tk−1, tk], which is such that

[N k(t)] =
1

h

∫ tk

tk−1

[N(t− s)] ds . (98)

The following approximation of the right-hand side of Eq. (98) is introduced using

the Simpson rule,

[N k(t)] =
1

h

∆s

3

2L∑

r=0

cr[N(t− skr)]

=
1

6L

2L∑

r=0

cr[N(t− skr)] , (99)

where the error of approximation is in O{(∆s)4}. The positive integer number L
is chosen sufficiently large to get a good accuracy. The time step ∆s is defined

by ∆s = h/(2L). The nodes skr are such that skr = tk−1 + r∆s with r =
0, 1, . . . , 2L. Finally, the constant cr is defined by cr = 1 if r = 0 or r = 2L,

cr = 4 if r is odd and cr = 2 otherwise. Therefore, function s 7→ [N(t − s)]
is approximated by a piecewise constant random matrix-valued function. As the

result, Eq. (97) is written, for tν < t ≤ tν+1 with ν = 0, 1, . . . , kT − 1, as

[M] Q̈(t) + [K0]Q(t) +
ν∑

k=1

[N k(t)]

∫ tk

tk−1

Q(s) ds

+ [N ν+1(t)]

∫ t

tν

Q(s) ds = [Φ]T F(t) . (100)
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We introduce the family of stochastic processes {Zk}k indexed in t, such that

Zk(t) =

∫ t

tk−1

Q(s) ds , tk−1 < t ≤ tk . (101)

Taking into account Eq. (101), Eqs. (100) and (101) can be rewritten, for tν < t ≤
tν+1, as

[M] Q̈(t) + [K0]Q(t) +
ν∑

k=1

[N k(t)]Zk(tk) + [N ν+1(t)]Zν+1(t) = [Φ]T F(t) ,

(102)

Żν+1(t) = Q(t) , Zν+1(tν) = 0 . (103)

Introducing the family of stochastic processes {Qk}k indexed by t such that Qk(t)
= Q(t) for tk−1 < t ≤ tk, Eqs. (102) and (103) can be rewritten, for tν < t ≤
tν+1, as

[M]Q̈ν+1(t)+[K0]Qν+1(t)+
ν∑

k=1

[N k(t)]Zk(tk)+[N ν+1(t)]Zν+1(t)=[Φ]TF(t),

(104)

Żν+1(t) = Qν+1(t) , (105)

Qν+1(tν) = Qν(tν) , Zν+1(tν) = 0 . (106)

The linear stochastic differential equations defined by Eqs. (104) and (105), with

initial conditions defined by Eq. (106), represent the time approximation of the

integro-differential equation defined by Eq. (97), for tν < t ≤ tν+1. It should be

noted that the time-approximation scheme which is proposed does not require any

additional features for the stochastic process F under consideration. Moreover, at

this point, the nonstationary second-order centered vector-valued stochastic pro-

cess F is not obligatorily a Gaussian one. As explained in Section 11, stochastic

process Q̈ has almost surely continuous trajectories.

12.2. Time discretization of the stochastic integro-differential equation

We have now to solve Eqs. (104) and (105), with Eqs. (36) and (37), for tν < t ≤
tν+1, with the initial conditions defined, for t = tν , by Eqs. (106) and (38). The

second-order differential equation defined by Eq. (102) is transformed to a first-

order differential equation in introducing the vector Pν+1(t) such that Pν+1(t) =
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[M] Q̇ν+1(t). For ν fixed in {0, 1, . . . , kT − 1}, for tν ≤ t ≤ tν+1, we introduce

the vectors R(t) and S(t) such that

R(t) =

[
Qν+1(t)
Zν+1(t)

]
, S(t) =

[
Pν+1(t)
Vν+1(t)

]
. (107)

For all t in ]tν , tν+1], the stochastic differential equations defined by Eqs. (104)

and (105), with Eqs. (36) and (37), can be rewritten as

dR(t) = F(S(t),R(t)) dt ,
dS(t) = G(S(t),R(t), t) dt+ dX(t) . (108)

Using Eq. (106) and the fact that

Pν+1(tν) = Pν(tν) , Vν+1(tν) = Vν(tν) , (109)

with V0(0) = VS (see Eq. (38)), for t = tν , the initial conditions are rewritten as

R(tν) =

[
Qν(tν)

0

]
, S(tν) =

[
Pν(tν)
Vν(tν)

]
. (110)

In Eq. (108), the vector X(t) and the vector-valued functions F and G, are such

that

X(t) =

[
0

[J]W(t)

]
, F(S(t),R(t)) =

[
[M]−1Pν+1(t)

Qν+1(t)

]
, (111)

G(S(t),R(t), t) =
(112)[

−[K0]Qν+1(t)− [Nν+1(t)]Zν+1(t)−
∑ν

k=1[N k(t)]Zk(tk) + [Φ]T [O(t)]Vν+1(t)
[S]Vν+1(t)

]
.

To solve Eq. (108) for t ∈]tν , tν+1], with the initial conditions defined by Eq. (110)

for t = tν , we propose to use an extension of the Störmer-Verlet scheme [31]. It

should be noted that such an algorithm is particularly well adapted to conservative

system, such as Hamiltonian system, because it allows long-time energy conser-

vation and long-time good behavior of the numerical solution to be obtained. In

our case, the system is dissipative with a nonhomogeneous excitation term. Nev-

ertheless, among all the possible classical integration time scheme such as explicit

schemes (Euler-Maruyama, Milstein, etc.) (see for instance [37, 41]) or implicit

schemes (central difference scheme, Newmark, θ-Wilson, etc.) (see for instance
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[5, 69]), the extension of the Störmer-Verlet scheme is a very interesting algo-

rithm.

The time step h is such that h = tν+1 − tν . Let ℓh be the number of time steps

of interval [tν , tν+1] and let δt = h/ℓh be the time step. For ℓ = 0, 1, . . . , ℓh,

the time sampling of interval [tν , tν+1] is then defined by τℓ = tν + ℓ δt and we

use the notation: Rℓ = R(τℓ), Sℓ = S(τℓ) and Xℓ = X(τℓ). We then propose

the following natural extension of the Störmer-Verlet scheme adapted to the Itô

stochastic differential equation defined by Eq. (108), which is written, for all ℓ =
0, 1, . . . , ℓh, as

Rℓ+1/2 = Rℓ +
δt

2
F(Sℓ,Rℓ+1/2) , (113)

Sℓ+1 = Sℓ +
δt

2
{G(Sℓ,Rℓ+1/2, τℓ) + G(Sℓ+1,Rℓ+1/2, τℓ+1)}+ δXℓ+1 , (114)

Rℓ+1 = Rℓ+1/2 +
δt

2
F(Sℓ+1,Rℓ+1/2) , (115)

in which

δXℓ+1 =

[
0

[J] δWℓ+1

]
, (116)

where δWℓ+1 = W(τℓ+1) − W(τℓ). For ν = 0, 1, . . . , kT − 1 and for ℓ =
0, 1, . . . , ℓh, the family {δWℓ+1}ν,ℓ is made up of independent random vectors

δWℓ+1 which are Gaussian random vectors with zero mean and covariance matrix

δt [I]. For ν fixed, we introduce the following notations,

Qℓ = Qν+1(τℓ) , Zℓ = Zν+1(τℓ) , Pℓ = Pν+1(τℓ) , Vℓ = Vν+1(τℓ) . (117)

From Eq. (113), it can be deduced that

Qℓ+1/2 = Qℓ +
δt

2
[M]−1Pℓ , (118)

Zℓ+1/2 = Zℓ +
δt

2
Qℓ +

(δt)2

4
[M]−1Pℓ . (119)

Eq. (114) can be rewritten as

Pℓ+1 = Pℓ +
δt

2
{−2 [K0]Qℓ+1/2 − ([Nν+1(τℓ)] + [Nν+1(τℓ+1)])Z

ℓ+1/2

−
ν∑

k=1

([N k(τℓ)]+[N k(τℓ+1)])Zk(tk)+[Φ]T ([O(τℓ)]V
ℓ+[O(τℓ+1)]V

ℓ+1)}, (120)
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([InV
]− δt

2
[S])Vℓ+1 = ([InV

] +
δt

2
[S])Vℓ + [J] δWℓ+1 . (121)

Finally, Eq. (115) yields

Qℓ+1 = Qℓ+1/2 +
δt

2
[M]−1Pℓ+1 , (122)

Zℓ+1 = Zℓ+1/2 +
δt

2
Qℓ+1/2 . (123)

We can then summarize the different steps for the computation of Qℓ+1, Zℓ+1,

Pℓ+1 and Vℓ+1 from Qℓ, Zℓ, Pℓ and Vℓ, with for ℓ = 0, Q0 = Qν(tν), Z0 = 0,

P0 = Pν(tν) and V0 = Vν(tν),

• Eqs. (118) and (119) allow Qℓ+1/2 and Zℓ+1/2 to be computed as functions

of Qℓ, Zℓ and Pℓ.

• Eq. (121) allows Vℓ+1 to be computed as a function of Vℓ.

• Eq. (120) allows Pℓ+1 to be computed as a function of Pℓ, Qℓ+1/2, Zℓ+1/2,

Vℓ and Vℓ+1.

• Eq. (122) allows Qℓ+1 to be computed as a function of Qℓ+1/2 and Pℓ+1.

• Eq. (123) allows Zℓ+1 to be computed as a function of Zℓ+1/2 and Qℓ+1/2.

12.3. Comments about the estimation of the time steps values

The time discretization of the stochastic equations is controlled by three time steps

which are ∆s, h and δt.

(i) Time steps ∆s and h are related to the approximation that we have introduced

for the integral
∫ t

0
[N(t− s)]Q(s) ds (see Eqs. (97) to (101)) and strongly depends

on the random function ω 7→ [D(ω)] (see Section 10.3). Therefore, no estimation

of ∆s and h can be done without knowing an explicit description of determinis-

tic function ω 7→ [D(ω)]. In practice, the quality of the approximation must be

checked in performing a convergence analysis with respect to these two parame-

ters.

(ii) Concerning the estimation of time step δt, Eqs. (118) to (123) show that the

scheme used in conditionally stable. We then have to estimate a value of δt to
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preserve the stability. Fortunately, since the scheme is applied to the stochas-

tic reduced-order dynamical system, the highest random eigenfrequency of the

associated conservative system is finite and not too large for the practical appli-

cations. Let us consider Case 1 introduced in Section 8 and let λm be the largest

eigenvalue used for constructing the reduced-order model. The reduced-order dy-

namical system without uncertainties is then a deterministic linear filter for which

the bandwidth can be approximated by [0 , ωf ] in which ωf ∼
√
λm. This linear

filter decreases in ω−2 for ω larger than the highest resonance (of the order of ωf )

contained in the deterministic reduced-order model. Since the stiffness matrix of

the stochastic reduced-order system is random and depends on ω, we introduce a

factor af > 1 such that ωmax = af ωf where [0 , ωmax] is a reasonable approxima-

tion of the upper bound of the bandwidth of the random linear filter corresponding

to the stochastic reduced-order model. Concerning the stochastic excitation, since

t 7→ [O(t)] is the signal envelope with a slow time variation, a cutoff frequency

ωV can be defined such that
∫ ωV

0
tr[SV (ω)] dω ≥ (1 − εV )

∫ +∞

0
tr[SV (ω)] dω in

which εV is the relative error in terms of the mean spectral power. Consequently,

the mean spectral power of the random responses is mainly concentrated in the

frequency band [0 , ωr] with ωr = min{ωmax, ωV }. The value of time step δt can

then be estimated by δt ∼ π/ωr. Nevertheless, a convergence analysis must be

performed to control the quality of the approximation constructed.

12.4. Comments about the stochastic solver

In this paper, we are interested in the time-domain formulation in computational

dynamics for linear viscoelastic media with model uncertainties and stochastic ex-

citation. Clearly, for time-invariant linear dynamical system an alternative to the

time formulation is the frequency formulation. Nevertheless, such an alternative

is not really appropriate for nonlinear dynamical systems and a time formulation

is then required. The developments presented in this work is relevant of this case

and can be applied without difficulties for nonlinear dynamical systems consti-

tuted of the linear viscoelastic system defined by Eqs. (94) to (96), in which local

nonlinearities are added. For instance, it would be the case of a vibro-impact sys-

tem made up of a linear viscoelastic medium with stops. In this framework, and

taking into account the presence of stochastic excitation and random operators,

an efficient stochastic solver is the Monte Carlo method. The direct Monte Carlo

numerical simulation method (see for instance [32, 59]) is a very effective and

efficient method because this method (i) is non-intrusive with respect to software,

(ii) is adapted to massively parallel computation without any software develop-

ments, (iii) is such that its convergence can be controlled during the computation,
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and (iv) the speed of convergence is independent of the dimension. The speed of

convergence of the Monte Carlo method can be improved using advanced Monte

Carlo simulation procedures [57, 66], subset simulation techniques [3], important

sampling for high dimension problems [2], local domain Monte Carlo Simula-

tion [58], recent variance reduction technique based on a reduced basis of control

variates [7, 8].

13. Conclusions

For the first time, a complete time-domain formulation is proposed, including new

results, in computational mechanics for studying the transient response of lin-

ear viscoelastic systems, submitted to a nonstationary stochastic excitation and in

presence of model uncertainties which are modeled using the nonparametric prob-

abilistic approach and the random matrix theory. A time discretization of the ob-

tained linear Stochastic Integro-Differential Equation (SIDE) with random opera-

tors and with a stochastic nonhomogeneous part (stochastic excitation) is proposed

to transform the SIDE to a linear Itô Stochastic Differential Equation (ISDE) with

random operators. Then we have proposed an extension of the Störmer-Verlet

scheme to solve this ISDE. The general methodology which has been presented

has the capability to analyze such systems with additional local nonlinearities,

such as vibro-impact systems made up of a linear viscoelastic medium with stops.
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