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Abstract

Non-rigid 3D shape retrieval has become an active and important research topic in content-

based 3D object retrieval. The aim of this paper is to measure and compare the performance

of state-of-the-art methods for non-rigid 3D shape retrieval. The paper develops a new bench-

mark consisting of 600 non-rigid 3D watertight meshes, which are equally classified into 30

categories, to carry out experiments for 11 different algorithms, whose retrieval accuracies

are evaluated using 6 commonly-utilized measures. Models and evaluation tools of the new

benchmark are publicly available on our web site [1].

Keywords: 3D Shape Retrieval; Non-rigid; Benchmark

1. Introduction

With the recent advancement in computer science and technology, 3D models have become

widely-used in many application areas, such as computer aided design, multimedia entertain-

ment, electronic commerce, digital library, and so on. Since the number of 3D objects grows

rapidly, there exist increasing demands to retrieve them based on their shapes. In the last few
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Figure 1: Examples of non-rigid 3D models.

years, the problem of Non-rigid 3D Shape Retrieval has become an active research topic in 3D

shape retrieval and attracted more and more researchers from several research communities

including pattern recognition [2] [3], computer graphics [4] [5], computer vision [6] [7], and

applied mathematics [8] [9]. In fact, how to quickly and accurately compare non-rigid 3D

shapes is not only important in practice but also interesting in theory. On the one hand,

deformable objects are widely-seen in both real and virtual worlds. Take Fig. 1 for an ex-

ample, a hand can appear in many different poses by articulating around its joints. Those

articulated hands are very likely to be recognized as different kinds of objects using many

traditional rigid-shape analyzing techniques (e.g., methods compared in the paper [10] that

proposed the Princeton Shape Benchmark). On the other hand, many elegant mathematical

tools, such as Singular Value Decomposition [11], Multidimensional Scaling [12], Heat Kernel

diffusion [13], Laplace-Beltrami operator [14], etc., are well suited for the analysis of non-rigid

3D shapes. Usually, creating an isometry-invariant 3D shape descriptor can be formulated as

an interesting mathematical problem.

As the number of algorithms for non-rigid 3D shape retrieval increases rapidly, it is often

required to compare them in a fair and effective way. However, most of these methods need to

be implemented on watertight manifolds, while both collecting and creating large amounts of

those kinds of deformable models are not trivial. Until recently, the most commonly-used non-

rigid 3D shape benchmark (i.e., McGill 3D Shape Database [15]) contains only 255 models.

That somehow hinders the further investigation in this research direction. To address the

problem, we designed an efficient processing framework to build a new large-scale benchmark

consisting of 600 watertight triangle meshes and organized a contest called SHREC’11 Track:

Shape Retrieval on Non-rigid 3D Watertight Meshes. In this contest, we asked each participant

to submit up to 5 distance matrices obtained using their methods within one week. Finally,

11 different algorithms were proposed by 9 research groups and their retrieval accuracies were
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evaluated and compared based on 6 standard measures. This article is an extended version

of the conference paper [16] presented for the contest.

Major contributions of this paper are threefold. First, we propose an efficient processing

framework to generate large numbers of non-rigid 3D watertight meshes, based on which we

build a new non-rigid 3D shape benchmark. Second, we describe and implement a set of

methods that roughly represent the state of the art in non-rigid 3D shape retrieval. Third,

we evaluate and compare the performance of these methods using the new benchmark.

The rest of this paper is organized as follows: Section 2 discusses related work. Section 3

describes how to generate the database for our benchmark. Section 4 mentions how to eval-

uate the retrieval performance and Section 5 provides the information of contributors for the

benchmark. Then, we present 11 non-rigid 3D shape retrieval methods in Section 6, followed

by Section 7 which demonstrates and analyzes experimental results. Finally, we conclude the

paper in Section 8.

2. Related Work

2.1. 3D Shape Retrieval Techniques

The explosion in the number of available 3D models has led to the rapid development

of 3D shape retrieval systems that, given a query object, retrieve similar 3D objects [8].

Up to now, a large number of methods for 3D shape retrieval have been proposed, such as

Shape Distribution (D2) [4], Spherical Harmonic Descriptor (SHD) [17], Light Field Descriptor

(LFD) [18], Elevator Descriptor (ED) [19], Shape Impact Descriptor (SID) [20], etc. However,

most of these algorithms are only suitable for the retrieval of rigid 3D shapes and how to

accurately and efficiently calculate the similarity between non-rigid models is still considered

to be a challenging problem. For more information about 3D shape retrieval, we refer the

reader to some recent surveys [8] [10].

In general, existing methods for non-rigid 3D shape retrieval can be roughly classified

into algorithms employing local features, topological structures, isometry-invariant global

geometric properties, direct shape matching, or canonical forms. The first solution is to

measure the dissimilarity between two models based on their local features that are insensitive

to isometric transformations. For instance, the well-known Spin Images [21] was utilized
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in [22], where they described a 3D object as a word histogram by the vector quantization of

all local features (Spin Images) extracted on the surface. Ovsjanikov et al. [23] made use of

the Heat Kernel Signature (HKS) [13], which is based on the properties of the heat diffusion

process on a 3D shape, and designed a spatially-sensitive bag-of-features approach to retrieve

non-rigid models in large databases. Ohbuchi et al. [24] proposed a view-based method using

salient local features (SIFT [25]). They represented a whole object as a histogram by using

bag-of-features for 2D salient local descriptors extracted from a set of depth-buffer views

captured uniformly around the object. More recently, Wang et al. [26] presented Intrinsic

Spin Images (ISIs) by generalizing the traditional Spin Images [21] from 3D space to N-

dimensional intrinsic shape space, in which their ISIs shape descriptors are calculated on

MDS embedding representations of original 3D surfaces.

The second solution is to use topological structures to compare deformable 3D objects.

For example, Hilaga et al. [27] developed the Topology Matching technique to compute the

similarity between two models via the shape matching of their Multiresolutional Reeb Graphs

(MRGs), while Sundar et al. [28] compared 3D objects by applying graph matching tech-

niques to match their skeletons. Better retrieval performance can be obtained [29] by using

topological and geometric features together.

For the third category, isometric-invariant global geometric properties (e.g., geodesic dis-

tance) are utilized for non-rigid 3D shape retrieval. Reuter et al. [30] suggested using the

model’s Laplace-Beltrami spectra, while Jain and Zhang [31] proposed to use eigenvalues

of the geodesic distance matrix of a 3D object to generate 3D shape descriptors that are

isometry-invariant. Also, Mahmoudi and Sapiro [32] designed six such signatures based on

the distributions of intrinsic distances including diffusion distance, geodesic distance, a cur-

vature weighted distance, etc.

Many investigations have also been made trying to measure the exact dissimilarity between

non-rigid 3D models. For instance, Mémoli and Sapiro [9] introduced a theoretical framework

to directly compare non-rigid 3D shapes based on the Gromov-Hausdorff (GH) distance. Since

calculating the exact value of the GH distance is computationally expensive, Mémoli [33]

proposed to approximate the GH distance by solving a mass transportation problem, which is

a quadratic optimization problem with linear constraints. Bronstein et al. [34] formulated the

GH distance as a MDS-like continuous optimization problem, leading to a numerically exact
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calculation of the GH distance between surfaces. Apparently, an ideal and complete solution

for the comparison of two non-rigid shapes is to match them directly. However, due to its

high computational complexity, direct shape matching is impractical for real shape retrieval

systems that require instant responses.

The utilization of canonical forms is also a promising solution for non-rigid 3D shape re-

trieval. Indeed, with canonical forms, any shape searching algorithm can be applied for the

retrieval of non-rigid models. As we know, excellent performance, in term of both accuracy

and efficiency, has been achieved for rigid 3D shape retrieval. Obviously, if it is possible to

construct canonical forms with well-preserved features, the problem of non-rigid 3D shape

retrieval could be well resolved. The idea of generating canonical forms in 3D domain was

initially proposed in [35], where the authors introduced an invariant representation for isomet-

ric surfaces by applying MDS embedding to map the original surface to a small dimensional

Euclidean space in which geodesic distances can be approximated by Euclidean ones. In [35],

three MDS techniques were discussed and compared to construct such 3D canonical forms.

To verify the effectiveness of their canonical forms, they [35] computed a moment-based shape

descriptor from embedded surfaces and carried out a simple experiment for object classifica-

tion. More recently, Lian et al. [36] presented a framework for non-rigid 3D shape retrieval

based on the combination of Least Square MDS embedding and a visual similarity based

approach. Thanks to the utilization of canonical forms, superior performance was obtained

in [36] compared to other existing methods.

2.2. 3D Shape Retrieval Benchmarks

To evaluate and compare the performance of methods for 3D shape retrieval, a number of

benchmarks have been developed. Meanwhile, the 3D SHape REtrieval Contest (SHREC) [37],

an annual event started from 2006, also provides researchers various resources to compare their

algorithms. In this section, we discuss several representative benchmarks that are commonly-

used in the area of 3D shape retrieval.

The Princeton Shape Benchmark (PSB) [10] is widely acknowledged as the most promi-

nent 3D shape retrieval benchmark. Evaluation measures they proposed [10] have already

become standard methods to evaluate retrieval performance. The PSB database contains

1814 polygonal models that are divided into separate training and test sets, and it also in-
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cludes a set of hierarchical classifications. The PSB test set with base classification, which

is mostly-utilized in the literature, consists of 907 generic models that are classified into 92

categories. The maximum number of objects in a class is 50, while the minimum number is

4.

Although the PSB benchmark was built rigorously, it still contains many limitations, such

as too few models in some classes, evaluation biases caused by unequal number of models in

each class, and so on. To solve those problems, Fang et al. [38] proposed the NIST (National

Institute of Standards and Technology) Shape Benchmark (NSB). The NSB benchmark is

composed of 800 generic models that are classified into 40 categories mainly based on their

visual similarities, and each class contains an equal number (20) of models. They also carried

out experiments to validate the reliability of their benchmark.

The PSB and NSB benchmark were both designed for the retrieval of generic 3D models

that can be any kinds of objects in the world. However, there are also requirements for many

specific applications, like the retrieval of CAD models, architectural models, protein models,

etc. Among them, how to search for desired CAD models is one of the most important

applications in content-based 3D object retrieval. Jayanti et al. [39] developed the Engineering

Shape Benchmark (ESB) that consists of 867 3D CAD models. They classified the database

into 45 categories. It has maximum 58 and minimum 4 objects in a class.

Since many 3D feature extraction methods employ elegant mathematical tools which can

only be applied on watertight manifolds, there exist increasing demands for such benchmarks

that are purely composed of 3D watertight meshes. Giorgi et al. [40] organized the watertight

model retrieval track under SHREC 2007 by using their database that is made of 400 water-

tight polygonal models, classified into 20 classes of 20 models each. They manually built the

ground truth to ensure that the classes exhibit sufficient and diverse variations, from pose

change to shape variability in the same semantic group.

As mentioned above, non-rigid 3D shape retrieval has become an active topic in many

research communities. The most commonly-used benchmark for this topic is the McGill

articulated 3D shape Benchmark (McGill) [15]. However, the McGill database merely contains

10 categories, totally 255 articulated 3D meshes. When performing statistical analysis, the

size of the database is typically too small to reduce possible bias and establish accurate

evaluation. Furthermore, the largest class in the McGill database has 31 models while the
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smallest class contains 20 objects. The unequal number of models in each class could also

cause evaluation bias. In this paper, we propose an effective scheme to create articulated

watertight meshes and develop a large-scale database consisting of 600 non-rigid watertight

meshes with 20 models in each class.

3. Data Creation

The new benchmark consists of 600 watertight triangle meshes that are derived from 30

original models, among which 26 objects are collected from several freely-accessible reposi-

tories (e.g., PSB database [10], McGill database [15], TOSCA shapes [12], etc.) while the

other 4 models (i.e., lamp, paper, scissor, and twoballs) are created by us using Autodesk 3d

Max. Given a 3D mesh, we use Autodesk 3d Max to build its skeleton and then generate 19

deformed versions of the mesh by articulating parts around its joints in different ways (see

Fig. 3). To remove the inner structures of those articulated models, as shown in Fig. 4, we

implement our own software to first capture 18 depth-buffer views for the normalized object

on the vertices of a unit geodesic sphere, and then convert those images into a point cloud.

Finally, we wrap the point cloud into a polygon surface and fix it to form a watertight 3D

manifold without any topological errors by using Geomagic, which can be automatically im-

plemented with recorded macros. As shown in Fig. 2, those 600 non-rigid models have been

equally classified into 30 categories.

4. Evaluation

When running algorithms on the database, we first calculate the dissimilarity value be-

tween every two objects, and then generate a distance matrix for each method. The matrix is

composed of 600× 600 floating point numbers, where the number at position (i, j) represents

the dissimilarity between models i and j. Analyzing those distance matrices, we evaluate their

retrieval performance based on the Precision-recall curve and other five quantitative measures

(see [10] for detailed definitions):

• Precision-recall curve: A curve illustrating the relationship between the precision

and recall of a retrieval algorithm. Precision is the percentage of retrieved objects that

are relevant, while recall is the percentage of relevant models that are retrieved.
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Figure 2: Examples of models in our database that is classified into 30 categories.

(a) (b) (c) (d)

Figure 3: Generating an articulated model for a 3D mesh. Given the original mesh (a), we first build its

skeleton (b), and then articulate (c) the model around its joins to obtain the new mesh (d).
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Figure 4: Creating the watertight manifold for a 3D mesh. We first normalize the original model (a) so that it

is located inside a unit geodesic sphere, and then a set of depth-buffer views (b) of the 3D mesh are captured

on the 18 vertices of the bounding sphere. Afterwards, we convert those depth-buffer images into a point cloud

(c), which is then utilized to generate a polygonal mesh (d). Finally, by fixing holes and other errors on the

surface (d), we obtain a watertight manifold (e) without inner structures.

• Nearest Neighbor (NN): The percentage of closest matches that are in the same

class as the query.

• First Tier (FT) and Second Tier (ST): The percentage of models belonging to the

query’s class that appear within the top NT retrieved models, where NT depends on

the size of the query’s class. More specifically, assume that the query’s class contains

NC models, NT = NC − 1 for the First Tier and NT = 2(NC − 1) for the Second Tier.

• E-measure (E): A composite measure of the precision and recall for a fixed number

of retrieved models. The E-Measure is defined as E = 2
1

P
+ 1

R

, where P and R are the

precision and recall, respectively, computed for the first 32 retrieved models.

• Discounted Cumulative Gain (DCG): A statistic that measures the usefulness

(i.e., gain) of a retrieved model based on its position in the ranked list. The gain is

accumulated from the top of the ranked list to the bottom with the gain of each result

reduced logarithmically proportional to the position of the result.

5. Contributors

The first two authors of this paper built the benchmark and organized the SHREC’11

Track: Shape Retrieval on Non-rigid 3D Watertight Meshes. Totally, 9 groups took part in

the contest and implemented the following 11 methods.

1. FOG : submitted by Shun Kawamura, Yukinori Kurita and Ryutarou Ohbuchi from

University of Yamanashi, Japan.
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2. BOW-LSD : submitted by Guillaume Lavoué from Université de Lyon, CNRS, France

3. MDS-CM-BOF : submitted by Zhouhui Lian from Peking University, China, and Afzal

Godil from National Institute of Standards and Technology, USA.

4. BOGH : submitted by Hien Van Nguyen from University of Maryland, College Park,

USA and Fatih Porikli from Mitsubishi Electric Research Laboratories, USA.

5. LSF : submitted by Yuki Ohkita, Yuya Ohishi, Shun Kawamura and Ryutarou Ohbuchi

from University of Yamanashi, Japan.

6. ShapeDNA: submitted by Martin Reuter from Martinos Center for Biomedical Imaging,

Massachusetts General Hospital / Harvard Medical / MIT, USA.

7. Harris3DGeoMap and HKS : submitted by Ivan Sipiran and Benjamin Bustos from

University of Chile, Chile.

8. MeshSIFT and SD-GDM : submitted by Dirk Smeets, Jeroen Hermans, Dirk Vander-

meulen and Paul Suetens from Katholieke Universiteit Leuven, Belgium.

9. PatchBOF : submitted by Hedi Tabia from University Lille 1, France and Mohamed

Daoudi from Institut TELECOM, France.

6. Methods

This section describes the methods we compared.

6.1. FOG: Features on Geodesics, by S. Kawamura, Y. Kurita and R. Ohbuchi

The Features on Geodesics (FOG) algorithm is based on a diffusion-like distance on 3D

mesh surface to achieve robustness against articulation. In addition, the FOG is designed to

accept diverse surface-based 3D models, e.g., non-watertight mesh or polygon-soup.

To compute features, the FOG method first resamples the surface of a model by uniformly

and quasi-randomly generating Nsp oriented points (Nsp ≈ 3000). These points are then

reconstructed into a mesh by using k-nearest neighbor connectivity. This remeshing gains

invariances to shape representation and tessellation, in exchange for retrieval accuracy.

After remeshing, the algorithm computes a set of local-FOG features at Nk (Nk ≈ 500)

randomly-selected key-points on the mesh by using the Manifold Ranking algorithm developed

by Zhou et al. [41]. The manifold ranking algorithm is originally designed to compute distances

among features in high dimensional feature space. The k-nearest neighbor meshing in the
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feature space of the original manifold ranking algorithm is replaced with the mesh resampling

mentioned above.

For each key-point, a local-FOG is computed as a set of geodesic-like distances for vertices

that lie within a radius r sphere of interest (using 3D Euclidian distance). A local-FOG

feature centered at the key-point captures local geometry at multiple scales, by having multiple

radius of interest r and multiple parameters σ that controls the diffusion speed during the

computation of manifold ranking.

A histogram of these distances coupled with a local geometrical feature within the same

sphere becomes the local-FOG feature at the key-point. A set of Nk local FOG features are

integrated into a feature vector per 3D model by using the bag-of-words approach. For the

FOG algorithm, Kullback-Leibler Divergence is used to compute the distance between two

features.

6.2. BOW-LSD: Bag of Words with Local Spectral Descriptors, by G. Lavoué

The method [42] is based on the Bag of Words (BoW) paradigm. For a given 3D shape,

the proposed approach considers a set of feature points uniformly sampled on the surface and

associated with local Fourier descriptors; this descriptor is computed in the neighborhood of

each feature point by projecting the geometry onto the eigenvectors of the Laplace-Beltrami

operator. In a preliminary step, a visual dictionary is built by clustering a large set of feature

descriptors, then each 3D shape is described by an histogram of occurrences of these visual

words.

In this method, a uniform sampling is first utilized to generate feature points on the mesh

surface; for this goal, a random set of np vertices on the mesh is considered as an initial set

of seeds, and then Lloyd relaxation iterations are implemented. Lloyd’s algorithm [43] is a

fixed-point iteration that simply consists of iteratively moving the seeds to the centroids of

their Voronoi cells. Each feature point pi is then associated with a local patch Pi on which a

descriptor is calculated. For each feature point, this local patch is extracted by considering

the connected set of facets belonging to a given sphere of center pi and of a given radius r.

After that, each feature point is associated to a descriptor computed on its patch. The

Fourier spectra of the patch are computed by projecting the geometry onto the eigenvectors

of the Laplace-Beltrami operator. The Laplace-Beltrami operator ∆ is the counterpart of
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the Laplace operator in Euclidian space. It is defined as the divergence of the gradient for

functions defined over manifolds. The eigenfunction and eigenvalue pairs (Hk, λk) of this

operator satisfy the following relationships:−∆Hk = λkH
k. In the case of a 2-manifold

triangular mesh the above eigen-problem can be discretized and simplified within the finite

element modeling framework [44]:−Qhk = λkDhk, in which hk denotes the vector [Hk
1 , ...H

k
m]

where m is the number of vertices of the patch. D is the Lumped Mass matrix and Q is

the Stiffness matrix. To resolve this discrete eigenproblem, the fast algorithm from Vallet

and Lévy [45], based on a band-by-band approach and an efficient eigen-solver, is adopted;

hence the eigenvectors hk (i.e., the manifold harmonic bases) and the associated eigenvalues

are obtained. The spectral coefficients are then calculated as the inner product between the

geometry of the surface and the sorted eigenvectors. For x (resp. y,z):

x̃k =< x,hk >=
m
∑

i=1

xiDi,iH
k
i (1)

The kth (k = 1..m) spectral coefficient amplitude is then defined as:

ck =
√

(x̃k)2 + (ỹk)2 + (z̃k)2 (2)

Thus, for a given patch Pi around a feature point pi, the descriptor is the spectral amplitude

vector ci = [ci1, ...c
i
nc
], with cik, the kth spectral coefficient amplitude of the patch Pi. Here,

only the nc first spectral coefficients are considered to limit the descriptor to low/medium

frequencies.

Given a 3D object containing a set of patches Pi associated with descriptors ci, the next

step is to represent it as a distribution of visual words from a given dictionary. First, the visual

dictionary is created by clustering a huge dataset of descriptors and keep the nw centroids c̄k

of the clusters as visual words. Then, each patch Pi is associated with its closest visual word

and the bag of words bM of the whole model M is a nw-dimensional vector containing the

distribution of the visual words over all its patches. The matching between two bags of words

is simply done using the L1 distance.

In this paper, settings of the BOW-LSD algorithm are as follows:

• The size nw of the dictionary was set to 200 and the number of patchs np was set to

200.
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• The visual vocabulary was computed from the database.

• The radius of the patches is selected as r = 0.15 and the number of spectral coefficients

is nc = 40.

6.3. MDS-CM-BOF: Visual Similarity based Non-rigid 3D Shape Retrieval Using MDS, by

Z. Lian and A. Godil

(a) (b) (c) (d)

Figure 5: Procedures of the canonical form computation. (a) and (d) show the original 3D model and its

canonical form, respectively.

The method [36] performs step by step as follows:

1) Canonical Form Computation: Calculate the canonical form for a 3D model

based on MDS and PCA. As shown in Fig. 5, the least squares technique with the SAMCOF

algorithm is chosen to implement the MDS embedding (Fig. 5(c)), and before that the number

of vertices on the mesh has been reduced to about 1000 (Fig. 5(b)).

2) Local Feature Extraction: Capture 66 depth-buffer views for the canonical form on

the vertices of a given geodesic sphere, and then extract salient SIFT descriptors [25] from

these views (Fig. 6).

3) Word Histogram Construction: Generate a word histogram by vector quantiz-

ing each view’s local features against a pre-specified codebook, such that the shape can be

represented by a set of histograms. It should be pointed out that the codebook is built by

using K-means to create 256 clusters for large numbers of local features randomly sampled

from MDS embedded McGill database, and a particular data structure (Fig. 6) is designed to

represent the histogram in a more efficient and effective way [46].

4) Dissimilarity Calculation: Carry out an efficient multi-view shape matching (Clock

Matching) scheme [6] to measure the dissimilarity between two models by calculating the

minimum distance of their 24 matching pairs.
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Figure 6: Represent a depth-buffer view as a word histogram by the vector quantization of its SIFT local

features.

Since the method is mainly based on Multidimensional Scaling, Clock Matching, and Bag-

of-Features, for the sake of convenience, it is denoted as “MDS-CM-BOF”. More details of

this method can be found in [36] [46] [6].

6.4. BOGH: Bag of Geodesic Histograms, by H.V. Nguyen and F. Porikli

Figure 7: Illustration for the histogram of geodesic distances computed at two points on the centaur model.

The method uses a Bag-of-Feature approach and Normalized Geodesic Distances to re-

trieval non-rigid 3D shapes.

Consider a shape to be a closed set S ∈ Rn, the geodesic distance γ(p, q) between two

points p and q is defined to be the shortest path among all paths connecting these two points

on the shape. Let h(p) = [h1(p), h2(p), . . . , hn(p)] denotes the histogram of geodesic distances

(see Fig. 7) from the point p to all points in S, which is defined as follows:

hi(p) =
Qi

S
(3)

Qi =

{

q ∈ S|(i− 1)∆ ≤
γ(p, q)

γp
≤ i∆

}

(4)
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where γp is the mean of geodesic distance from p to all points, and ∆ is the separation between

histogram bins. Here, n = 100 and ∆ = 0.025. Since the descriptor is based on the geodesic

distances, they are robust to various 3D non-rigid articulations. In addition, the normalization

with respect to average geodesic distances take into account the scaling effects.

For each shape, N points (here N = 300) are randomly chosen and a bag of descriptors

is computed. Shape matching is done by first finding the optimal correspondences between

their bags of descriptors using the Hungarian algorithm.

Let two sets of the descriptors for two shapes A and B be ΛA : hA1 , h
A
2 , ..h

A
N and ΛB :

hB1 , h
B
2 , ..h

B
N . The correspondence is established through a one-to-one mapping function τ

such that τ : ΛA ↔ ΛB . If a descriptor hAi is matched to another hBi then τ(iA) = jB and

τ(jB) = iA. The cost function is defined as

E(h) =
∑

1≤i≤N

ǫ(τ(i), i) (5)

where the distance between two descriptors is computed using χ2 statistic

ǫ(τ(i), i) =
∑

1≤k≤N

[hAτ(i)(k)− hBi (k)]
2

hAτ(i)(k) + hBi (k)
(6)

Finally, the optimal cost E(h) is used as the similarity measure between two shapes.

6.5. LSF: Localized Statistical Features (LSF), by Y. Ohkita, Y. Ohishi, S. Kawamura and

R. Ohbuchi

Figure 8: Localized Statistical Features (LSF).

The Localized Statistical Features (LSF) (see Fig. 8) is a very simple 3D shape descriptor

that has a set of good robustness properties [47]. The LSF is robust against shape repre-

sentations; the LSF can handle 3D models represented as polygon soup, oriented point set,
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watertight mesh, water leaking manifold mesh, etc. The LSF is robust against similarity

transformation without requiring any pose normalization. It is also fairly robust against

geometrical/topological noise. Finally, the LSF is robust against articulation.

The LSF computes a set of Nk (Nk ≈ 500) localized 3D statistical features, which are

then combined into a feature vector per 3D model by using the bag-of-words approach. Each

statistical feature is a derivative of the Surflet-Pair-Relation Histograms (SPRH) feature by

Wahl et al. [48]. The SPRH feature accepts a 3D model in oriented point set representation.

From the point set, the SPRH computes a 4D joint histogram consisting of three angles (inner

product, etc.) and a distance among all the pairs of the oriented points.

For the LSF, the SPRH descriptor is made to be local. Each LSF is computed from the

point set within the sphere of radius r about the Nk keypoints quasi-randomly and uniformly

placed on the surfaces of the model. In LSF, histogram is computed from point pairs in which

one of the points is the keypoint. If there are n points in the sphere, there are (n − 1) pairs

of points filling the histogram.

After the set of local features are computed, they are combined into a feature vector per

3D model by using the bag-of-features approach. Here, the LSF feature is used as is, i.e.,

without Manifold Ranking and other distance metric learning.

6.6. ShapeDNA: Laplace Spectra for Non-Rigid Shape Analysis, by M. Reuter

Figure 9: First 30 eigenvalues plotted for the girl in four different postures as opposed to the spectrum of the

sphere (gray) with same surface area (the position of the shapes in the plot is irrelevant).

ShapeDNA is the normed beginning sequence of the spectrum, i.e. the first eigenvalues,

of the Laplace-Beltrami operator (LBO) for 2D surfaces or 3D solids. It has been introduced
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in 2005 [30, 14] as the first spectral shape signature for non-rigid shape analysis. Extensions

have later been employed for local shape analysis of structures in the human brain to detect

and quantify disease effects [49] and for automatic shape segmentation and part correspon-

dence [50]. Over the past half decade, spectral methods have gained much attention due to

their beneficial properties, most importantly their isometry invariance making them robust

with respect to pose differences (see Fig. 9). Many methods based on the LBO have emerged

for shape processing and to generate local and global shape signatures, commonly based on

both eigenvalues and eigenfunctions, e.g., to approximate the heat kernel.

The relation between shape and sound has been of great interest in the past. The math-

ematician Bers first asked the famous question “Can one hear the Shape of a Drum?” in a

talk [51]. This question inspired Kac who later published an article [52] with the same title,

asking if the shape of a planar domain is in fact determined by the spectrum of the Laplacian.

He proved this to be true for disks. The idea to connect the eigenvalues (the spectrum) with

geometric entities dates back at least to Weyl [53] who showed that the asymptotic behavior

of the eigenvalues depends on the surface area of the drum (or on the volume of a 3D solid).

Obviously the natural frequencies and thus the sound of a drum are determined by its shape

(and material properties, ignored here). Except for a limited class of shapes known to be

spectrally determined, however, the reverse is not necessarily true (see e.g. [54] for artificially

constructed isospectral twins).

In addition to the isometry invariance, the beginning sequence of the Laplace spectra has

many desirable properties. This descriptor is insensitive to noise, which influences mainly the

higher eigenvalues. Potential switching of eigenvalues due to small non-isometric deformations

is not problematic (as opposed to comparing eigenfunctions), since the values must have been

close to begin with. As a vector of numbers the spectrum can be compared easily and can be

computed for many different shape representations and dimensions. It can deal with objects

containing cavities (when using 3D solids), depends continuously on shape deformations and

can easily be made scaling invariant. Note that the ShapeDNA does not rely on any prior

knowledge and in contrast to other methods involving eigenfunctions or the heat kernel, it

yields a very simple and robust, isometry invariant shape descriptor.

Mathematically the eigenvalues λ and eigenfunctions u are defined as the solutions of the

Laplacian eigenvalue problem ∆u = −λu, where ∆u := div(grad(u)) with grad being the gra-
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dient and div the divergence with respect to the underlying domain or Riemannian manifold

in general. Here the normed first smallest N eigenvalues 0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn are taken as

the shape descriptor (ShapeDNA). The spectrum of a given shape can be approximated very

efficiently even if the shape exhibits not-flat geometry. Many different discretizations of the

Laplace-Beltrami operator exist ([55] show a comparison of some common discretizations).

These range from simple graph Laplace operators considering only the connectivity, metric

aware linear mesh operators, to higher order discretizations based on finite elements meth-

ods (FEM), introduced in [14] (see also [49] appendix for implementation details on triangle

meshes). In this paper, the simple linear FEM discretization is utilized to compute the first

eigenvalues of the LBO. Since for shape retrieval only a small number of eigenvalues is needed

linear approaches should be sufficient. Note that in order to compute a large number of eigen-

values and eigenfunctions, e.g. to approximate the heat kernel, higher order approximations

may be required due to their superior accuracy [55].

For the ShapeDNA, in addition to the LBO discretization, several parameters can be

specified. Earlier tests showed that usually N = 10 · · · 15 eigenvalues are a good number (less

have often not enough power to distinguish shapes, while including higher values increases

influence of noise and non-isometric deformations). The first eigenvalue is omitted as it is

zero for closed manifolds. Another parameter is the distance metric to compare the spectra,

where the simple Euclidean distance on the N dimensional vector of numbers is chosen. Other

meaningful distances (Hausdorff, correlation, different p-norms) did not improve retrieval rates

in prior tests. Finally, in order to compare shape rather than size of the objects, the spectra

need to be normalized. One option is to multiply the spectrum by the surface area (applied

here), which is the same as normalizing the area of the shapes before computation. Another

option is to divide the sequence by the first non-zero eigenvalue, which has the same effect

in perfectly isometric cases. However, shapes are usually not isometric and dividing by the

first non-zero eigenvalue may help to identify similar shapes in spite of noise or near-isometric

deformations. On the other hand it puts a large emphasis on the first value.

Software to compute eigenvalues and eigenvectors of the Laplace-Beltrami operator with

up to cubic FEM on triangle meshes has been made freely available for non-profit research

at [56].
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6.7. Harris3DGeoMap and HKS: by I. Sipiran and B. Bustos

This section presents two techniques, including Harris 3D and Heat Kernel Signatures

methods, to tackle the problem of non-rigid 3D shape retrieval.

6.7.1. Harris3DGeoMap: Harris 3D Geodesic Map

The idea behind this method is to compute a characteristic distribution of geodesic dis-

tances between the interest points of a shape. So the method starts by detecting interest

points of a shape using the Harris 3D method [57]. For this paper, adaptive neighborhoods

with δ = 0.01 are utilized and the 0.01% of the number of vertices with the highest Harris

response are selected as interest points.

Let F be the set of interest points detected, the complete set of geodesic distances between

each pair of interest points is computed. This set is represented by the matrix D of dimension

|F | × |F |. Values in the matrix are normalized through dividing each entry by the maximum

value. This makes the values invariant against scale.

Next, a histogram is created with n bins, which divides the interval [0, 1] of possible

normalized geodesic distances. Then, m samples are randomly selected from the matrix

D, accumulating a vote in their corresponding bins. Configurations chosen to compute the

histograms are as follows: n = 32, m = 2000. The distance between two histograms is

measured using the Euclidean distance.

6.7.2. HKS: Heat Kernel Signatures based Point-to-point Matching

Heat kernel signatures method (HKS) [13] has proven to be an interesting mesh analy-

sis tool. Unlike Harris 3D, HKS computes a descriptor for each vertex on a mesh. These

descriptors are invariant to non-rigid transformations, allowing to detect interest points too.

The method starts by detecting the interest points using the Heat kernel signatures. In this

paper, descriptors of length 100 are used and t = 0.1 of the area of the surface is considered

as the value for comparing the HKS for interest point detection. Once the interest points

have been detected, each interest point has an associated HKS descriptor. Then, a shape is

represented by a set of HKS descriptors associated to the interest points.

As HKS is based on an intrinsic formulation of a mesh, the descriptors are expected to be

very similar in presence of non-rigid transformations. Based on this fact, the set of descriptors
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of two shapes are compared. Let S = {s1, s2, · · · , sn} and P = {p1, p2, · · · , sm} be the sets of

descriptors of two shapes. The dissimilarity between S and P is defined as

d(S,P ) =

∑n
k=1 dmin(sk, P )

n
(7)

where

dmin(si, P ) = min
sj∈P

‖si − sj‖2 (8)

6.8. SD-GDM and MeshSIFT: by D. Smeets, J. Hermans, D. Vandermeulen and P. Suetens

In this section, two methods are presented for non-rigid 3D object recognition. The first,

which we will call SD-GDM, is a global feature method based on an intrinsic object represen-

tation, invariant for isometric deformations (Sect. 6.8.1). The second method, MeshSIFT, on

the other hand is a local feature method describing local neighborhoods of interest points on

the surface (Sect. 6.8.2).

6.8.1. SD-GDM: Spectral Decomposition of the Geodesic Distance Matrix

Figure 10: A snake model (a) after preprocessing and its canonical form (b).

The SD-GDM approach was introduced by Smeets et al. for 3D non-rigid object recogni-

tion [11] and for 3D face recognition [58].

As preprocessing, the surface meshes are downsampled to about 3000 points, by reducing

the number of faces without moving the remaining points. Next, duplicated and isolated

vertices are removed in the surface mesh. The preprocessed mesh of a snake model is shown

in Fig. 10(a).

The 3D shapes are then represented by a geodesic distance matrix (GDM), G = [gij ]n×n,

which is a isometric deformation invariant matrix. It contains the geodesic distance gij be-

tween each pair of points on the surface. This distance is the length of the shortest path on the

object surface between two points on the object. Isometric deformations leave these geodesic
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Figure 11: The normalized geodesic distance matrix of the preprocessed snake model, which was shown in

Fig. 10 (a).

distances unchanged. The geodesic distances are calculated with a fast marching algorithm

for triangulated meshes [59, 60]. To compensate for scale differences in the 3D shapes, the

geodesic distances are normalized by the square root of the total surface area of the mesh.

An example of such a normalized geodesic distance matrix is given in Fig. 11.

Next, spectral decomposition (SD) of the GDM provides a sampling order invariant global

feature (shape descriptor). In [11], it is proved that the modal representation, i.e. the eigen-

value matrix, is invariant to the sampling order under the condition that each point on one

surface has one corresponding point on the other surface, which can be assumed for watertight

meshes after resampling. Object recognition reduces to direct comparison of the shape de-

scriptors without the need to establish explicit point correspondences. As a trade-off between

sensitivity for shape variations and noise robustness, the 40 largest eigenvalues are computed.

As such, the complexity of the spectral decomposition is reduced to O(kn2), with k = 40 and

n ≈ 3000. The modal representations of the normalzied GDMs are then compared using the

mean normalized Manhattan distance as in [11].

Strictly speaking, the SD-GDM method is not a spectral embedding technique, since the

canonical shape is not computed explicitly. Even if the eigenvectors would be computed,

embedding is not straightforward because the normalized GDM is not positive (semi)definite

(unlike the Laplacian matrix or the weighted Euclidean distance matrix). By taking the abso-

lute value of the eigenvalues, this equivalent canonical shape can be computed and visualized

(Fig. 10(b)).
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Figure 12: The neighborhood of a scale space extremum with normals and projected normals

The normalized GDM, however, has the advantage for non-rigid object recognition of the

importance of the larger, and therefore less noise-sensitive, distances. Exponential weightings

of the geodesic distance, exp(−g2ij/σ
2), generally provide positive (semi)definite matrices, but

are shown to give worse results for non-rigid object recognition in [11].

6.8.2. MeshSIFT: Scale Invariant Feature Transform for meshes

Similar to the scale invariant feature transform (SIFT) algorithm [25], the meshSIFT

algorithm [61] consists of four major components: keypoint detection, orientation assignment,

the local feature description and feature matching.

The algorithm first identifies salient points on the mesh, by constructing a scale space

that contains smoothed versions of the input mesh. These smoothed versions are obtained

by approximating a Gaussian filter for meshes as subsequent convolutions of the mesh with a

binomial filter. Next, for the detection of salient points in the scale space, the mean curvature

H is computed for each vertex and at each scale in the scale space (Hi). Note that the mesh

itself is smoothed and not the function on the mesh (H). Extrema (minima and maxima)

in scale spaces of differences between subsequent scales (dHi = Hi+1 − Hi) are selected as

local feature locations. Finally, the correct scale, which corresponds with some amounts of

smoothing, is assigned to each scale space extremum, leading to a keypoint with an assigned

scale.

In order to obtain an orientation-invariant descriptor, each keypoint is assigned a canonical

orientation. By expressing the neighborhood size in function of the scale, we ensure a scale

invariant descriptor as well. First, for each vertex within this region, the normal vector is

computed (using [62]) and the geodesic distance to the respective keypoint (using [60]) is

determined. Next, as shown in Fig. 12, all calculated normal vectors are projected onto

the tangent plane to the mesh containing the keypoint. These projected normal vectors are
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Figure 13: Location and order of the regions w.r.t. the canonical orientation, used for the construction of the

feature vector.

gathered in a weighted histogram comprising 360 bins. Each histogram entry is Gaussian

weighted with its geodesic distance to the keypoint. The resulting histogram is smoothed by

convolving it three times with a Gaussian filter for a more accurate and robust localization

of the canonical orientation. Finally, the highest peak in the histogram and every peak above

80% of this highest peak value is selected as a canonical orientation. If more than one canonical

orientation exists for a keypoint, this results in multiple keypoints, each assigned one of the

canonical orientations.

The local descriptor provides for each keypoint (with assigned scale and canonical orien-

tation) a feature vector consisting of concatenated histograms. Each of these histograms is

calculated over a small circular region, as shown in Fig. 13. In each region two histograms

with 8 bins each are computed. The first contains the shape index, which is a combination of

minimum and maximum curvature. The second contains the slant angles, which are defined

as the angle between every projected normal and the canonical orientation. First, each en-

try for both histograms is Gaussian weighted with the geodesic distance to the keypoint and

with the geodesic distance to the center of the region. Next, every histogram is normalized

and clipped, reducing the influence of large histogram values. Finally, the histograms are

concatenated in one feature vector.

In order to find corresponding features, two sets of feature vectors are compared using

the angle as similarity measure. The angles of all candidates are then ranked in ascending

order. If the ratio between the first and the second is smaller than 0.9, a match is accepted;

other matches are rejected. The number of matches is simply used as similarity criterion. The
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similarity matrix is converted into a dissimilarity matrix by subtracting the matrix from the

maximum number of matches.

6.9. PatchBOF: Bag-of Densely-Sampled Local Visual Features, by H. Tabia and M. Daoudi

The method consists of the following four steps (see [63] for more details):

1) Detection and description of 3D patches: Let v1 and v2 be the farthest vertices

(in the geodesic sense) on a connected triangulated surface S. Let f1 and f2 be two scalar

functions defined on each vertex v of the surface S, as follows: f1(v) = d(v, v1) and f2(v) =

d(v, v2) where d(x, y) is the geodesic distance between points x and y on the surface. In a

critical point classification, a local minimum of fi(v) is defined as a vertex vmin such that all

its level-one neighbors have a higher function value. While, a local maximum is a vertex vmax

such that all its level-one neighbors have a lower function value. Let F1 be the set of local

extrema (minima and maxima) of f1 and F2 be the set of local extrema of f2. The set of

feature points F of the triangulated surface S is defined as the closest intersecting points in

the sets F1 and F2. Given a 3D object O, for every feature point Fi ∈ F , a descriptor P (Fi)

is defined for Fi and the geodesic distances {d(Fi, v);∀v ∈ V } with V is the set of all vertices

on the surface are calculated. Consider f the distribution of vertices according to these

distances, the descriptor P (Fi) is defined as a R-dimensional vector: P (Fi) = (p1, . . . , pR)

where pr =
∫ r/R
(r−1)/R f(d)δd. P (Fi) is a R-bin histogram of vertex distribution of geodesic

distances measured from Fi. In order to make the descriptors comparable between different

shapes, the geodesic function d is scaled by the geodesic diameter of the shape.

2) Shape vocabulary construction: The vocabulary used in this method is a way

of constructing a feature vector that relates descriptors in 3D-object query to descriptors

previously seen in the indexing step. The k-means algorithm is chosen for clustering. In

order to determine the parameter k, the k-means method is implemented several times with

different number of desired k, and then the final clustering giving the lowest empirical risk is

selected.

3) Shape histogram computing: Descriptors in the 3D object are assigned to the

nearest neighbor keyshapes in the vocabulary. Then each object is represented using an

histogram whose ith bin contains the number of ith keyshapes in that object.

4) Shape matching: Compare two objects, treating their bag of keyshapes as feature
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Table 1: Retrieval performance of 11 methods evaluated using five standard measures on the whole database.

Authors Methods NN FT ST E DCG
Kawamura FOG 96.8% 81.7% 90.3% 66.0% 94.4%
Lavoue BOW-LSD 95.5% 67.2% 80.3% 57.9% 89.7%
Lian MDS-CM-BOF 99.5% 91.3% 96.9% 71.7% 98.2%

Nguyen BOGH 99.3% 81.1% 88.4% 64.7% 94.9%
Ohkita LSF 99.5% 79.9% 86.3% 63.3% 94.3%
Reuter ShapeDNA 99.2% 91.5% 95.7% 70.5% 97.8%
Sipiran Harris3DGeoMap 56.2% 32.5% 46.6% 32.2% 65.4%
Sipiran HKS 83.7% 40.6% 49.7% 35.3% 73.0%
Smeets MeshSIFT 99.5% 88.4% 96.2% 70.8% 98.0%
Smeets SD-GDM 100.0% 96.2% 98.4% 73.1% 99.4%
Tabia PatchBOF 74.8% 64.2% 83.3% 58.8% 83.7%

Figure 14: Bar charts of the retrieval accuracies of 11 methods evaluated on the whole database using five

standard measures, respectively.

vectors, and thus determine their dissimilarity by calculating L2 difference between two his-

tograms.

7. Results

In this section, we present and compare the results of the above-mentioned 11 methods.

Given the 11 dissimilarity matrices, evaluations for these approaches are carried out not only

on the average performance of the whole database, but also on the result corresponding to each

specific class. We evaluate the retrieval performance by using the five quantitative statistics

(i.e., NN, FT, ST, E, and DCG) and the Precision-recall curve described in Section 4.

Table 1 shows the retrieval accuracies of all 11 algorithms evaluated on the whole database.

We observe that most of these methods perform well in this benchmark. For instance, DCG

values of 7 methods are greater than 0.940 and 8 methods have NN values that are above 0.950.

In Fig. 14, we also provide bar charts to intuitively compare the results of those methods

evaluated using five quantitative measures, respectively. As we can see from Table 1 and
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Figure 15: Precision-recall curves of 11 methods evaluated for the whole database.

Fig. 14, Smeets’s SD-GDM clearly outperforms all other algorithms, while the second and third

best methods are not so obvious. Considering the values of FT, Reuter’s ShapeDNA method

gets better performance than Lian’s MDS-CM-BOF, but if we base the evaluation on NN,

ST, E, and DCG, Lian’s MDS-CM-BOF would take the second place. Similar observations

can be made from Fig. 15, which shows Precision-recall curves of all these algorithms on the

whole database.

Next, we show the Precision-recall curves of these 11 approaches evaluated for selected

12 classes of the database in Fig. 16. We find that none of these methods performs best

for all kinds of objects. For example, Smeets’s SD-GDM obtains the best results for lots

of categories but not ant, bird2, paper, pliers, spider, woman models, etc., while although

Tabia’s PatchBOF performs worst in the retrieval of woman models, it outperforms others

for lamp objects. As shown in Fig. 2, our database contains a set of models which have similar

overall appearances but belong to various categories because they are different in the details of

local regions or/and topological structures. This makes the new benchmark more challenging
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Figure 16: Precision-recall curves of 11 methods evaluated for 12 different classes, respectively.

than other non-rigid 3D databases. However, as we can see from Fig. 16, the challenge can

be well resolved by several algorithms described in this paper. For example, Lian’s MDS-

CM-BOF are able to perfectly discriminate two types of bird models (i.e., bird1 and bird2 ),

which have slightly different skeletons, while Smeets’s SD-GDM obtains considerably high

retrieval accuracies for the bird models as well as the human models (i.e., man and woman)

that possess dissimilar features based on gender. Generally speaking, most of these methods

(e.g., Smeets’s SD-GDM, Lian’s MDS-CM-BOF, Reuter’s ShapeDNA, etc.) work fairly well

for every class in this database, as their precision-recall curves are all in the top right parts

of these figures.

Analyzing the 11 methods compared in this paper, we find that the most popular approach

(5 methods, i.e., FOG, BOW-LSD, MDS-CM-BOF, LSF, and PatchBOF) is to employ the

bag-of-features method to quantize a model’s local features into a word histogram. There

also exist methods (2 runs including Smeets’s MeshSIFT and Sipiran’s HKS) that extract
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Figure 17: Examples of queries (first column) from our database and the corresponding top 8 retrieved models

using Lian’s MDS-CM-BOF method. The retrieved models are ranked from left to right based on the increasing

order of dissimilarity.

salient local features and match them directly to compare 3D shapes. Lian’s MDS-CM-BOF

is basically a visual similarity based method. Mainly because of the utilization of both 3D

Canonical Forms and local features, it becomes insensitive against isometric transformations.

Other 4 methods (including BOGH, ShapeDNA, Harris3DGeoMap, and SD-GDM) utilize

specifically-designed shape descriptors that are based on various isometry-invariant global

properties of 3D models. We also observed that(see [16]), the combination of several different

kinds of methods can result in better retrieval accuracies, and it is possible to further improve

performance by applying some unsupervised Machine Learning algorithms (e.g., Manifold

Ranking).

Fig. 17 shows some queries and their corresponding top 8 retrieved objects from this

database using Lian’s MDS-CM-BOF algorithm. As we can see from this figure, the retrieved

3D models in the top 8 positions of the rank lists all belong to the same categories of their

corresponding queries, which again verifies the effectiveness of the evaluated method in non-

rigid 3D shape retrieval applications. For more results, we refer the reader to our web site [1],

where the new non-rigid 3D shape benchmark and the evaluation code are also freely-available

for academic use.
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8. Conclusion

In this paper, we first proposed an efficient approach to generate a large amount of non-

rigid 3D watertight meshes, based on which a new non-rigid 3D shape benchmark was devel-

oped. We then presented a number of non-rigid 3D shape retrieval algorithms and compared

their performance by carrying out experiments on the new benchmark. Our results demon-

strated that SD-GDM, MDS-CM-BOF, and ShapeDNA are the three most discriminative

methods among the 11 approaches we evaluated, but none of these 11 methods performs best

for all kinds of objects.

This paper is based on the SHREC’11 Track: Shape Retrieval on Non-rigid 3D Watertight

Meshes which is the second attempt in the history of SHREC to specifically focus on the

performance evaluation of non-rigid 3D shape retrieval algorithms. Compared to the first

SHREC non-rigid 3D shape retrieval track [64] (200 models and 3 groups) we organized in

2010, both the size of the database (600 models) and the number of participants (9 groups)

tripled in 2011, which indicates that more and more researchers have become interested in

analyzing non-rigid 3D shapes. We believe that, with so many participants taking part in

this track, methods described in this paper constitute a good representation of the state of

the art in this important research field, and we hope that the new benchmark would further

promote the investigation of non-rigid 3D shape retrieval.

Several directions of future work are listed as follows: 1) Keep updating our benchmark by

using the proposed method to generate more models for the database; 2) Build non-rigid 3D

shape benchmarks for some specific applications (e.g., the retrieval of proteins, faces, animals,

etc.); 3) Select different kinds of approaches carefully and integrate them optimally to develop

more discriminative and efficient non-rigid 3D shape retrieval systems.

Disclaimer

Any mention of commercial products or reference to commercial organizations is for infor-

mation only; it does not imply recommendation or endorsement by NIST nor does it imply

that the products mentioned are necessarily the best available for the purpose.
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[42] G. Lavoué, Bag of words and local spectral descriptor for 3d partial shape retrieval, in:

Proc. Eurographics Workshop on 3D Object Retrieval (3DOR’11), 2011, pp. 41–48.

[43] S. Lloyd, Least squares quantization in PCM, IEEE Trans. Information Theory 28 (2)

(1982) 129–137.
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[59] G. Peyré, L. D. Cohen, Heuristically Driven Front Propagation for Fast Geodesic Ex-

traction, IJVCB 1 (1) (2009) 55–67.
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