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On an asymptotic rule A +B/u for ultimate ruin probabilities

under dependence by mixing

C. Dutang∗†, C. Lefèvre‡, S. Loisel∗

June 12, 2013

The purpose of this paper is to point out that an asymptotic rule A+B/u for the ultimate ruin probability
applies to a wide class of dependent risk processes, in continuous or discrete time. That dependence is
incorporated through a mixing model in the individual claim amount distributions. Several special mixing
distributions are examined in detail and some close-form formulas are derived. Claim tail distributions and
the dependence structure are also investigated.

Keywords: Ultimate ruin probability; Discrete and continuous time; Mixing model; Asymptotics; Tail
distribution; Archimedean copulas.

1 Introduction

Traditionally, the surplus (Ut)t≥0 of an insurance company at time t is represented by Ut = u+ct−
∑Nt
i=1Xi,

where u is the initial surplus, c is the premium rate, (Xi)i≥1 are the successive claim amounts and (Nt)t≥0 is
the claim arrival process (the claim waiting times are denoted by (Ti)i≥1). In the Cramér-Lundberg model,
(Nt)t≥0 is modeled by a Poisson process, (Xi)i≥1 are independent and identically distributed (i.i.d.) random
variables and claim severities (Xi)i≥1 are independent of the claim waiting times (Ti)i≥1. Andersen (1957)
generalized this model by proposing a renewal process for the claim arrival process (Nt)t≥0.

Since then, extensions have been proposed in many directions. Asmussen & Rolski (1991) studied ruin
models with phase-type distributions for both claim severities Xi and claim waiting times Ti. Gerber & Shiu
(1998) unified the analysis of ruin measures in the Cramér-Lundberg model, including the deficit at ruin,
the claim causing the ruin or the ruin probability, by introducing a so-called discounted penalty function.
Gerber & Shiu (2005), Song et al. (2010) and many others extended the Gerber-Shiu approach to a wider
class of risk models. Many variants of the Sparre Andersen model have also been proposed such as for non-
homogeneous claim arrivals (e.g. Lu & Garrido (2005), Albrecher & Asmussen (2006)), reinsurance treaties
(e.g. Centeno (2002), Dimitrova & Kaishev (2010)), multivariate risks (e.g. Picard et al. (2003), Cai & Li
(2005), Collamore (1996)) and dependent risks (e.g. Albrecher & Boxma (2004), Boudreault et al. (2006),
Albrecher & Teugels (2006), Lefèvre & Loisel (2009), Lefèvre & Picard (2011), Ignatov & Kaishev (2012)).

The ultimate ruin probability ψ(u) = P (∃t > 0 : Ut < 0|U0 = u) is a major risk measure and has
received considerable attention in the literature. For the Sparre Andersen model with light-tailed claim
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amounts, ψ(u) ∼ Ce−γu as u→∞, where γ is the positive root of a simple equation involving the moment
generating function of Xi (e.g. Asmussen & Albrecher (2010)). With heavy-tailed claim amounts, the ruin
probability is in the class of Hall of order 1 since ψ(u) ∼ C/uα as u → ∞ (e.g. Embrechts & Veraverbeke
(1982), Klüppelberg & Stadtmüller (1998), Reiss & Thomas (2007)). For models with dependence, Albrecher
& Teugels (2006) investigated the case where the claim amounts and claim waiting times, (Xi, Ti)i≥1, are
correlated. They obtained an exponential decrease for ψ(u) in the case of light-tailed claim sizes. In a recent
paper, Albrecher et al. (2011) discussed the ruin probability when there is dependence by mixing in the claim
amounts (Xi)i≥1 or the claim waiting times (Ti)i≥1; see also Constantinescu et al. (2011). They derived an
asymptotic formula ψ(u) ∼ A+B/u as u→ +∞ for Pareto correlated claims or inter-arrival times.

The present paper considers the same insurance context where the claim amounts (Xi)i≥1 or the claim
waiting times (Ti)i≥1 are dependent through a mixing model. Such a form of dependence can translate
some uncertainty on the model parameters due to incomplete available informations. For instance, due to
reporting or claim settlement delays, it might take a long time for the insurer to realize that claims are more
adverse than expected. While an instantaneously informed insurer could manage parameter uncertainty
with credibility techniques (e.g. Trufin & Loisel (2013)), an insurer suffering from information delays would
in practice undergo high losses due to unfavorable parameter values before being able to react. In some
markets, a solution could be to stop the business. Thus, ψ(u) must then be interpreted as the probability
of being ruined or of stopping the business if no premium adjustment is possible. Now, another possible
situation of mixing is when the model parameters are not univoquely fixed but depend on exogeneous socio-
economic factors. As suggested by a referee, another problem of interest would consist in accounting for the
influence of an exterior environment that modifies the parameters in the course of time.

More precisely, we are concerned with a continuous time model in which the claim amounts have a mixed
exponential distribution, and a discrete time model in which the claim amounts have a mixed zero-modified
geometric distribution. In Section 2, we derive exact formulas for the ultimate ruin probability under several
particular mixing distributions. In Section 3, we establish the approximating rule A+B/u as u→∞, as well
as some asymptotic refinements to this rule. Section 4 is devoted to the analysis of the asymptotic claim tail
distribution P (X > x) as x → ∞. To close, Section 5 briefly discusses the dependence structure involved.
Except otherwise stated, all numerical illustrations are done with the R statistical software (R Core Team
(2012)).

2 A class of mixing risk models

This section presents the class of dependent risk processes under study, in a continuous or discrete time scale.
We first derive the ultimate ruin probability when claim amounts have a mixed exponential distribution or
a mixed zero-modified geometric distribution. We then deduce explicit formulas for several specific mixing
distributions.

2.1 Continuous time framework

Consider the context of the classical Cramér-Lundberg model. The free surplus of an insurance company at
time t is modeled by

Ut = u+ ct−
Nt∑
i=1

Xi,

where u is the initial surplus, c is the premium rate, (Xi)i≥1 are the claim amounts and (Nt)t≥0 is the
Poisson claim arrival process with intensity λ. The Xi’s are independent of the claim arrival process. This
time, however, we assume that the Xi’s are i.i.d. random variables conditionally on a latent random variable
Θ (given Θ = θ, they are distributed as (X|Θ = θ)). The variable Θ can be used to translate, for example,
the uncertainty in the claim amounts or their heterogeneity. Its distribution is assumed to be continuous.
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Ruin occurs as soon as the surplus process becomes negative. Given Θ = θ, the ruin probability is thus
defined as

ψ(u, θ) = P (∃t > 0 : Ut < 0|U0 = u,Θ = θ). (1)

To determine this probability, a standard method consists in looking at the state of the surplus after the
first claim arrival. This leads to an integro-differential equation that can be solved by using Laplace-
Stieltjes transforms (e.g. Asmussen & Albrecher (2010)). For exponentially distributed claims, i.e.when
(X|Θ = θ) ∼ E(θ), one gets from (1) the well-known formula

ψ(u, θ) = min

(
λ

θc
e−u(θ−λ/c), 1

)
,

where min (. . .) < 1 under the net profit condition θ > λ/c ≡ θ0. Integrating over the parameter θ yields for
the (global) ruin probability

ψ(u) = FΘ(θ0) + I(u, θ0), (2)

where FΘ is the distribution function of Θ and

I(u, θ0) =

∫ ∞
θ0

θ0

θ
e−u(θ−θ0)dFΘ(θ). (3)

Note that formula (2) is given as (5) in Albrecher et al. (2011). This expression for ψ(u) can also be
interpreted from a regulatory point of view. Suppose that a regulator supervises a set of insurers who face
exponentially distributed claims, each insurer having its proper parameter. Then, the term independent
of u, FΘ(θ0), may be viewed as the proportion of insurers that will bankrupt irrespectively of their initial
reserves, while the u-dependent term I(u, θ0) corresponds to the proportion of insurers that will bankrupt
with u as initial reserves, the distribution of Θ translating the heterogeneity among insurers.

We now examine two particular distributions for the latent variable Θ that are discussed in Albrecher
et al. (2011). Firstly, we consider for Θ a gamma distribution Ga(α, λ) with density

fΘ(θ) =
λα

Γ(α)
θα−1e−λθ, thus FΘ(θ) =

γ(α, λθ)

Γ(α)
, θ > 0, (4)

where γ(., .) (resp. Γ(.)) denotes the incomplete lower gamma function (resp. the gamma function); e.g. Olver
et al. (2010). The resulting claim amount X has a Pareto type II distribution with parameters α and λ,
whose survival function is

P (X > x) =
1

(1 + x/λ)
α , x ≥ 0.

Making the change of variable y = θ(λ + u), the integral I(u, θ0) in (3) can be expressed in terms of the
incomplete upper gamma function Γ(., .) (see Olver et al. (2010)). From (2) and (3), we then obtain the
following (known) result.

Proposition 2.1. In the continuous time model with (X|Θ = θ) =d E(θ) and Θ =d Ga(α, λ),

ψ(u) =
γ(α, λθ0)

Γ(α)
+
λαθ0

Γ(α)

Γ(α− 1, θ0(λ+ u))

(λ+ u)α−1
eθ0u, (5)

provided α > 1 (i.e. if the density of (X|Θ = θ) is log-concave).

Secondly, consider for Θ a stable 1/2 distribution (also called a Lévy distribution Le(α)) with density

fΘ(θ) =
α

2
√
πθ3

e−α
2/(4θ), thus FΘ(θ) = erfc

(
α

2
√
θ

)
, θ > 0, (6)

where erfc(.) denotes the complementary error function; e.g. Olver et al. (2010). We choose the same
parametrization of the Lévy distribution as in Albrecher et al. (2011). Note that there exists another
parametrization which involves a location parameter δ and a shape parameter γ (e.g. Nolan (2012)). These
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two parametrizations are equivalent by setting γ = α2/2 and δ = 0. The resulting claim distribution is a
Weibull distribution with parameters 1/2 and 1/α2 whose tail distribution is

P (X > x) = e−α
√
x, x ≥ 0.

The computation of I(u, θ) in the Lévy case is more elaborate. Applying the change of variable x = uθ
yields

I(u, θ0) =
θ0α
√
u3

2
√
π

euθ0
∫ ∞
uθ0

1√
x5
e−x−α

2u/(4x)dx. (7)

The latter integral is related to the generalized error function, a particular case of the generalized incomplete
upper gamma function, which is defined as

Γ(a, x, b) =

∫ ∞
x

ta−1e−t−b/tdt;

see e.g. Chaudry & Zubair (2002). So, in formula (7), we deal with Γ(−3/2, θ0u, α
2u/4). As for the usual

incomplete gamma function, the function Γ(., ., .) satisfies a recurrence equation on the parameter a given
by

Γ(a+ 1, x, b) = aΓ(a, x, b) + bΓ(a− 1, x, b) + xae−x−b/x;

see Theorem 2.2 in Chaudry & Zubair (2002). Using this equation, we are able to compute Γ(−3/2, x, b) in
terms of Γ(−1/2, x, b) and Γ(1/2, x, b), which can be both expressed in terms of the standard error function;
see A for details. This leads us to the following (known) expression for the ruin probability:

Proposition 2.2. In the continuous time model with (X|Θ = θ) =d E(θ) and Θ =d Le(α),

ψ(u) = erfc

(
α

2
√
θ0

)
+
θ0
√
u

α
euθ0

[(
1− 1

α
√
u

)
eα
√
uerfc (d+)

+

(
1 +

1

α
√
u

)
e−α

√
uerfc (d−)− 2√

πuθ0

e−uθ0−α
2/(4θ0)

]
,

(8)

where d+ =
√
uθ0 + α/(2

√
θ0) and d− =

√
uθ0 − α/(2

√
θ0).

2.2 Discrete time framework

The compound binomial risk model, introduced by Gerber (1988), is the discrete-time analog of the Cramér-
Lundberg model. Here too, we are going to construct an extended version of this model by using a similar
mixing approach. The insurance portfolio is now examined at times t ∈ N0 = {0, 1, . . .}. The claim
amounts during the successive periods form a sequence of N-valued random variables (Xi)i≥1 that are
i.i.d. conditionally on a latent random variable Θ. In discrete time, the premium per period is generally set
to 1 and corresponds to a prepayment to cover the risk during that period. The surplus of the insurance
company at time t ∈ N is then given by

Ut = u+ t−
t∑
i=1

Xi,

where u ∈ N is the initial surplus. When the claims are independent, this model is named compound binomial
because the number of strictly positive claims has a binomial distribution B(t, 1− q) where q = P (X = 0).
The net profit condition which avoids the a.s. ruin is given here by E(X) < 1.

Since the surplus may become null (with a positive probability), it is necessary to specify if ruin occurs
when the surplus becomes non-positive or strictly negative. For example, in Gerber (1988), ruin occurs at
the first time when the surplus reaches or goes below 0, so that

ψG(u) = P (∃t ∈ N : Ut ≤ 0|U0 = u),
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while in Shiu (1989), ruin occurs at the first time when the surplus becomes negative, so that

ψS(u) = P (∃t ∈ N : Ut < 0|U0 = u).

Graphically, ψG(u) (resp. ψS(u)) is the probability that the surplus crosses the level 0 (resp. −1 as the claim
amounts are N0-valued). Note that ψG(u) = ψS(u − 1). In the sequel, we work with the ruin probability
ψS(u) ≡ ψ(u).

Formulas for ψ(u) are available in the general case and for special claim amount distributions (see
e.g. Willmot (1993), Picard & Lefevre (2003), Lefèvre & Loisel (2008), Li et al. (2009)). The case where
the claims are geometrically distributed is discussed in detail by Sundt & dos Reis (2007). In particular,
assuming a geometric decreasing tail for the ruin probability, they proved (Theorem 1) that the claim amount
distribution is necessarily of geometric type. It is also shown that for claim amounts with a zero-modified
geometric distribution Ge(q, ρ) (see B), then

ψ(u) = min

(
1− q
ρ

(
1− ρ
q

)u+1

, 1

)
, (9)

where min (. . .) < 1 under the net profit condition ρ > 1− q.

The formula (9) can be easily extended by using again a mixing approach. Specifically, let us now suppose
that (X|Θ = θ) ∼ Ge(q, e−θ). Let ψ(u, θ) be the corresponding ruin probability. Then, the (global) ruin
probability is given by

ψ(u) = F̄Θ(θ0) + I(u, θ0), (10)

where θ0 = − log(1− q), F̄Θ ≡ 1− FΘ is the tail distribution of Θ and

I(u, θ0) =

∫ θ0

0

1− q
e−θ

(
1− e−θ

q

)u+1

dFΘ(θ). (11)

Compared to the continuous setting, the integral in (11) is taken over the interval [0, θ0] rather than [θ0,∞[
in (3). This is a consequence of the parametrizations.

Remark 2.3. The usual geometric distribution Ge(ρ) is not convenient because the net profit condition is
ρ > 1/2, which is restrictive on the parameter ρ. In that case, however, one could consider, for example, a
geometric distribution (X|Θ = θ) ∼ Ge(1/(1 + θ)), which leads to

ψ(u) = F̄Θ(1) +

∫ 1

0

θu+2dFΘ(θ).

Choosing for Θ a uniform distribution U(0, p) with p ≤ 1 yields the surprisingly simple result ψ(u) =
pu+2/(u+ 3). This formula is also interesting by showing that the decrease of ψ(u) is geometric when p < 1
and polynomial when p = 1.

Let us now derive close-form ruin probabilities for three particular distributions of Θ. Firstly, we consider
an exponential distribution Θ ∼ E(λ) of density given in (4) with α = 1. We will use the following integral:

I1(a, b, x) =

∫ x

0

(
e−θ
)a (

1− e−θ
)b
dθ =

∫ 1

e−x
pa−1(1− p)bdp = β̄(a, b+ 1, e−x), x > 0,

for a > 0, b > −1, where β̄(a, b+ 1, e−x) = β(a, b+ 1, 1− e−x) is a complementary incomplete beta function
(e.g. Chaudry & Zubair (2002)). Note that β̄(a, b+ 1, e−x)→ β(a, b+ 1) as x→∞. Writing I1(λ+ 1, k,∞),
we see that the probability mass function of X is given by

P (X = k) = qδk0 + (1− δk0)λ(1− q)β(λ+ 1, k), k ∈ N0, (12)

where δij denotes the Kronecker delta. With the presence of a beta function one recognizes the zero-modified
Yule-Simon distribution (e.g. Simon (1955)) which is relevant in the study of word frequencies. Moreover,
we see that I(u, θ0) = (1− q)/qu+1 × I1(λ− 1, u+ 1, θ0). Thus, (10) and (11) yield the following result.
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Proposition 2.4. In the discrete time model with (X|Θ = θ) =d Ge(q, e−θ) and Θ =d E(λ),

ψ(u) = (1− q)λ +
λ(1− q)
qu+1

β̄(λ− 1, u+ 2, 1− q), (13)

provided λ > 1.

Secondly, consider for Θ a gamma distribution Ga(α, λ) of density given in (4). We here use the integral

I2(a, n, b, x) =

∫ x

0

(
e−θ
)a (

1− e−θ
)n
θbdθ =

n∑
j=0

(
n

j

)
(−1)n−j

∫ x

0

e−θ(a+n−j)θbdθ, x > 0,

for a > 0, b > −1, n ∈ N0, which can be rewritten as

I2(a, n, b, x) =

n∑
j=0

(
n

j

)
(−1)n−j

∫ (a+n−j)x

0

yb

(a+ n− j)b+1
e−ydy,

and substituting n− j for j,

I2(a, n, b, x) =

n∑
j=0

(
n

j

)
(−1)j

γ(b+ 1, x(a+ j))

(a+ j)b+1
,

where γ(., .) is the incomplete lower gamma function (see (4)). As x→∞, only the term γ(b+ 1, x̃) changes
and tends to Γ(b+ 1). Writing I2(λ, k − 1, α− 1,∞), we see that the probability mass function of X is

P (X = k) = qδk0 + (1− δk0)(1− q)
k−1∑
j=0

(
k − 1

j

)
(−1)jλα

(λ+ j)α
, k ∈ N0. (14)

From (10), (11) and using I2(λ− 1, u+ 1, α− 1, θ0), we deduce the formula below.

Proposition 2.5. In the discrete time model with (X|Θ = θ) =d Ge(q, e−θ) and Θ =d Ga(α, λ),

ψ(u) =
Γ(α, λθ0)

Γ(α)
+

1− q
qu+1

u+1∑
j=0

(
u+ 1

j

)
(−1)j

γ(α, θ0(λ+ j − 1))

Γ(α)

(
λ

λ+ j − 1

)α
, (15)

where θ0 = − log(1− q), provided λ > 1.

Finally, consider for Θ a Lévy distributed Le(α) of density given in (6). We use the integral

I3(a, n, b, x) =

∫ x

0

(
e−θ
)a (

1− e−θ
)n
θ−3/2e−b/θdθ = 2

n∑
j=0

(
n

j

)
(−1)n−j

∫ ∞
1/
√
x

e−(a+n−j)/y2e−by
2

dy, x > 0,

for a > 0, b > 0, n ∈ N0, after doing a change of variable 1/θ = y2. This integral is linked to the generalized
incomplete upper gamma function (e.g. Chaudry & Zubair (2002)). From C, we get

I3(a, n, b, x) =

n∑
j=0

(
n

j

)
(−1)j

√
π

2
√
b

[
e2
√
b(a+j)erfc

(√
b√
x

+
√
a+ j

√
x

)

+e−2
√
b(a+j)erfc

(√
b√
x
−
√
a+ j

√
x

)]
.

As x→∞,

I3(a, n, b,∞) =

n∑
j=0

(
n

j

)
(−1)j

√
π√
b
e−2
√
b
√
a+j .
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Writing I3(0, k − 1, α2/4,∞), we obtain for the probability mass function of X

P (X = k) = (1− q)
k−1∑
j=0

(
k − 1

j

)
(−1)je−α

√
j , k ∈ N0. (16)

The ruin probability is computed using I3(−1, u+ 1, α2/4, θ0).

Proposition 2.6. In the discrete time model with (X|Θ = θ) =d Ge(q, e−θ) and Θ =d Le(α),

ψ(u) = 1− erfc

(
α

2
√
θ0

)
+

1− q
4qu+1

u+1∑
j=0

(
u+ 1

j

)
(−1)j

[
eα
√
j−1erfc

(
α

2
√
θ0

+
√
j − 1

√
θ0

)

+e−α
√
j−1erfc

(
α

2
√
θ0

−
√
j − 1

√
θ0

)]
,

(17)

where
√
−1 = i and θ0 = − log(1− q).

One can check that in (17), the term for j = 0 is a real number. Note that the results in the discrete
time model are more complex than in the continuous time model.

3 Asymptotics: the ultimate ruin probabilities

This Section is the core of the paper. Our purpose is to establish an asymptotic rule A + B/u, as u → ∞,
for the ultimate ruin probability in the mixing risk models of Section 2. Furthermore, we will obtain an
expansion of this probability as a power series of 1/u.

For the asymptotic analysis, we use the standard Landau notation O (), o() and ∼ (e.g. Jones (1997)).
Integration by part is a standard tool in this field (see e.g. Olver et al. (2010), Gordon (1994)); it is extensively
applied below. A comprehensive and updated list of known asymptotics for special functions (such as the
Stirling formula for the gamma function) is also provided by Olver et al. (2010).

3.1 Continuous time framework

We begin by presenting the main result for the continuous time risk model of Section 2.

Theorem 3.1. Consider the continuous time model with (X|Θ = θ) ∼ E(θ). Let θ0 = λ/c.
(i) If the maximum of the function g(θ) ≡ FΘ(θ)(1/θ2 + u/θ), θ ≥ θ0, is attained at θ = θ0, then an upper
bound for ψ(u) with u > 0 is

ψ(u) ≤ FΘ(θ0) +
1

u

FΘ(θ0)

θ0
. (18)

(ii) If Θ has a continuous distribution of density fΘ such that for some integer k ≥ 1, fΘ is Ck-1 a.e. on

[θ0,∞) and f
(k)
Θ is Lebesgue integrable on [θ0,∞), then

ψ(u) = FΘ(θ0) +

k−1∑
i=0

h(i)(0)

ui+1
+ o

(
1

uk

)
, (19)

where h(x) ≡ θ0fΘ(x+ θ0)/(x+ θ0) so that

h(i)(0) =

i∑
j=0

(−1)j
i!

(i− j)!θj0
f

(i−j)
Θ (θ0).
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Proof. (i) By (2) and (3),

ψ(u) = FΘ(θ0) +

∫ ∞
θ0

ψu(θ)dFΘ(θ), with ψu(θ) =
θ0

θ
e−u(θ−θ0),

where θ0 = λ/c. Both ψu and FΘ are bounded functions on [θ0,∞). They are also of bounded variation since
monotone. In addition, ψu is continuous. So, FΘ is Stieltjes integrable with respect to ψu (see e.g. Theorem
12.1 of Hildebrandt (1971)). We may then apply integration by part (see e.g. Theorem 12.14 of Gordon
(1994)), which gives

ψ(u) = FΘ(θ0) + lim
b→∞

ψu(b)FΘ(b)− ψu(θ0)FΘ(θ0)−
∫ ∞
θ0

FΘ(θ)dψu(θ).

As ψu is continuously differentiable, the Stieltjes integral above reduces to a Riemann integral. One has

ψ′u(θ) = −θ0(1/θ2 + u/θ)e−u(θ−θ0),

ψu(θ0) = 1 and ψu(b)FΘ(b)→ 0 as b→∞. Therefore, we obtain

ψ(u) = θ0

∫ +∞

θ0

FΘ(θ)(1/θ2 + u/θ)e−u(θ−θ0)dθ ≤ θ0 max
θ≥θ0

{
FΘ(θ)(1/θ2 + u/θ)

}∫ ∞
θ0

e−u(θ−θ0)dθ,

yielding the upper bound (18).

(ii) Let I(u, θ0) =
∫∞
θ0
ψu(θ)dFΘ(θ). Suppose that Θ has a continuous distribution wiith density fθ.

Making the change of variable t = θ − θ0 ≥ 0 gives

I(u, θ0) =

∫ ∞
0

h(t)e−utdt,

where
h(t) = θ0fΘ(t+ θ0)/(t+ θ0),

i.e. I(u, θ0) is the Laplace transform of h. The minimum condition for integration by part is the absolute
continuity of h (see e.g. Theorem 12.5 of Gordon (1994)). By the fundamental theorem of calculus, absolutely
continuity of h on an interval [0, b] is equivalent to h is a.e. differentiable on [0, b] with h′ Lebesgue integrable.
Since t 7→ θ0/(t+θ0) is C∞ on [0, b], h is absolutely continuous on [0, b] if and only if so is fΘ. Now, consider
the assumption made on fΘ in the statement above. For k = 1, fΘ(t+ θ0) is a.e. differentiable on R+ with
f ′Θ Lebesgue integrable, hence h is absolutely continuous. Applying integration by part, we then have∫ b

0

h(t)e−utdt =
h(0)

u
− h(b)e−bu

u
+

1

u

∫ b

0

h′(t)e−utdt,

so that letting b→∞,

I(u, θ0) =
h(0)

u
+

1

u

∫ +∞

0

h′(t)e−utdt.

For a larger k ≥ 1, the assumption that fΘ is Ck − 1 a.e. on [θ0,∞) with f
(k)
Θ Lebesgue integrable implies

that h(i) is absolutely continuous for all 1 ≤ i ≤ k. Applying k times the integration by part theorem, we
get

I(u, θ0) =

k−1∑
i=0

h(i)(0)

ui+1
+

1

uk

∫ ∞
0

h(k)(t)e−utdt.

Moreover, by a property of the Laplace transform (see e.g. Chapter 19 of Jeffrey & Dai (2008)),∫ ∞
0

h(k)(t)e−utdt→ 0 as u→∞,

and using the Leibnitz formula,

h(i)(t) =

i∑
j=0

(
i

j

)
(−1)jj!θ0

(θ0 + t)j+1
f

(i−j)
Θ (t+ θ0).

Therefore, we deduce for ψ(u) the approximating expansion (19).
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Remark 3.2. For k = 1, formula (19) gives the asymptotic rule A+B/u:

ψ(u) = FΘ(θ0) +
fΘ(θ0)

u
+ o

(
1

u

)
,

when fΘ is C0 a.e. on [θ0,∞) with f ′Θ Lebesgue integrable. For k =∞,

ψ(u) ∼ FΘ(θ0) +

∞∑
i=0

h(i)(0)

ui+1
as u→∞,

when fΘ is C∞ a.e. on [θ0,∞). Note that this is related to an asymptotic result (2.3.2) of Olver et al. (2010)
since I(u, θ0) is a Laplace transform.

Remark 3.3. A sufficient condition for fΘ to be a.e. differentiable is local Lipschitz continuity. This is a
consequence of the Rademacher theorem (see e.g. Clarke & Bessis (1999)).

Remark 3.4. A similar approach is applicable when mixing the waiting times (T1, T2, . . . ) instead of the
claim amounts. Following section 3 of Albrecher et al. (2011), we get now

ψ(u) = F̄Λ(λ0) +

∫ λ0

0

ψu(λ)dFΛ(λ), with ψu(λ) =
λ

λ0
e−u/θ(1−λ/λ0),

where λ0 = θc. A result similar to Theorem 3.1 can be derived here too. In particular, a first order asymptotic
expansion gives

ψ(u) = F̄Λ(λ0) +
fΛ(λ0)

cu
+ o

(
1

u

)
.

Let us go back to the two special cases studied in Subsection 2.1. From formula (19) with k = 2 (for
instance), we deduce the following approximations for ψ(u).

Proposition 3.5. In the continuous time model with (X|Θ = θ) ∼ E(θ) and Θ ∼ Ga(α, λ),

ψ(u) =
γ(α, λθ0)

Γ(α)
+
λαθα−1

0

Γ(α)
e−λθ0

(
1

u
+

1

u2

(
α− 1

θ0
− λ
)

+ o

(
1

u2

))
. (20)

Remark 3.6. By using known asymptotics to approximate the gamma function in (5) (see e.g. Olver et al.
(2010)), one gets

ψ(u) =
γ(α, θ0λ)

Γ(α)
+
λαθα−1

0

Γ(α)
e−λθ0

(
1

λ+ u
+

α− 1

(λ+ u)2θ0
+ o

(
1

u2

))
,

which is similar to formula (20), the main difference being 1/(λ + u) substituted for 1/u (both are of the
same order for large u).

Proposition 3.7. In the continuous time model with (X|Θ = θ) ∼ E(θ) and Θ ∼ Le(α),

ψ(u) = erfc

(
α

2
√
θ0

)
+

α

2
√
πθ3

0

e−α
2/4θ0

(
1

u
+

1

u2

(
α2

4
√
θ0

− 3

2θ0

)
+ o

(
1

u2

))
. (21)

Remark 3.8. Using in (8) known asymptotics for the complementarity error function (Olver et al. (2010))
leads to an explosive term eα

√
u. So, a term-by-term asymptotic is not appropriate and a uniform expansion

of the function Γ(−3/2, x, b) is needed when both x and b are large.

In Figures 1a and 1b, we compare the two approximations (20) and (21) with their close-form counterparts
(5) and (8) as well as their empirical estimates. We observe that all close-form formulas diverge for u ≥
500 because of roundoff errors. Their second-order approximations, however, remain numerically stable.
Furthermore, empirical estimates for a 10,000 sample size oscillate around the asymptotics even with u
moderately large, for both cases. This illustrates the accuracy of the asymptotics derived in Theorem 3.1.
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Figure 1: Exact and approximated ruin probabilities, with empirical estimates.

3.2 Discrete time framework

We now discuss the discrete time risk model of Section 2.

Theorem 3.9. Consider the discrete time model with (X|Θ = θ) =d .Ge(q, θ). Let θ0 = − log(1− q).
(i) A lower bound for ψ(u) with u ≥ 0 is

ψ(u) ≥ F̄Θ(θ0)(1− q)
(

1 +
q

u+ 2

)
. (22)

(ii) If Θ has a continuous distribution with density fΘ such that for some integer k ≥ 1, fΘ is Ck-1 a.e. on

[0, θ0] and f
(k)
Θ is bounded on [0, θ0], then

ψ(u) = F̄Θ(θ0) + q(1− q)
k−1∑
i=0

(−1)ih̃(i)(1)

(u+ 2) . . . (u+ 2 + i)
+ o

(
1

(u+ 2) . . . (u+ 2 + k − 1)

)
, (23)

where h̃(x) ≡ fΘ(− log(1− xq))/(1− xq)2.

Proof. (i) By (10) and (11),

ψ(u) = F̄Θ(θ0) +

∫ θ0

0

ψu(θ)dFΘ(θ), with ψu(θ) =
1− q
e−θ

(
1− e−θ

q

)u+1

,

where θ0 = − log(1− q). Let us rewrite the Stieltjes integral by substituting −dF̄Θ(θ) for dFΘ(θ). Both ψu
and F̄Θ are of bounded variation on [0, θ0], and ψu is continuous. So, F̄Θ is Stieltjes integrable with respect
to ψu. An integration by part (see e.g. Theorem 12.14 of Gordon (1994)) then yields

ψ(u) = F̄Θ(θ0)− ψu(θ0)F̄Θ(θ0) + ψu(0)F̄Θ(0) +

∫ θ0

0

F̄Θ(θ)dψu(θ) =

∫ θ0

0

F̄Θ(θ)dψu(θ),

using ψu(θ0) = 1 and ψu(0) = 0. As ψu is continuously differentiable, the Stieltjes integral above reduces to
a Riemann integral. By inserting the expression derived for ψ′u(θ), we get

ψ(u) =

∫ θ0

0

F̄Θ(θ)(1− q)eθ
(

1− e−θ

q

)u+1

dθ +

∫ θ0

0

F̄Θ(θ)
1− q
q

(u+ 1)

(
1− e−θ

q

)u
dθ.
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Let J(u) =
∫ θ0

0
[(1− e−θ)/q]udθ. We then see that

ψ(u) ≥ F̄Θ(θ0)(1− q)J(u+ 1) + F̄Θ(θ0)(u+ 1)
1− q
q

J(u).

Now, making the change of variable qx = 1− e−t in J(u) shows that

J(u) = q

∫ 1

0

1

1− xq
xudx ≥ q

u+ 1
.

Therefore, we deduce for ψ(u) the lower bound stated in (22).

(ii) Let I(u, θ0) =
∫ θ0

0
ψu(θ)dFΘ(θ). The mixing variable Θ has a continuous distribution with density

fΘ. By the change of variable x = (1− e−θ)/q,

I(u, θ0) = q(1− q)
∫ 1

0

h(x)

(1− xq)2
xu+1dx,

where
h(x) = fΘ(g(x)) with g(x) = − log(1− xq).

The minimum condition for an integration by part is the absolutely continuity of h(x)/(1 − xq)2. As
x 7→ 1/(1 − xq)2 is C∞, one must show that h = fΘ ◦ g is absolutely continuous. Note that this is not
necessarily true if both fΘ and g are absolutely continuous. In fact, if g is absolutely continuous, then h is
absolutely continuous if and only if fΘ is locally Lipschitz (see e.g. Merentes (1991)). By the Rademacher
theorem, fΘ is locally Lipschitz, so h is absolutely continuous. For k = 1, integration by part gives

I(u, θ0) = q(1− q)
{
h̃(1)−

∫ 1

0

h̃
′
(x)

xu+2

u+ 2
dx

}
,

where h̃(x) is defined as in (23). For k ≥ 1, the assumptions made on fΘ in the statement (ii) imply that
h(i) is absolutely continuous for all 1 ≤ i ≤ k. Applying k times integration by part, we get

I(u, θ0) = q(1− q)

{
k−1∑
i=0

(−1)ih̃(i)(1)

(u+ 2) . . . (u+ 2 + i)
+ (−1)k

∫ 1

0

h̃(k)(x)
xu+1+k

(u+ 2) . . . (u+ 2 + k − 1)
dx

}
.

Note that computing h(i) is not very easy (see e.g. Huang et al. (2006)). As f
(i)
Θ , 1 ≤ i ≤ k, are bounded on

[0, θ0], one can check that h̃(k) is bounded on [0, 1], hence the announced result (23).

Remark 3.10. For k = 1, formula (23) gives the asymptotic rule A+B/u:

ψ(u) = F̄Θ(θ0) +
1

u+ 2

qfΘ(θ0)

1− q
+ o

(
1

u+ 2

)
,

when fΘ is C0 a.e. on [0, θ0] with f ′Θ bounded. For k =∞,

ψ(u) ∼ F̄Θ(θ0) + q(1− q)
+∞∑
i=0

(−1)ih̃(i)(1)

(u+ 2) . . . (u+ 2 + i)
as u→∞,

when fΘ is C∞ a.e. on [0, θ0].

Let us examine below the three special cases presented in Subsection 2.2. From (23) with k = 1 and
using the corresponding expressions of h̃(x), we deduce for ψ(u) the approximations given below. Numerical
illustrations as in Figure 1 can be obtained here too.

Proposition 3.11. In the discrete time model with (X|Θ = θ) =d .Ge(q, e−θ) and Θ =d .E(λ),

ψ(u) = (1− q)λ +
1

u+ 2
λq(1− q)λ−1 + o

(
1

u+ 2

)
. (24)
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Proposition 3.12. In the discrete time model with (X|Θ = θ) =d .Ge(q, e−θ) and Θ =d .Ga(α, λ),

ψ(u) =
Γ(α, λθ0)

Γ(α)
+

1

u+ 2

λα

Γ(α)
q(1− q)λ−1θα−1

0 + o

(
1

u+ 2

)
. (25)

Proposition 3.13. In the discrete time model with (X|Θ = θ) =d .Ge(q, e−θ) and Θ =d .Le(α),

ψ(u) = 1− erfc

(
α

2
√
θ0

)
+

1

u+ 2

qαθ
−3/2
0

2(1− q)
√
π
e−α

2/4θ0 + o

(
1

u+ 2

)
. (26)

Remark 3.14. One could try to use known asymptotics of the incomplete beta function (see Olver et al.
(2010)) to derive such approximations. In the exponential case, inserting in (13) an asympotic for β̄(λ −
1, u+ 2, 1− q) provides the same formula (24). In the gamma and Lévy cases, proceeding similarly in (15)
and (17) does not seem to lead easily to the asymptotics (25) and (26).

4 Asymptotics: the claim tail distributions

In this Section, we investigate the asymptotic behavior of the claim tail distribution, i.e. P (X > x) as
x → ∞, for the mixing models of Section 2. The analysis of the discrete time model is rather complex.
For this study, we will follow a method based on complex analysis and contour integrals developed e.g. in
Flajolet & Sedgewick (1995).

4.1 Continuous case

For an exponential conditional claim distribution,

P (X > x) =

∫ ∞
0

e−θxdFΘ(θ),

i.e. the Laplace transform of the random variable Θ. Applying the integration by part directly on this
Stieltjes integral does not lead to interesting results. Let us examine the case where Θ has a continuous
distribution.

Proposition 4.1. Consider the continuous time model where (X|Θ = θ) =d E(θ) and Θ has a density fΘ.
(i) If fΘ is a.e. differentiable on R+ and f ′Θ is Lebesgue-integrable, then

P (X > x) =
fΘ(0)

x
+ o

(
1

x

)
. (27)

(ii) If fΘ is C∞ in the neighborhood of the origin, then

P (X > x) ∼
x→∞

∞∑
k=0

f
(k)
Θ (0)

xk+1
. (28)

(iii) If fΘ can be expanded in the neighborhood of the origin as

fΘ(θ) ∼
t→0

∞∑
k=0

fkθ
(k+η)/µ−1,

for some η, µ > 0, then

P (X > x) ∼
x→∞

∞∑
k=0

Γ

(
k + η

µ

)
fk

x(k+η)/µ
. (29)
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Proof. For (i), fΘ satisfies the minimum condition for an integration by parts, which gives

P (X > x) =

[
fΘ(θ)

e−θx

−x

]∞
0

+
1

x

∫ ∞
0

e−θxf ′Θ(θ)dθ,

i.e. (27). Formulas (28) and (29) directly follow from Propertiy 2.3(i) and the Watson lemma 2.3(ii) in Olver
et al. (2010), respectively.

Remark 4.2. Parts (i) and (ii) of this proposition may be not applicable when fΘ is not defined or is zero
at the origin. This justifies the part (iii). The important role played by the behavior of fΘ at the origin can
be explained through the Laplace method (see e.g. Olver et al. (2010)).

Let us consider the two special cases discussed previously. If Θ =d Ga(α, λ), then fΘ is given by (4) and
can be expanded as

fΘ(θ) =
λα

Γ(α)

∞∑
k=0

(−λ)k

k!
θα+k−1,

so that by (29),

P (X > x) ∼
x→∞

∞∑
k=0

(−1)k
Γ (k + α)

Γ(α)k!

(
λ

x

)k+α

.

This (asymptotic) decrease of the survival function is consistent with the fact that X is known to be Pareto
type II distributed (see before, just below (4)).

When Θ =d Le(α), fΘ is given by (6). Although this function is not defined at zero, the density converges
to zero since

fΘ(1/t) =
αt3/2

2
√
π
e−α

2t/4 −→
t→∞

0.

However, it is not possible to get an expansion of fΘ(1/t) using again an expansion of the exponential
function. Therefore, Theorem 4.1 is not useful in this case. Remember, however, that the survival function
is known (see before, just below (6)).

4.2 Discrete case

For a zero-modified geometric claim distribution,

P (X > x) = (1− q)
∫ ∞

0

(
1− e−θ

)x
dFΘ(θ).

Here too, we meet difficulties to work with this integral. Suppose that Θ has a density fΘ. A change of
variable y = − log(1 − e−θ) is not relevant because that logarithmic function is unbounded near 0. Let us
try y = 1− e−θ, which gives

P (X > x) = (1− q)
∫ 1

0

fΘ(− log(1− y))

1− y
yxdy.

An integration by part requires the existence of the limit

lim
y→1

fΘ(− log(1− y))

1− y
= lim
t→∞

fΘ(t)et.

This condition is strong and will be satisfied only for light-tailed distributions with certain parameter values.
For example, when Θ =d E(λ), it imposes that λ > 1.
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Another way to tackle the asymptotic analysis is to write that, for x ∈ N0,

P (X > x) =

x∑
k=0

(
x

k

)
(1− q)(−1)kLΘ(k), (30)

where LΘ is the Laplace transform of Θ at point k. This binomial sum having alternating signs, it is not
easy to estimate its behavior for large values of x. In fact, (30) falls within the wider framework of binomial
alternating sums defined by

Sn(φ) =

n∑
k=n0

(
n

k

)
(−1)kφ(k), (31)

where 0 ≤ n0 ≤ n, φ is a real function and n is large.

4.2.1 Through complex analysis

To deal with such sums, a standard method consists in using complex analysis and contour integrals. Flajolet
& Sedgewick (1995) provide a comprehensive treatment of the topic. A brief presentation of their analysis
is given below. Consider the complex extension of the function φ introduced in (31). Their Lemma 1 gives
the Rice integral representation of Sn(φ) for an analytic function φ:

Sn(φ) ≡
n∑

k=n0

(
n

k

)
(−1)kφ(k) =

(−1)n

2πi

∮
γ

φ(s)
n!

s(s− 1) . . . (s− n)
ds, (32)

where φ is analytic in a domain that contains [n0,∞) and γ is a closed curve in the domain that encircles
[n0, n] but does not include any of the integers 0, . . . , n0−1. Let f denote the integrand in the r.h.s. of (32).
By the residue theorem (see e.g.Chapter 10 of Bak & Newman (2010)), if f is analytic except at a countable
number of isolated singularitie inside γ, then the contour integral equals the sum of the residues of f at the
singularities.

The goal is to derive some asymptotics as n → ∞. So, the domain γ is extended to the positive real
half-plane {z : Re(z) > 0}. Moreover, it is not known wether |f(z)| explodes or not as Re(z) → ∞. Their
Theorem 1 deals with the case where φ is a rational function.

Theorem (Flajolet and Sedgewick). Let φ be a rational function analytic on [n0,∞). Then, except for a
finite number of values of n,

n∑
k=n0

(
n

k

)
(−1)kφ(k) = −(−1)n

∑
s

Res

(
φ(s)

n!

s(s− 1) . . . (s− n)

)
,

where the sum is extended to all poles s of f not on [n0,∞).

This is proved by choosing for γ a large circle centered at 0. One can see that the integral converges to 0
for n > r where r is the degree of φ, thus its value is exactly 0. Applying the residue theorem, one gets that
the integral also equals Sn(φ) plus the sum of the residues of (32) at the other poles of f , hence the result.

Their Theorem 2 is concerned with the case where φ is a meromorphic function (i.e. analytic except on a
set of isolated points) that is sufficiently well conditioned on large contours or in half-planes. An analogous
result is derived by adapting slightly the previous approach.

Finally, the authors examine the case where φ has algebraic or logarithmic singularities. The estimation
here is made by means of contours of Hankel type. Attention is mainly paid to the study of Sn(φ) when
φ = s−λ for nonintegral λ. In particular, it is shown in their Theorem 3 that

Sn(
√
s) ∼ − 1√

π log n
+

γe

2
√
π(log n)3

, (33)
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where γe is the Euler-Mascheroni constant. Table 1 then provides the correspondences between the nature
of singularities and the asymptotic behavior of Sn.

Singularities at s0 /∈ N Asymptotics for Sn

simple/multiple pole: (s− s0)−r Γ(−s0)ns0 (logn)r−1

(r−1)!

algebraic singularity: (s− s0)λ Γ(−s0)ns0 (logn)−λ−1

Γ(−λ)

logarithmic singularity: (s− s0)λ(log(s− s0))r Γ(−s0)ns0 (logn)−λ−1

Γ(−λ) (log log n)r

Table 1: (Flajolet and Sedgewick). Correspondences between singularities and asymptotics.

4.2.2 Application to claim tails

To begin with, suppose that Θ =d E(λ). This case is simple because P (X > x) = (1 − q)β(λ, x + 1) for all
x. So, using asymptotics for the beta function as x is large (see e.g. Olver et al. (2010)), we get

P (X > x) ∼
x→∞

(1− q)Γ(λ+ 1)

(x+ 1)λ
, (34)

which decreases like a discrete Pareto (Zipf) distribution. This tail behavior of a Yule-Simon distribution is
reported in Simon (1955).

Consider now the case where Θ =d Ga(α, λ). We here use the binomial alternating representation (31)
in which φ(k) = (1− q)LΘ(k) = (1− q)[λ/(k + λ)]α. From Table 1, we then obtain

P (X > x) ∼
x→∞

(1− q)λ
αΓ(λ)

Γ(α)

(log x)α−1

xλ
, (35)

which decreases slightly slower than (34) due to the logarithm in the numerator.

When Θ =d Le(α), we go back to (31) in which φ(k) = (1 − q)LΘ(k) = (1 − q)e−α
√
k. One may make

the approximaton φ(k) ∼ 1− α
√
k + o(k). Moreover, the constant 1 has no influence in the computation of

the integral contour. Using (33), we thus get

P (X > x) ∼
x→∞

(1− q)α√
π log x

− (1− q)αγe
2
√
π(log x)3

, (36)

which decreases extremely slowly. Such a tail behaviour is heavier than for a Pareto distribution. In the
continuous case, a similar behaviour is obtained with the log-Cauchy distribution, for example.

In Figure 2, we compare the three approximations (34), (35) and (36) with the exact tail distributions
obtained from (12), (14) and (16). Formula (12) is easily tractable since the incomplete beta function is
available in most softwares, e.g. via the pbeta function in R. For (14) and (16), we have to evaluate two
alternating binomial sums. These computations are particularly unstable because the central combinatorial
factors tend to infinity for large n.

In modern computers, a real number is stored in eight bytes (i.e. 64 bits), for which only 53 bits are
reserved for the precision (see e.g.http://en.wikipedia.org/wiki/Double-precision floating-point format). In our
numerical experiments, the sums Sn(φ) become unstable for n ≥ 48 with the standard double precision.
To compute the binomial sums for large n, we have no other way than to use high precision floating-point
arithmetic libraries such as the GMP library of Grandlund Torbjoern & the GMP Devel. Team (2011), or
the MPFR library of Fousse et al. (2011) (which allows us to work with a high number of bits, say 500 or
1000). Using the Rmpfr package of Maechler (2012), we are then able to assess the claim survival function.
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Figures 2a, 2b and 2c correspond to the cases where Θ is exponential, gamma and Lévy distributed,
respectively. In the first two figures, the tail distribution shows a Pareto-type behavior, as we observe
a straight line for the log-scale graphs. The third figure exhibits a heavier tail behavior. Note that the
asymptotic is not as reliable as for other cases. The heavier the tail distribution of Θ, the larger the
error. These numerical experiments also illustrate the importance of high precision arithmetic libraries for
numerical issues in actuarial problems.
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Figure 2: Exact and asymptotic claim survival functions.

5 On the dependence structure involved

To close, we briefly discuss the dependence structure in the mixing risk models of Section 2. For that, we
will use the well-known concept of copula (see e.g.Joe (1997), Nelsen (2006)).

For the continuous model, we recall the following property derived by Albrecher et al. (2011).

Theorem (Albrecher et al.). In the continuous time model with (X|Θ = θ) =d E(θ), the dependence structure
corrsponds to an Archimedean survival copula with generator φ = L−1

Θ , the inverse Laplace transform of Θ.

Let us now consider the discrete model, in the bivariate case for clarity. By the Sklar theorem, a copula
C of a random vector is not unique outside the support of the vector. This unidentifiability is a major cause
of difficulty in the discrete case: if (X1, X2) are N2

0-valued, C is unique on N2
0 but not on R2 \ N2

0.

A comprehensive review about copulas for discrete distributions is provided by Genest & Nešlehová
(2007). Let (X1, X2) be a random vector with joint distribution function F (x1, x2) and marginal d.f. F1(x1),
F2(x2). Their starting point (Proposition 1) is that, denoting by
(1) A the class of functions A : [0, 1]2 → [0, 1] such that F (x1, x2) = A(F1(x1), F2(x2)) for all x1, x2 ∈ R,
(2) CF ⊂ A the set of copulas C such that F (x1, x2) = C(F1(x), F2(y)) for all x, y ∈ R,
(3) B : [0, 1]2 → [0, 1] the function defined by B(u, v) = F (F−1

1 (u), F−1
2 (v)) for all u, v ∈ [0, 1],

(4) D the distribution function of the vector (F1(X1), F2(X2)),
then both B and D belong to the class A, but B is not a distribution function and D is a distribution
function but not a copula.

In Section 3, the authors analyze the importance of this unidentifiability issue by measuring the size of
the set of copulas CF . In Section 4, they study the impact on copula models by pointing out that the copula
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does no longer characterize the dependence and each C ∈ CF leads to different values of Kendall’s τ and
Spearman’s ρ.

Nevertheless, there exists a copula Cz
F ∈ CF such that X1 ⊥ X2 iff Cz

F is the independent copula,
τ(X1, X2) = τ(Cz

F ) and ρ(X1, X2) = ρ(Cz
F ). This copula is obtained by linear interpolation of the d.f. D

of (F1(X1), F2(X2)) for all (u, v) ∈ Ran(F1) × Ran(F2). It is also the copula associated with the vector
(X1 + U1, X2 + U2) where U1, U2 are two independent (0, 1)-uniform random variables. The application to
the present context is easy.

Proposition 5.1. Consider the discrete model with (X|Θ = θ) =d G(q, e−θ). Then, the distribution function
D of (F1(X1), F2(X2)) is given by

D(u, v) =

{
0 if u < q or v < q,
1− (1− q)(HΘ(bluc) +HΘ(blvc)) + (1− q)2HΘ(bluc+ blvc) otherwise,

(37)

for u, v ∈ [0, 1], where HΘ(x) = E[(1 − e−Θ)x], lz = H−1
Θ ((1 − z)/(1 − q)) for z = u, v ≥ q and bxc is the

floor function.

The interpolated copula Cz
F for (X1, X2) is then constructed as usual, i.e.

Cz
F (u, v) = λ̄uλ̄vD(ui, vj) + λuλ̄vD(ui+1, vj) + λ̄uλvD(ui, vj+1) + λuλvD(ui+1, vj+1),

for (ui, vj) ∈ Ran(F1)×Ran(F2) such that (u, v) ∈ [ui, ui+1]× [vj , vj+1], where λz = 1− λ̄z = (z−zi)/(zi+1−
zi) (z = u, v).

Proof. By assumption,

P (X ≤ x|Θ = θ) = q + (1− q)[1− (1− e−θ)bxc] = 1− (1− q)(1− e−θ)bxc, x ∈ R+.

Thus, using the function HΘ defined above,

P (X ≤ x) = 1− (1− q)HΘ(bxc), x ∈ R+,

and

P (X1 ≤ x1, X2 ≤ x2) = 1− (1− q)(HΘ(bx1c) +HΘ(bx2c)) + (1− q)2HΘ(bx1c+ bx2c), x1, x2 ∈ R+.

Now, defining lz as indicated before,

P (F1(X1) ≤ u, F2(X2) ≤ v) =

{
0 if u < q or v < q,
P (X1 ≤ lu, X2 ≤ lv) otherwise,

for u, v ∈ [0, 1], hence (37). The expression of Cz
F follows directly by linear interpolation of D.

Remark 5.2. Using floor functions on marginals of a continuous copula was considered in several previous
papers (e.g. Joe (1997) and Frees & Wang (2006)).
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Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P. & Zimmermann, P. (2011), MPFR: A multiple-precision
binary floating-point library with correct rounding.
URL: http://mpfr.org/

Frees, E. W. & Wang, P. (2006), ‘Copula credibility for aggregate loss models’, Insurance: Mathematics and
Economics 38, 360–373.
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A Computation of Γ(−3/2, x, b)

The function Γ(a, x, b) satisfies a recurrence on the parameter a, namely

Γ(a+ 1, x, b) = aΓ(a, x, b) + bΓ(a− 1, x, b) + xae−x−b/x;

see e.g. Chaudry & Zubair (2002). Thus,

Γ(−3/2, x, b) =
1

b

(
Γ(1/2, x, b) + 1/2Γ(−1/2, x, b)− x−1/2e−x−b/x

)
.

Now, Γ(a, x, b) has a simple expresssion in terms of the error function when a = 1/2 and −1/2 (Chaudry &
Zubair (2002)):

Γ(1/2, x, b) =

√
π

2

[
e2
√
berfc

(
√
x+

√
b√
x

)
+ e−2

√
berfc

(
√
x−
√
b√
x

)]
,

Γ(−1/2, x, b) =

√
π

2
√
b

[
−e2

√
berfc

(
√
x+

√
b√
x

)
+ e−2

√
berfc

(
√
x−
√
b√
x

)]
.

Therefore, we get

Γ(−3/2, x, b) =

√
π

2b

[(
1− 1

2
√
b

)
e2
√
berfc (d+) +

(
1 +

1

2
√
b

)
e−2
√
berfc (d−)− 2√

πx
e−x−b/x

]
,

with d+ =
√
x+
√
b/
√
x and d− =

√
x−
√
b/
√
x. For formula (7), we need Γ(−3/2, θ0u, α

2u/4) which directy
follows. We then deduce that

I(u, θ0) =
θ0
√
u

α
euθ0

[(
1− 1

α
√
u

)
eα
√
uerfc (d+) +

(
1 +

1

α
√
u

)
e−α

√
uerfc (d−)

− 2√
πuθ0

e−uθ0−α
2/(4θ0)

]
,
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which gives, after reordering the terms, a formula for ψ(u) of Example 2.4 in Albrecher et al. (2011):

I(u, θ0) =
θ0

α2
e−α/(4θ0)

[
e(cα+2λ

√
u)2/(4λc)

(
−1 + α

√
u
)

erfc (d+)

+e(cα−2λ
√
u)2/(4λc)

(
1 + α

√
u
)

erfc (d−)− 2α√
πθ0

]
.

B Zero-modified geometric distribution

A random variable X of geometric distribution G(p) has the probability mass function P (X = k) = p(1−p)k,
k ∈ N0, where 0 ≤ p ≤ 1; so, P (X > k) = (1 − p)k+1. This distribution depends on one parameter only,
which can be restrictive. A generalization with two parameters is the zero-modified geometric distribution
G(q, ρ) whose probability mass function is

P (X = k) =

{
q for k = 0,

(1− q)ρ(1− ρ)k−1 for k ≥ 1,

yielding P (X > k) = (1− q)(1− ρ)k.

C Integral of error function type

Consider the following integral

J(a, b, x) =

∫ ∞
x

e−ay
2−b/y2dy,

where a, b, x > 0. For its computation, the SAGE mathematical software (Stein et al. (2011)) suggests to do

a change of variable t in order to get the integral of e−t
2

. As the equation t2 = ay2 + b/y2 does not have a
unique solution, the trick is to split the integral J(a, b, x). Since we have

2
√
ady =

√
ady +

√
b

−y2
dy +

√
ady −

√
b

−y2
dy,

we rewrite J(a, b, x) as

2
√
aJ(a, b, x) =

∫ ∞
x

e−ay
2−b/y2d

(
√
ay +

√
b

y

)
+

∫ ∞
x

e−ay
2−b/y2d

(
√
ay −

√
b

y

)
,

Taking t =
√
ay +

√
b/y in the former integral and t =

√
ay −

√
b/y in the latter then leads to

2
√
aJ(a, b, x) = e2

√
ab

∫ ∞
x̃1

e−t
2

dt+ e−2
√
ab

∫ ∞
x̃2

e−t
2

dt,

with x̃1 =
√
ax+

√
b/x and x̃2 =

√
ax−

√
b/x. Hence,

J(a, b, x) =

√
π

4
√
a

[
e2
√
aberfc

(
√
ax+

√
b

x

)
+ e−2

√
aberfc

(
√
ax−

√
b

x

)]
.

This result is in line with Theorem 3.1 of Chaudry & Zubair (2002) and is closely related to the generalized
error function

e−2
√
b erfc(x; b) =

1

2

[
e2
√
berfc

(
x+

√
b

x

)
+ e−2

√
berfc

(
x−
√
b

x

)]
.
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For x = 0, we get

J(a, b, 0) =

√
π

2
√
a
e−2
√
ab.

Now, take b = −1 inside J(a, b, x) (although b > 0 a priori). Putting
√
−1 = i (the imaginary number)

yields

J(a,−1, x) =

√
π

4
√
a

[
e2i
√
aerfc

(√
ax+

i

x

)
+ e−2i

√
aerfc

(√
ax− i

x

)]
.

This number is of type z1z2 + z̄1z̄2 where z1 = e2i
√
a and z2 = erfc (

√
ax+ i/x) (z̄ is the conjugate of z).

One can check that z1z2 + z̄1z̄2 = 2|z1z2| cos(arg(z1) + arg(z2)) ∈ R. Thus, J(a,−1, x) may be defined by
the above expression.
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