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cUniversité Libre de Bruxelles, Département de Mathématique, Campus de la Plaine C.P. 210, B-1050 Bruxelles, Belgium

Abstract

The purpose of this paper is to point out that an asymptotic rule A+B/u for the ultimate ruin probability
applies to a wide class of dependent risk models, in discrete and continuous time. Dependence is incorporated
through a mixing approach among claim amounts or claim inter-arrival times, leading to a systemic risk
behavior. Ruin corresponds here either to classical ruin, or to stopping the activity after realizing that it is
not profitable at all, when one has little possibility to increase premium income rate. Several special cases
for which closed formulas are derived, are also investigated in some detail.
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1. Introduction

Traditionally, the surplus (Ut)t≥0 of an insurance company at time t is represented by

Ut = u+ ct−
Nt∑
i=1

Xi,

where u is the initial surplus, c is the premium rate, (Xi)i≥1 are the successive claim amounts and (Nt)t≥0 is
the claim arrival process (the claim waiting times are denoted by (Ti)i≥1). In the Cramér-Lundberg model,
(Nt)t≥0 is modeled by a Poisson process, (Xi)i≥1 are independent and identically distributed (i.i.d.) random
variables and claim severities (Xi)i≥1 are independent of the claim waiting times (Ti)i≥1. Andersen (1957)
generalized the Cramér-Lundberg model by proposing a general renewal process for the claim arrival process
(Nt)t≥0.

Since then, extensions have been proposed in many directions. Asmussen and Rolski (1991) studied
ruin models with phase-type distributions for both claim severities Xi and claim waiting times Ti. Gerber
and Shiu (1998) unified the analysis of ruin measures in the Cramér-Lundberg model, including the deficit
at ruin, the claim causing the ruin or the ruin probability, by introducing a so-called discounted penalty
function. Gerber and Shiu (2005), Song et al. (2010) and many others extended the Gerber-Shiu approach
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to a wider class of risk models. Various generalizations of the Sparre Andersen model have been proposed,
such as for non-homogeneous claim arrivals (e.g. Lu and Garrido (2005), Albrecher and Asmussen (2006)),
reinsurance treaties (e.g. Centeno (2002a,b)), multivariate risks (e.g. Cai and Li (2005), Collamore (1996))
and dependent risks (e.g. Albrecher and Boxma (2004), Boudreault et al. (2006), Albrecher and Teugels
(2006)).

The ultimate ruin probability, i.e. ψ(u) = P (∃t > 0 : Ut < 0|U0 = u), is a major ruin measure and has
received a considerable attention in the literature. For the Sparre Andersen model, with light-tailed claim
amounts, ψ(u) ∼ Ce−γu as u→∞, where γ is the positive root of a simple equation involving the moment
generating function of Xi (see e.g. Asmussen and Albrecher (2010)). For heavy-tailed claim amounts, the
ruin probability is in the class of Hall of order 1 since ψ(u) ∼ C/uα as u → ∞ (e.g., Embrechts and
Veraverbeke (1982), Klüppelberg and Stadtmüller (1998), Reiss and Thomas (2007)). Concerning models
with dependence, Albrecher and Teugels (2006), e.g., studied the ruin probability when claim size and claim
waiting times, (Xi, Ti)i, are correlated; they obtained again an exponential decrease for ψ(u) in the case of
light-tailed claim sizes. In a recent paper, Albrecher et al. (2011) investigated study the ruin probability
when there is dependence by mixing among the claim sizes (Xi)i or the claim waiting times (Ti)i, see also
Constantinescu et al. (2011). They derived here an asymptotic formula ψ(u) − A ∼ B/u (as u → +∞) for
Pareto correlated claims or inter-occurrence times.

The main purpose of the present work is to show that this asymptotic rule (that we call A + B/u
rule) applies to a wide class of dependent risk models in discrete and continuous time. Dependence is
incorporated through a mixing approach among claim amounts (Xi)i≥1 or claim inter-arrival times (Ti)i≥1.
This corresponds to some uncertainty on the model parameters, due to incomplete information. In some
cases (for example when one launches a new line of business in a remote country), it takes time to collect
claim data and it might be complicated to react and adjust premium income rate. Ruin corresponds here to
either classical ruin or stopping the activity before ruin but after losing a large amount of money, realizing
that the activity is not profitable. Sufficient conditions are also given under which the ruin probability can
be expanded as a series of terms ak/u

k, k ≥ 0, and the coefficients ak, k ≥ 0, are given.

Risk models are also often formulated in discrete time. In fact, such models are often more appropriate
in insurance because the surplus of the company is usually examined after regular time periods. Li et al.
(2009) provided a review of standard risk models in discrete time. Our starting point is when claim amounts
have a geometric distribution, which implies an exponential decrease for ψ(u). Adopting a mixing approach,
we will focus on three particular cases of special interest. We also obtain asymptotics for the tail of the
resulting claim distributions and then discuss the dependence structure involved.

The paper is organized as follows. Section 2 describes the mixing approach for both continuous and
discrete time models. Section 3 establishes the asymptotic rule A+B/u and some variants. Section 4 focuses
on special features of the discrete time model. Except mentioned otherwise, all numerical illustrations are
done with the R statistical software (R Core Team (2012)).

2. Model formulation

This section is devoted to the presentation of dependent risk models, first in the continuous time frame-
work and then in the discrete time framework. In addition to a general formula of the ruin probability
under the mixing approach, we present examples of explicit ruin probability formulas with specific mixing
distributions for both time scales.
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2.1. Continuous time framework

In this subsection, we present the continuous time framework based on the classic Cramér-Lundberg
model. The free surplus of an insurance company at time t is modeled by

Ut = u+ ct−
Nt∑
i=1

Xi,

where u is the initial surplus, c is the premium rate, (Xi)i are the claim amounts and (Nt)t≥0 is the Poisson
claim arrival process with intensity λ. We assume that the (Xi)i are i.i.d. conditionally on a latent variable
Θ (distributed as X|Θ = θ); they are independent of the claim arrival process. Θ can be interpreted as
the heterogeneity in the claim process. In such setting, the claim sizes (X1, . . . , Xn) are dependent random
variables.

Ruin occurs as soon as the surplus process becomes negative. Conditionally on Θ = θ, the ruin probability
is thus defined as

ψ(u, θ) = P (∃t > 0 : Ut < 0|U0 = u,Θ = θ).

To determine such a probability, a standard method consists in looking at the state of the surplus after
the first claim arrival. This leads to an integro-differential equation that can be solved by using Laplace-
Stieltjes transforms, see e.g. Asmussen and Albrecher (2010). In the case of exponentially distributed claims
(Xi)i ∼ E(θ), we have the well-known following formula

ψ(u, θ) = min

(
λ

θc
e−u(θ−λc ), 1

)
,

where the min is equivalent to the net profit condition θ > λ/c. Integrating over the parameter θ yields the
ruin probability,

ψ(u) = FΘ(θ0) + I(u, θ0), (1)

where θ0 = λ/c, FΘ denotes the distribution function of Θ and

I(u, θ0) =

∫ +∞

θ0

θ0

θ
e−u(θ−θ0)dFΘ(θ). (2)

(1) is nothing else than Equation (5) of Albrecher et al. (2011).

Now, we briefly present the results for two particular distributions of the latent variable Θ, reported in
Albrecher et al. (2011). Firstly, we consider for Θ a gamma distribution Ga(α, λ) with density

fΘ(θ) =
λα

Γ(α)
θα−1e−λθ, thus FΘ(θ) =

γ(α, λθ)

Γ(α)
, θ > 0,

where γ(., .) (resp. Γ(.)) denotes the incomplete lower gamma function (the gamma function), see Olver et al.
(2010). The resulting claim generic variable X has a Pareto type II distribution with parameter Pa(α, λ),
whose survival function is

P (X > x) =
1(

1 + x
λ

)α , x ≥ 0.

Using the change of variable y = θ(λ+ u), the integral I(u, θ0) can be expressed in terms of the incomplete
upper gamma function Γ(., .), see Olver et al. (2010). We get

ψ(u) =
γ(α, θ0λ)

Γ(α)
+
λαθ0

Γ(α)
eθ0u

Γ(α− 1, θ0(λ+ u))

(λ+ u)α−1
. (3)

Note that the formula is only valid when the shape parameter verifies α > 1, i.e. the density of X/Θ = θ is
log-concave.
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Secondly, consider for Θ a stable 1/2 distribution (also called a Lévy distribution Le(α)) with density

fΘ(θ) =
α

2
√
πθ3

e−α
2/4θ, thus FΘ(θ) = erfc

(
α

2
√
θ

)
, θ > 0,

where erfc(.) denotes the complementary error function, see Olver et al. (2010). We choose the same
parametrization of the Lévy distribution as in Albrecher et al. (2011), but there exists another parametriza-
tion, see Nolan (2012), which involves a location parameter δ and a shape parameter γ. These two
parametrizations are equivalent by setting γ = α2/2 and δ = 0. The resulting claim distribution is a
Weibull distribution We(1/2, 1/α2) for which the distribution tail is

P (X > x) = e−α
√
x, x ≥ 0.

Unlike the previous case, the computation of I(u, θ) in the Lévy case is more complicated. Using this time
the change of variable x = uθ, we get

I(u, θ0) =
θ0α
√
u3

2
√
π

euθ0
∫ +∞

uθ0

1√
x5
e−x−α

2u/(4x)dx. (4)

The latter integral is related to the generalized error function, a particular case of the generalized incomplete
upper gamma function, which is defined as

Γ(a, x; b) =

∫ +∞

x

ta−1e−t−b/tdt,

see e.g. Chaudry and Zubair (1994, 2002). In Equation (4), we use Γ(−3/2, θ0u;α2u/4). As for the classic
incomplete gamma function, the function Γ(., ., .) satisfies a recurrence equation on the parameter a,

Γ(a+ 1, x; b) = aΓ(a, x; b) + bΓ(a− 1, x; b) + xae−x−b/x,

see Theorem 2.2 of Chaudry and Zubair (2002). Using this equation, we are able to compute Γ(−3/2, x; b) in
terms of Γ(−1/2, x; b) and Γ(1/2, x; b), which can be both expressed in terms of the (classic) error function,
see Appendix A for details. We get

ψ(u) = erfc(α/2
√
θ0) +

θ0
√
u

α
euθ0

[(
1− 1

α
√
u

)
eα
√
uerfc (d+)

+

(
1 +

1

α
√
u

)
e−α

√
uerfc (d−)− 2√

πuθ0

e−uθ0−α
2/(4θ0)

]
,

(5)

where d+ =
√
uθ0 + α/(2

√
θ0) and d− =

√
uθ0 − α/(2

√
θ0).

2.2. Discrete time framework

The compound binomial risk model, introduced by Gerber (1988), is the discrete time analog of the
Cramér-Lundberg model. Here too, we construct an extended version of this model by using a mixing
approach. We are going to derive the ruin probability, for this risk process, as well as explicit formulas for
three special cases. The insurance portfolio is now examined at times t ∈ N. The successive claim amounts
form a sequence of N-valued random variables that are conditionally independent w.r.t. Θ (distributed as
X|Θ = θ). The premium per period is constant and is equal to 1, and corresponds to a prepayment to cover
the risk during that period. The surplus of the insurance company at time t is then given by

Ut = u+ t−
t∑
i=1

Xi,

where u ∈ N is the initial surplus. When the claims are independent, this model is named compound binomial,
because the number of strictly positive claims has a binomial distribution B(t, 1− q) where q = P (X = 0).
The net profit condition is E(X) < 1 in order to avoid the a.s. ruin.
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The definition of ruin probability has to be made precise since there is a non-zero probability for the
surplus to be zero. In other words, we must specify if the ruin of the insurance company occurs when Ut < 0
or Ut ≤ 0. Gerber (1988) considers the ruin as the first time the process U reaches 0, i.e.

ψG(u) = P (∃t ∈ N+ : Ut ≤ 0|U0 = u).

Shiu (1989) considers the ruin as the first time the process U becomes strictly negative:

ψS(u) = P (∃t ∈ N+ : Ut < 0|U0 = u).

Graphically, ψG is the probability that the surplus process crosses the level 0 while ψS is the probability
that the surplus crosses the level -1, since Ut is integer-valued. We can switch from one formula to the other
using the relation ψG(u) = ψS(u− 1). For the rest of the paper, we consider the ruin probability ψS .

Closed formulas for the ruin probability ψS are available (see e.g. Willmot (1993), Sundt and dos Reis
(2007), Lefèvre and Loisel (2008)). Sundt and dos Reis (2007) derived the ruin probability when X is
geometrically distributed. More precisely, assuming a geometric decreasing tail for the ruin probability, they
proved that the claim amount distribution is of geometric type (see proof of Theorem 1 of Sundt and dos
Reis (2007)). In this framework, when the claim amount follows a 0-modified geometric distribution Ge(q, ρ),
see Appendix B, then the ultimate ruin probability is given by

ψS(u) = min

(
1− q
ρ

(
1− ρ
q

)u+1

, 1

)
. (6)

where the minimum is equivalent to the net profit condition ρ > 1− q, ensuring the term in power of u does
not explode.

At our disposal, we have two closed formulas for the infinite time ruin probability. Now, let us extend the
formula (6) by using again a mixing approach. We choose this formula rather than the previous one because
of its tractability. Specifically, we suppose that Xi/Θ = θ ∼ Ge(q, e−θ), then the overall ruin probability is

ψ(u) = F̄Θ(θ0) + I(u, θ0), (7)

where θ0 = − log(1− q) and

I(u, θ0) =

∫ θ0

0

1− q
e−θ

(
1− e−θ

q

)u+1

dFΘ(θ). (8)

Compared to the continuous setting, (1) and (2), the integral in (8) is done over the interval [0, θ0] for I(u, θ)
rather than the interval [θ0,+∞[. This is due to the fact that ψS(u, θ) is decreasing function of θ in the
considered parametrization.

We do not choose the classic geometric distribution Ge(ρ), because the net profit condition (ρ > 1/2) is
restrictive on the type of parametrization for the parameter ρ. However, in that case, one could consider,
for example, a geometric distribution X/Θ = θ ∼ Ge(1/(1 + θ)). This leads to a ruin probability

ψ(u) =

∫ 1

0

θu+2dFΘ(1) + F̄Θ(1).

Choosing a uniform distribution Θ ∼ U(0, p) with p ≤ 1 yields the surprisingly simple formula ψ(u) =
pu+2/(u + 3). This simple ruin probability is particularly interesting, because whether p < 1 or p = 1, the
decrease of the ruin probability switches a geometric speed to a polynomial speed. In this special setting,
the ruin probability is also explicit when Θ is beta distributed.

We present here results for three different distributions of Θ. Firstly, we consider an exponential distri-
bution Θ ∼ E(λ). We use the following definite integral

I1(a, b, x) =

∫ x

0

(
e−θ
)a (

1− e−θ
)b
dθ =

∫ 1

e−x
pa(1− p)b dp

p
= β̄(a, b+ 1, e−x),
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for x > 0. I1(a, b, x) reduces to the beta function β(a, b+1) when x tends to infinity. Using I1(λ+1, k,+∞),
the mass probability function of the claim distribution is given

P (X = k) = qδk0 + (1− δk0)λ(1− q)β(λ+ 1, k),

where δij denotes the Kronecker product. With the presence of a beta function in this mass probability func-
tion, one can recognize the zero-modified Yule-Simon distribution, see e.g. Simon (1955). This distribution
appears in the study of word frequency. The survival function is given by

P (X > k) = λ(1− q)β(λ, k + 1).

Using I(u, θ0) = I1(λ− 1, u+ 1, θ0), the ruin probability can be derived.

Proposition 2.1. Let us consider the discrete time framework of Subsection 2.2 with a latent variable Θ
exponentially distributed E(λ).

ψ(u) = (1− q)λ +
λ(1− q)
qu+1

β̄(λ, u+ 1, 1− q),∀u ≥ 0.

Secondly, consider Θ follows a gamma distribution Ga(α, λ). We use the following integral

I2(a, n, b, x) =

∫ x

0

(
e−θ
)a (

1− e−θ
)n
θbdθ =

n∑
j=0

(
n

j

)
(−1)n−j

∫ x

0

e−θ(a+n−j)θbdθ,

yielding

I2(a, n, b, x) =

n∑
j=0

(
n

j

)
(−1)n−j

∫ x̃

0

yb

(a+ n− j)b+1
e−ydy.

with x̃ = x(a+ j). Substituting n− j to j gives

I2(a, n, b, x) =

n∑
j=0

(
n

j

)
(−1)j

γ(b+ 1, x̃)

(a+ j)b+1
,

where γ(., .) denotes the incomplete lower gamma function. When x tends to infinity, only the term γ(b+1, x̃)
changes and tends to Γ(b + 1). With the integral I2(λ, k − 1, α − 1,+∞) (resp. I2(λ, k, α − 1,+∞)), the
resulting claim distribution has a mass probability function (resp. a survival function)

P (X = k) = qδk0 + (1− δk0)(1− q)
k−1∑
j=0

(
k − 1

j

)
(−1)jλα

(λ+ j)α
and P (X > k) = (1− q)

k∑
j=0

(
k

j

)
(−1)jλα

(λ+ j)α
.

Using I2(λ− 1, u+ 1, α− 1, θ0), the ruin probability can be deduced.

Proposition 2.2. Let us consider the discrete time framework of Subsection 2.2 with a latent variable Θ
gamma distributed Ga(α, λ).

ψ(u) =
Γ(α, λθ0)

Γ(α)
+

1− q
qu+1

u+1∑
j=0

(
u+ 1

j

)
(−1)j

γ(α, θ0(λ+ j − 1))

Γ(α)

(
λ

λ+ j − 1

)α
,

with λ > 1, θ0 = − log(1− q) and for u ≥ 0.

Finally, consider Θ is Lévy distributed Le(α). We use the integral

I3(a, n, b, x) =

∫ x

0

(
e−θ
)a (

1− e−θ
)n
θ−3/2e−

b
θ dθ =

n∑
j=0

(
n

j

)
(−1)n−j2

∫ ∞
x̃

e
− a+n−j

y2 e−by
2

dy.
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with a change of variable and x̃ = x−1/2. This integral is linked to the generalized incomplete upper gamma
function. Using Appendix C, we get

I3(a, n, b, x) =

n∑
j=0

(
n

j

)
(−1)j

√
π

2
√
b

[
e2
√
b(a+j)erfc

(√
b√
x

+
√
a+ j

√
x

)

+e−2
√
b(a+j)erfc

(√
b√
x
−
√
a+ j

√
x

)]
.

When x tends to infinity, we have

I3(a, n, b) =

n∑
j=0

(
n

j

)
(−1)j

√
π√
b
e−2
√
b
√
a+j .

Using I3(0, k − 1, α2/4) and I3(0, k, α2/4), the mass probability and survival functions are given by

P (X = k) = (1− q)
k−1∑
j=0

(
k − 1

j

)
(−1)je−α

√
j and P (X > k) = (1− q)

k∑
j=0

(
k

j

)
(−1)je−α

√
j .

The expressions derived when Θ is Lévy distributed, are much more complex than in the continuous time
framework. In Subsection 3.2, we study asymptotics for the survival function. The ruin probability can be
computed using I3(−1, u+ 1, α2/4, θ0).

Proposition 2.3. Let us consider the discrete time framework of Subsection 2.2 with a latent variable Θ
Lévy distributed Le(α).

ψ(u) = erfc

(
α

2
√
θ0

)
+

1− q
4qu+1

u+1∑
j=0

(
u+ 1

j

)
(−1)j

[
eα
√
j−1erfc

(
α

2
√
θ0

+
√
j − 1

√
θ0

)

+e−α
√
j−1erfc

(
α

2
√
θ0

−
√
j − 1

√
θ0

)]
,

with the convention
√
−1 = i, θ0 = − log(1− q) and for u ≥ 0.

3. Asymptotics – the A + B/u rule

This section is the core of the paper, where we establish the A + B/u asymptotic rule for the ultimate
ruin probability for both continuous and discrete time models. We also obtain an expansion of the ruin
probability as a power series of 1/u. Finally, we investigate the asymptotic behavior of the resulting claim
distribution, which requires a special treatment with complex analysis.

We use the standard Landau notation of the asymptotic analysis O (), o() and ∼; see e.g. Jones (1997),
Olver et al. (2010). Integration by part is a standard tool to derive integral asymptotics as pointed in Olver
et al. (2010). Olver et al. (2010) also give a comprehensive and updated list of known asymptotics of the
so-called special functions (such as the Stirling formula for the gamma function). Integration by part will
be extensively used in the next two subsections; see e.g. Gordon (1994) and the references therein.

3.1. Continuous time framework

In this subsection, we present and show the A+B/u rule for the continuous time model.

Theorem 3.1. Let us consider the continuous time framework of Subsection 2.1 with a positive latent
variable Θ and θ0 = λ/c.

7



(i) If the maximum (in t) of FΘ(t)
(

1
t2 + u

t

)
is attained at θ0, then for all u > 0, the ruin probability is

bounded

ψ(u) ≤ FΘ(θ0) +
1

u
× FΘ(θ0)

θ0
.

(ii) If Θ has a continuous distribution with density fΘ such that fΘ is almost everywhere differentiable on
[θ0,+∞[ and f ′Θ being a Lebesgue-integrable, then

ψ(u) = FΘ(θ0) +
fΘ(θ0)

u
+ o

(
1

u

)
.

(iii) If in addition fΘ is Ck-1 almost everywhere on [θ0,+∞[ and f
(k)
Θ is Lebesgue integrable and bounded

on [θ0,+∞[, then

ψ(u) = FΘ(θ0) +

k−1∑
i=0

h(i)(0)

ui+1
+ o

(
1

uk

)
where h(x) = θ0fΘ(x+ θ0)/(x+ θ0), so that

h(i)(0) =

i∑
j=0

(−1)j
i!

(i− j)!θj0
f

(i−j)
Θ (θ0).

(iv) If fΘ is C∞ on [θ0,+∞[, then

ψ(u) ∼
u→+∞

FΘ(θ0) +

+∞∑
i=0

h(i)(0)

ui+1
.

Proof. (i) From (1) and (2), the ruin probability is given by

ψ(u) = FΘ(θ0) +

∫ +∞

θ0

ψu(θ)dFΘ(θ), with ψu(θ) =
θ0

θ
e−u(θ−θ0),

where θ0 = λ/c. Both ψu and FΘ are bounded functions on [θ0,+∞[. They also have bounded variations
since they are monotone. In addition, ψu is continuous. So by Corollary 7.1.23 of Silvia (1999) or Theorem
12.1 of (Hildebrandt, 1971, Chap. 2), FΘ is Stieltjes integrable with respect to the function ψu. Then, we
apply the integration by part theorem on

∫
ψudFΘ reported in Theorem 12.14 of Gordon (1994). We get

ψ(u) = FΘ(θ0) + lim
b→+∞

ψu(b)FΘ(b)− ψu(θ0)FΘ(θ0)−
∫ +∞

θ0

FΘ(t)dψu(t).

Since ψu is continuously differentiable, the Stieltjes integral
∫
FΘdψu reduces to a Riemann integral. We

have

ψ′u(θ) =
−1

θ2
θ0e
−u(θ−θ0) +

θ0

θ
(−u)e−u(θ−θ0) = −θ0

(
1

θ2
+
u

θ

)
e−u(θ−θ0).

Furthermore, ψu(θ0) = 1 and
lim

b→+∞
ψu(b)FΘ(b) = 0.

Therefore, we obtain

ψ(u) = θ0

∫ +∞

θ0

FΘ(t)

(
1

t2
+
u

t

)
e−u(t−θ0)dt ≤ θ0 max

t∈[θ0,+∞[
FΘ(t)

(
1

t2
+
u

t

)∫ +∞

θ0

e−u(t−θ0)dt.

Since the maximum is attained at θ0, we get

ψ(u) ≤ FΘ(θ0) +
1

u
× FΘ(θ0)

θ0
.
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(ii) Let I(u, θ0) =
∫ +∞
θ0

ψu(θ)dFΘ(θ). We assume a continuous distribution for the mixing variable Θ
and make the change of variable t = θ − θ0, we get

I(u, θ0) =

∫ +∞

0

θ0

θ0 + t
fΘ(t+ θ0)e−utdt.

We easily recognize a Laplace transform of the function h defined as

h(t) =
θ0

θ0 + t
fΘ(t+ θ0).

The minimum condition to apply an integration by part theorem is to require h to be absolutely continuous,
see e.g. Theorem 12.5 of Gordon (1994). Using the fundamental theorem of calculus, absolute continuity of
h on [a, b] is equivalent to h is almost everywhere differentiable [a, b] with h′ being Lebesgue integrable on
[a, b]. Since t 7→ θ0/(θ0 + t) is C∞ on [0, b] for b > 0, h is absolutely continuous on [0, b] if and only if fΘ is.
By assumption, fΘ is almost everywhere differentiable on R+ with f ′Θ being Lebesgue integrable, hence h is
absolutely continuous. Thus we have∫ b

0

h(t)e−utdt =

[
h(t)

e−ut

−u

]b
0

+
1

u

∫ b

0

h′(t)e−utdt =
h(0)

u
− h(b)e−bu

u
+

1

u

∫ b

0

h′(t)e−utdt.

As b tends to infinity, we get

I(u, θ0) =
h(0)

u
+

1

u

∫ +∞

0

h′(t)e−utdt.

Using a property of the Laplace transform, see e.g. Chapter 19 of Jeffrey and Dai (2008), we have∫ +∞

0

h′(t)e−utdt −→
u→+∞

0.

Finally, we conclude

ψ(u) = FΘ(θ0) +
fΘ(0)

u
+ o

(
1

u

)
.

(iii) As fΘ is Ck − 1 almost everywhere on [θ0,+∞[ and f
(k)
Θ is Lebesgue integrable, then h(i) is absolute

continous for all i ≤ k. Applying k times the integration by part theorem, we get

I(u, θ0) =

k−1∑
i=0

h(i)(0)

ui+1
+

1

uk

∫ +∞

0

h(k)(t)e−utdt.

Similarly if h(k)(t) is bounded on [θ0,+∞[, then the latter term is controlled by o
(
1/uk

)
. Let g be the

function t 7→ θ0
θ0+t . The ith-order derivative of h, if it exists, can be derived by the Leibniz formula

h(i)(t) =

i∑
j=0

(
i

j

)
g(j)(t)f

(i−j)
Θ (t+ θ0) with g(j)(t) =

(−1)jj!θ0

(θ0 + t)j+1
.

Thus, we have

ψ(u) = FΘ(θ0) +

k−1∑
i=0

h(i)(0)

ui+1
+ o

(
1

uk

)
with h(i)(0) =

i∑
j=0

(−1)j
i!

(i− j)!θj0
f

(i−j)
Θ (θ0).

(iv) if fΘ is C∞, we have

ψ(u) ∼
u→+∞

FΘ(θ0) +

+∞∑
i=0

h(i)(0)

ui+1
.

Unsurprisingly, we get back to asymptotic result (2.3.2) of (Olver et al., 2010, Chapter 2), since I(u, θ) is a
Laplace transform.
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Remark 1. A sufficient condition for fΘ to be almost everywhere differentiable is local Lipchitzness. This
is a consequence of the Rademacher theorem, see e.g. Clarke and Bessis (1999).

Remark 2. A similar approach can be done when mixing the waiting times (T1, T2, . . . ). Using Albrecher
et al. (2011)’s Section 3, we have

ψ(u) = F̄Λ(λ0) +

∫ λ0

0

ψu(λ)dFΛ(λ), with ψu(λ) =
λ

λ0
e−u/θ(1−λ/λ0), λ0 = θc.

We give here only the first terms of the series expansion assuming Λ has a continuous distribution

ψ(u) = F̄Λ(λ0) +
1

cu
fΛ(λ0) + o

(
1

u

)
.

Below, we present asymptotics for the two special cases analyzed in Subsection 2.1, based on known
asymptotics listed in Olver et al. (2010). When Θ is gamma distributed, we have

ψ(u) =
γ(α, θ0λ)

Γ(α)
+
λαθα−1

0

Γ(α)
e−λθ0

(
1

λ+ u
+

α− 1

(λ+ u)2θ0
+ o

(
1

u2

))
.

If we use Theorem 3.1, we get

ψ(u) =
γ(α, λθ0)

Γ(α)
+
λαθα−1

0

Γ(α)
e−λθ0

(
1

u
+

1

u2

(
α− 1

θ0
− λ
)

+ o

(
1

u2

))
. (9)

These two expressions are similar with only different denominators 1/u against 1/(λ+ u), but this does not
matter for large values of u.

When Θ is Lévy distributed, the term I(u, θ0) contains two terms linked with the error complementarity
function. There exists expansion formula for the error function, cf. Olver et al. (2010), but unfortunately
the asymptotic of I(u, θ0) leads to an explosive term eα

√
u. We conclude that a term-by-term asymptotic is

not appropriate, a uniform expansion of the original function Γ(3/2, x, b) is needed, when both x and b are
large. But, we can still use Theorem 3.1 to get

ψ(u) = erfc

(
α

2
√
θ0

)
+

α

2
√
πθ3

0

e−α
2/4θ0

(
1

u
+

1

u2

(
α2

4
√
θ0

− 3

2θ0

)
+ o

(
1

u2

))
. (10)
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On Figures 1a and 1b, we compare these two asymptotics (Equations (9) and (10)) with their closed-
formula counterparts (Equations (3) and (5) respectively) and their empirical estimates. All closed formulas
diverge for u around 500 because of computation errors, however their second-order approximations remain
numerically stable. Furthermore, empirical estimates of the ruin probability for a 10,000 sample size oscillate
around the asymptotics for both mixing distributions. This illustrates the accuracy of the asymptotics derived
from Theorem 3.1.

3.2. Discrete time framework

Now, let us turn our attention to the discrete-time framework, where the approach of this subsection
shares strong similarities with the previous subsection.

Theorem 3.2. Let us consider the discrete time framework of Subsection 2.2 with a positive latent variable
Θ and θ0 = − log(1− q).

(i) For all u ≥ 0, the ruin probability is lower bounded

F̄Θ(θ0) + FΘ(θ0)
q

u+ 2
≤ ψ(u).

(ii) If Θ has a continuous distribution with density fΘ such that fΘ is almost everywhere differentiable on
[0, θ0] with fΘ, f

′
Θ being bounded, then

ψ(u) = F̄Θ(θ0) +
1

u+ 2
× qfΘ(θ0)

1− q
+ o

(
1

u+ 2

)
.

(iii) If in addition fΘ is Ck-1 almost everywhere on [0, θ0] and successive derivatives of fΘ are bounded on
[0, θ0], then

ψ(u) = F̄Θ(θ0) +

k−1∑
i=0

h̃(i)(0)

(u+ 2) . . . (u+ 2 + i)
+ o

(
1

(u+ 2) . . . (u+ 2 + k)

)
,

with h̃(x) = fΘ(− log(1− xq))/(1− xq)2.

(iv) If fΘ is C∞ on [0, θ0], then

ψ(u) ∼
u→+∞

F̄Θ(θ0) +

+∞∑
i=0

h̃(i)(0)

(u+ 2) . . . (u+ 2 + i)
.

Proof. (i) From (7) and (8), the ruin probability is given by

ψ(u) = F̄Θ(θ0) +

∫ θ0

0

ψu(θ)dFΘ(θ), with ψu(θ) =
1− q
e−θ

(
1− e−θ

q

)u+1

,

where θ0 = − log(1 − q). Firstly, we change the right-hand side Stieltjes integral by using the survival
function F̄Θ rather than the cumulative distribution function. We get

ψ(u) = F̄Θ(θ0)−
∫ θ0

0

ψu(θ)dF̄Θ(θ).

Secondly, it is easy to see that both ψu and F̄Θ are also of bounded variation on [0, θ0]. They also have
bounded variations since they are monotone. In addition, ψu is continuous. So by Corollary 7.1.23 of Silvia
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(1999), F̄Θ is Stieltjes integrable with respect to the function ψu. Then we apply the integration by part
theorem on

∫
ψudF̄Θ reported in Theorem 12.14 of Gordon (1994). We get

ψ(u) = F̄Θ(θ0)− ψu(θ0)F̄Θ(θ0) + ψu(0)F̄Θ(0) +

∫ θ0

0

F̄Θ(t)dψu(t) =

∫ θ0

0

F̄Θ(t)dψu(t),

using ψu(θ0) = 1 and ψu(0) = 0. Since ψu is continuously differentiable, the Stieltjes integral
∫
F̄Θdψu

reduces to a Riemann integral. We have

ψ′u(θ) = (1− q)eθ
(

1− e−θ

q

)u+1

+
1− q
q

(u+ 1)

(
1− e−θ

q

)u
.

Therefore, we obtain

ψ(u) =

∫ θ0

0

(1− q)etF̄Θ(t)

(
1− e−t

q

)u+1

dt+

∫ θ0

0

1− q
q

(u+ 1)F̄Θ(t)

(
1− e−t

q

)u
dt.

Let J(u) =
∫ θ0

0
((1− e−t)/q)udθ. Making the change of variable qx = 1− e−t, we have

J(u) = q

∫ 1

0

1

1− xq
xudx and q × 1

u+ 1
≤ J(u) ≤ q

1− q
× 1

u+ 1
.

Furthermore, we have

max
θ∈[0,θ0]

F̄Θ(θ)eθ ≥ 1

1− q
, min
θ∈[0,θ0]

F̄Θ(θ)eθ ≤ F̄Θ(θ0).

Therefore, the ruin probability is bounded as

(1− q)F̄Θ(θ0)J(u+ 1) + (u+ 1)
1− q
q

F̄Θ(θ0)J(u) ≤ ψ(u) ≤ J(u+ 1) + (u+ 1)
1− q
q

J(u).

This yields

FΘ(θ0)
q

u+ 2
+ FΘ(θ0) ≤ ψ(u) ≤ q

1− q
× 1

u+ 2
+ 1.

(ii) Let I(u, θ0) =
∫ θ0

0
ψu(θ)dFΘ(θ). We assume a continuous distribution for the mixing variable Θ and

make the change of variable x = (1− e−θ)/q, for which qdx = e−θdθ, we get

I(u, θ0) = q(1− q)
∫ 1

0

fΘ (− log(1− xq))
(1− xq)2

xu+1dx.

Let h be fΘ◦g with g(x) = − log(1−xq). The minimum condition to apply an integration by part theorem is
to require the integrand function (h(x)/(1− xq)2) to be absolutely continuous. As x 7→ 1/(1− xq)2 are C∞,
we must show h is absolutely continuous. But h = fΘ ◦ g is not necessarily continuous if both fΘ and h are
absolutely continuous. According to Merentes (1991), if g is absolutely continous, then fΘ ◦ g is absolutely
continuous if and only if fΘ is locally Lipschitzian. Using the Rademacher theorem, we deduce that fΘ is
locally Lipschitizan, so h is absolutely continuous. We obtain

I(u, θ0) = q(1− q)
[

h(x)

(1− xq)2

xu+2

u+ 2

]1

0

− q(1− q)
∫ 1

0

(
h′(x)

(1− xq)2
+

2qh(x)

(1− xq)3

)
xu+2

u+ 2
dx︸ ︷︷ ︸

J(u)

.

The first term equals to
qfΘ(θ0)

(1− q)(u+ 2)

while the integral term is controlled as

|J(u)| ≤ sup
x∈[0,1]

∣∣∣∣qf ′Θ(g(x))

(1− xq)3
+

2qfΘ(g(x))

(1− xq)3

∣∣∣∣ ∫ 1

0

xu+2

u+ 2
dx = C

1

(u+ 2)(u+ 3)
= o

(
1

u+ 2

)
,
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since fΘ and f ′Θ are bounded on [0, θ0]. Combining the two preceding results, we get to

ψ(u) = F̄Θ(θ0) +
qfΘ(θ0)

(1− q)(u+ 2)
+ o

(
1

u+ 2

)
.

(iii) As fΘ is Ck − 1 almost everywhere on [0, θ0] and f
(k)
Θ is Lebesgue integrable, then h(i) is absolute

continous for all i ≤ k. Applying k times the integration by part theorem, we get

I(u, θ0) =

k−1∑
i=0

h̃(i)(0)

(u+ 2) . . . (u+ 2 + i)
+

∫ θ0

0

h̃(k)(t)
xu+2+k

(u+ 2) . . . (u+ 2 + k)
dx,

where h̃(x) = h(x)/(1 − xq)2. Since successive derivatives f
(i)
Θ are bounded on [0, θ0], the integral term is

controlled by o
(
1/uk

)
. The expression of the ith order derivative for a composition f ◦ g is complex, see

Huang et al. (2006).

(iv) If fΘ is C∞ on [0, θ0], we have

ψ(u) ∼
u→+∞

F̄Θ(θ0) +

+∞∑
i=0

h̃(i)(0)

(u+ 2) . . . (u+ 2 + i)
.

We examine below the three special cases studied in Subsection 2.2. Only one asymptotic is available
via known asymptotics of the incomplete beta function asymptotic, see Olver et al. (2010). If Θ follows an
exponential distribution, this gives

ψ(u) = (1− q)λ + λ(1− q)λ 1

u+ 2
+ o

(
1

u+ 2

)
.

Using Theorem 3.2, with h̃(x) = λ(1− xq)λ/(1− xq)2, leads to the same expansion.

For the two other distributions, gamma and Lévy, we have to use Theorem 3.2, as no asymptotic is
available. When Θ is gamma distribution, the function h̃ is

h̃(x) =
1

(1− xq)2
(1− xq)λ

(
log

(
1

1− xq

))α−1
λα

Γ(α)
.

Thus,

ψ(u) ∼
u→+∞

Γ(α, λθ0)

Γ(α)
+

λα

Γ(α)
(1− q)λ−1θα−1

0

1

u+ 2
+ o

(
1

u+ 2

)
.

with λ > 1 and θ0 = − log(1− q).

When Θ is Lévy distributed, the function h̃ is

h̃(x) =
α

2
√
π

log

(
1

1− xq

)−3/2

e
− α2

4 log( 1
1−xq ) .

Thus,

ψ(u) ∼
u→+∞

erfc

(
α

2
√
θ0

)
+

α

2
√
π
θ
−3/2
0 e−

α2

4θ0
1

u+ 2
+ o

(
1

u+ 2

)
,

with θ0 = − log(1 − q). Similar results for the ruin probability as in Figure 1 can be obtained in the
discrete-time setting.
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3.3. Tail claim distributions

In this subsection, we analyze the tail of the claim distribution, i.e. P (X > x) for large values of x. For
the present model by mixing, the survival function is the following Stieltjes integral

P (X > x) =

∫ +∞

0

P (X > x|Θ = θ)dFΘ(θ).

In the continuous time framework (where the conditional claim distribution is exponential), this leads to

P (X > x) =

∫ +∞

0

e−θxdFΘ(θ),

which is the Laplace transform of the random variable Θ. Here too, one can see that a similar argument
works only when Θ has a light-tailed distribution. In fact, we cannot obtain interesting results by applying
the integration by part directly on this Stieltjes integral (as for the ruin probability). So, we assume that
Θ has a continuous distribution and, similarly to the first subsection, we are going to derive the asymptotic
survival function.

Proposition 3.3. Let us consider the continuous time framework of Subsection 2.1 and assume Θ has a
continuous distribution with density fΘ.

(i) If fΘ is almost everywhere differentiable on R+ with f ′Θ being a Lebesgue-integrable, then for x > 0,

P (X > x) =
fΘ(0)

x
+ o

(
1

x

)
.

(ii) If fΘ is C∞ in the neighborhood of the origin, then for x > 0,

P (X > x) ∼
x→+∞

+∞∑
k=0

f
(k)
Θ (0)

xk
.

(iii) If fΘ can be expanded in the neighborhood of the origin as

fΘ(t) ∼
t→0

+∞∑
k=0

fkt
k+η
µ −1,

for η, µ > 0, then for x > 0,

P (X > x) ∼
x→+∞

+∞∑
k=0

Γ

(
k + η

µ

)
fk

x
k+η
µ

.

Proof. (i) fΘ satisfies the minimum requirement for an application of the integration by parts. We get

P (X > x) =

[
fΘ(t)

e−θx

−x

]+∞

0

+
1

x

∫ +∞

0

e−θxf ′Θ(θ)dθ =
fΘ(0)

x
+ o

(
1

x

)
.

(ii) and (iii) are direct applications of Propertiy 2.3(i) and the Watson lemma 2.3(ii) of Olver et al. (2010),
respectively.

Remark 3. Parts (i) and (ii) of this proposition may be not applicable when the density is not defined or
zero at the origin. This justifies the part (iii).
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Remark 4. The reason why the behavior of the integrand function fΘ at the origin matters is explained by
Laplace’s method. In Laplace’s method, one studies the asymptotics of the following integral

I(x) =

∫ b

a

exp(t)q(t)dt,

where p and q are continuous functions around the point a, assumed to be the minimum of p in [a, b[. In
our case, p(t) = t, hence the minimum of the exponent on R+ is attained at the origin. See e.g. 2.3(iii) of
Olver et al. (2010).

Let us see if the two special cases studied in the previous section fall within the framework of the previous
proposition. Firstly, assume that Θ follows a gamma distribution Ga(α, λ). Using the integral representation
of the exponential function, the density function can be expanded as

fΘ(t) =
λα

Γ(α)

+∞∑
k=0

(−λ)k

k!
tα+k−1.

Thus, we get

P (X > x) ∼
x→+∞

+∞∑
k=0

(−1)k
Γ (k + α)

Γ(α)k!

(
λ

x

)k+α

.

with η = α and µ = 1. This (asymptotic) polynomial decrease of the survival function is consistent with the
fact that X is Pareto type II distributed

P (X > x) =
1(

1 + x
λ

)α .
When Θ follows a Lévy distribution Le(α),

fΘ(θ) =
α

2
√
πθ3

e−α
2/4θ.

Although this function is not defined at zero, the density converges to zero, since we have

fΘ(1/t) =
αt3/2

2
√
π
e−α

2t/4 −→
t→+∞

0.

However, we cannot find a valid series expansion of fΘ(1/t) at +∞, or equivalently of fΘ(θ) at 0, based on
the series expansion of the exponential function. Therefore, the preceding proposition is of limited use in
the Lévy case, where we already know that

P (X > x) = e−α
√
x, x ≥ 0.

More generally, Proposition 3.3 is difficult to apply when the density function of Θ is not defined.

Now, we look at the tail of the claim distribution in the discrete time framework. We have

P (X > u) =

∫ +∞

0

(1− q)
(
1− e−θ

)u
dFΘ(θ).

One way to deal with such an integral is to use an integration by part directly on the integral. But, it does
not lead to satisfying results as for the ruin probability. Even if we assume Θ has a continuous distribution,
we do not get a Laplace transform of a certain function as in the continuous time:

P (X > u) =

∫ +∞

0

(1− q)fΘ(θ)
(
1− e−θ

)u
dθ.
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To get a term easily integrable, one can try to make a change of variable, e.g. x = 1−e−θ or x = − log(1−e−θ).
The latter is not possible on R+ because the derivative of the function θ 7→ − log(1 − e−θ) is unbounded
near 0. Let us try x = 1− e−θ. We get

P (X > u) =

∫ 1

0

(1− q)fΘ(− log(1− x))

1− x
xudx.

Using an integration by part theorem requires that the following limit to exist

lim
x→1

fΘ(− log(1− x))

1− x
= lim
t→+∞

fΘ(t)et.

This requirement is strong and will be satisfied only for light-tailed distributions and a certain range of
parameter values. For example, when Θ is exponentially distributed E(λ), the previous constraint imposes
λ > 1. Another way to deal with such integral asymptotic is to apply the Pascal formula, assuming u is an
integer. We get

P (X > u) =

u∑
k=0

(
u

k

)
(1− q)(−1)k

∫ +∞

0

e−kθdFΘ(θ).

The integral is (once again) the Laplace transform LΘ of the random variable Θ at k. This binomial
alternating sum requires a special treatment because finding an asymptotic for LΘ(k) will not help us to
derive an asymptotic of the sum. This issue is studied in the next subsection.

3.4. Binomial alternating sum for claim tails

In the discrete time framework, the survival function can be expressed as

P (X > u) =

u∑
k=0

(
u

k

)
(1− q)(−1)kLΘ(k),

where LΘ denotes the Laplace transform of the random variable Θ. This integral falls within the framework
of the alternating binomial sum defined as

Sn(φ) =

n∑
k=n0

(
n

k

)
(−1)kφ(k), (11)

where 0 ≤ n0 ≤ n, φ is a real function and n ∈ N is large. n0 can be used to exclude first few points of the
sum that would not be defined. Letting

φ(k) = (1− q) λα

(λ+ j)α
,

in Equation (11), we get the distribution function of X when Θ is gamma distributed of Subsection 2.2.

Note that, having started with the integral representation
∫ +∞

0
P (X = k|Θ = θ)dFΘ(θ), we know that

the alternating sum is valued on [0, 1]. This is not immediate without that integral representation. Let us
point out that the probability P (X = k) is a decreasing function of k. This is not easy to see by using
the alternating binomial sum representation (11). Here is a simle proof. To indicate the dependence on
the parameter λ, denote by P (X = k)λ. From algebraic manipulation and using the binomial recurrence
equation

(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
, we get

P (X = k + 1)λ = P (X = k)λ − P (X = k)λ+1
λα

(λ+ 1)α
.

So, as announced, the probability mass function of X is decreasing. The binomial alternating sum represen-
tation of P (X > k) is

P (X > k) = (1− q)
k∑
j=0

(
k

j

)
(−1)j

λα

(λ+ j)α
.
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There should be an exponential canceling in the sum, since
(
k
j

)
tends quickly to infinity for large values of k

(we recall
(
n
k

)
∼ e−knk/k!) and P (X > k) is a decreasing function. A study of the alternating sum seems to

be rather complex. Going back to the alternating sum with n0 = 0, the first few terms can be expressed as

S0(φ) = φ(0), S1(φ) = φ(0)− φ(1), S2(φ) = φ(0)− 2φ(1) + φ(2).

Let ∆ be the forward difference operator. Then we have S0 = ∆0φ(0), S1 = −∆φ(0) and S2 = ∆2φ(0).
More generally, the binomial alternating sum can be rewritten as

Sn(φ) =

n∑
k=n0

(
n

k

)
(−1)kφ(k) = (−1)n∆n(φ)(0).

3.4.1. Some complex analysis

To deal with such sums, a standard method consists in using complex analysis and contour integrals.
Flajolet and Sedgewick (1995) provide a complete overview of this topic. In this subsection, we consider that
the complex extension of φ of the sum Sn(φ). Their Lemma 1 gives the so-called Rice integral representation
of Sn(φ)

n∑
k=n0

(
n

k

)
(−1)kφ(k) = (−1)n

∮
γ

φ(z)
n!

z(z − 1) . . . (z − n)
dz, (12)

where φ is assumed to be analytic on a domain Ω containing [n0, n[ and γ is a closed curve in Ω encircling
[n0, n[ but not [0, n0 − 1]. Let f be the integrand of the right-hand side of (12). By the residue theorem
(e.g. Chapter 10 of Bak and Newman (2010)), if the integrand is analytic except at a countable number of
isolated singularities inside the domain γ, then the contour integral equals to the sum of the residues of the
integrand taken at the singularities inside γ. The right-hand side of Equation (12) is still cumbersome to
compute, since the integrand has at least n + 1 singularities at 0, 1, . . . , n. So, in the present situation, the
complex contour integration does not really simplify the problem. As we want to derive some asymptotics
when n tends to infinity, the domain γ of the contour integration has to be extended to the entire positive
real half-plane {z,Re(z) > 0}. However, we do not want to compute the sum of the residuals at integers
{n0, n0 +1, . . . ,+∞}. Furthermore, we do not know if f(z) does not explode as Re(z)→ +∞. Nevertheless,
the solution does come by extending the contour of integration. Let γ = CR the circle of radius R centered
at 0 excluding poles in N. Assuming f is of polynomial growth towards infinity, the integral∮

CR

f(z)dz −→
R→+∞

0.

By the residue theorem, the contour integral
∮
C∞

f(z)dz also equals to the sum of residuals of f at integers

{0, . . . , n0 − 1} and {n0, n0 + 1, . . . ,+∞}. The first residual contribution is a finite sum, while the second
contribution is the binomial alternating sum Sn(φ). Thus, in the particular case of polynomial growth, the
binomial sum Sn(φ) reduces to the computation of a limited number of residuals at {0, . . . , n0 − 1}, see the
proof of Theorem 1 of Flajolet and Sedgewick (1995).

Theorem (Flajolet and Sedgewick). Let φ be a rational analytic function on [n0,∞[. Then we have

n∑
k=n0

(
n

k

)
(−1)kφ(k) = −(−1)n

∑
s

Res

(
φ(s)

n!

s(s− 1) . . . (s− n)

)
,

where the summation of residues is done over poles not on [n0,∞[.

Theorem 2(i) of Flajolet and Sedgewick (1995) applies the same approach when f is meromorphic (i.e.
complex differentiable everywhere except at a countable number of points) and not necessarily of polynomial
growth. The same argument applies when we replace the circle CR by a semicircle S(R,d) = {z ∈ C, Re(z) >
d, |z| < R}, see part (ii) of Theorem 2 of Flajolet and Sedgewick (1995). But this time, we only get
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an asymptotic for the original problem. Furthermore, things are intrinsically more complicated when the
function φ is not a rational function, because we consider the complex extension of φ. For instance, function
z 7→ 1/z2 has a second-order pole at z = 0 but function z 7→ 1/z1.414 has algebraic singularity at z = 0.
To deal with algebraic singularities, the integration contour γ must exclude the singularities. Flajolet and
Sedgewick (1995) provide a keyhole structure approach (i.e. Hankel contour) when φ(z) has a (non polar)
algebraic singularity 1/xλ, see proof of their Theorem 3. The keyhole structure captures the effect of the
singularity at 0 by decreasing the radius of the hole in 1/ log(n) as n tends to infinity. Dealing with non-
isolated singularities (i.e. branch points) need even more care than just skipping it as with a semicircle. Let
us consider, for example, the complex square root

√
z, the branch point is the negative real axis ] −∞, 0].

The branch point is of finite order, compared to the complex logarithm for instance. Indeed we have

√
ρei(θ+2kπ) =

√
ρei(θ/2+kπ) =

{
−√ρei(θ/2) if k = 1
√
ρei(θ/2) if k = 2

Flajolet and Sedgewick (1995) consider a local approximation of z1/2 around the origin only at the contour
part of the keyhole structure surrounding the origin. Otherwise, we keep the polynomial growth of the
square root for the rest of the contour, see Example 7. Handling branch points of infinity order, say with the
complex logarithm function log(z), is similar except that the resulting asymptotic as n tends to infinity is
different, see Example 8. We report below a table of correspondences between singularity and asymptotics.

Singular part s0 /∈ N Asymptotics

simple pole (z − s0)−1 −Γ(−s0)ns0

multiple pole (z − s0)−m −Γ(−s0)ns0 (logn)m−1

(m−1)!

algebraic singularity (z − s0)λ −Γ(−s0)ns0 (logn)−λ−1

Γ(−λ)

+ logarithmic singularity (z − s0)λ(log(z − s0))r −Γ(−s0)ns0 (logn)−λ−1

Γ(−λ) (log log n)r

Table 1: Correspondences between singularity and asymptotic

3.4.2. Two simple illustrations

Let us consider for phi two particular functions of interest below. Firstly, we choose f1(z) be 1/(z + β)α

where z ∈ C. It has a singularity at −β, which is a multiple pole if α ∈ N. Using a keyhole structure centered
at −β and Table 1, we have an asymptotic of the form

Sn(f1) ∼
n→+∞

Γ(β)

Γ(α)

(log n)α−1

nβ
.

Secondly, we choose f2(z) be e−α
√
z. The function f2 has a branch point at z = 0, because of the

complex square root. First, we use an infinitesimal asymptotic of the exponential around 0. That is f2(z) =
1 − α

√
z + o(z). Since the contour integral of a sum is the sum of contour integrals and that the contour

integral of an analytic function is zero, we can drop the constant 1. We use a right-oriented half-plane
keyhole structure centered at 0 for Re(z) > d (with −∞ < d < 0), similar to Theorem 3 of Flajolet and
Sedgewick (1995), since the function f2 has a exponential growth on the half-plane Re(z) < d and cannot be
integrated as the radius tends to infinity. We cannot use the singularity correspondence table for the square
root, because the singularity is zero. But, the square root can be approximated by Theorem 3 of Flajolet
and Sedgewick (1995). And the term o(z) is controlled by the small circle of the keyhole structure on which
|z| < 1/ log(n). Thus we get the following asymptotic of the alternating sum

Sn(f2) ∼
n→+∞

α√
π log(n)

− αγe

2
√
π log3(n)

,

where γe = 0.5772156649 is the Euler-Mascheroni constant.
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3.4.3. Claim tail asymptotics

Based on the previous subsections, we are able to derive tail asymptotics of a claim X given a mixing
distribution Θ in the discrete time framework presented in Subsection 2.2. When Θ follows an exponential
distribution E(λ), we use the asymptotic of the beta function β(a, b) for large values of b, see Olver et al.
(2010). We get that the tail of the distribution is asymptotically

P (X > k) ∼
k→+∞

(1− q)Γ(λ+ 1)

(k + 1)λ
,

which decreases like a discrete Pareto distribution (i.e. a Zipf distribution). This tail behavior of a Yule-
Simon distribution was already reported in Simon (1955). When Θ follows a gamma distribution Ga(α, λ),
we use asymptotics of the alternating binomial sum with the function f1(z) = 1/(z + λ + 1)α. Therefore,
the tail distribution is asymptotically

P (X > k) ∼
k→+∞

(1− q)λ
αΓ(λ+ 1)

Γ(α)

(log k)α−1

kλ+1
,

which decreases slightly slower than a Zipf distribution due to the logarithm in the numerator. When Θ
follows a Lévy distribution Le(α), again we use an asymptotic of alternating binomial sums with the function
f2(z) = e−α

√
z. Thus, the tail distribution is asymptotically

P (X > k) ∼
k→+∞

(1− q)α

 1√
π log(k)

− γe

2
√
π log3(k)

 ,

which decreases extremely slowly. Such a tail behaviour is heavier than for a Pareto distribution. With
continuous distributions, a similar behaviour is obtained for the log-Cauchy distribution, for example.

3.4.4. Numerical illustrations

In Figure 2, we plot the survival functions derived above. The exponential-geometric distribution has a
very tractable survival function, since incomplete Beta function is available in most softwares, e.g., in R via
the pbeta function. Therefore, we can benchmark the asymptotic with the true value. However, for the
two other distributions, we have to compute two binomial alternating sums. These sums are particularly

unstable because the central term C
n/2
n tends to infinity as n tends to infinity, which drives the binomial

alternating sum between +∞ or −∞.

In modern computers, a real number is stored in eight bytes (i.e. 64 bits), but only 53 bits are reserved for
the precision (see e.g. http://en.wikipedia.org/wiki/Double-precision floating-point format). In our numerical
experiment, the alternating binomial sum Sn(φ) becomes unstable for n ≥ 48 with the standard double
precision. To compute the alternating sum for large n, we have no other way than to use high precision
floating-point arithmetic libraries such as the GMP library of Grandlund Torbjoern & the GMP Devel. Team
(2011) as well as the MPFR library of Fousse et al. (2011). Using MPFR libraries allows us to work with
a high number of bits, say 500 or 1000. Using the Rmpfr package of Maechler (2012), we are then able to
assess the survival function of the claim distribution.

We consider the three examples presented before with q = 1/2. Figures 2a, 2b and 2c correspond to a
mixing distribution when Θ is Exponential, Gamma and Lévy-stable distributed, respectively. On Figures
2a, 2b, the distribution tail shows a Pareto-type behavior, as we observe a straight line. The Lévy stable
mixing on Figure 2c clearly exhibits a heavier tail. The heavier the tail of the distribution of Θ, the larger
the error. For Figure 2c, the asymptotic is not as reliable as for other cases. This small numerical experiment
also illustrates the importance of high precision arithmetic libraries for some numerical issues in actuarial
problems.
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Figure 2: Survival functions

4. Focus on the dependence structure

This section studies the dependence structure of the dependent risk models described in Subsections 2.1
and 2.2, respectively for discrete-time and continuous-time settings. Let us start by recalling Property 2.1
of Albrecher et al. (2011) for the continuous-time model.

Proposition. When claim sizes fulfill for each n ≥ 1,

P (X1 > x1, . . . , Xn > xn|Θ = θ) =

n∏
i=1

e−θxi ,

then, they have a dependence structure due to an Archimedean survival copula with generator φ = L−1
Θ , the

inverse Laplace transform of Θ.

Therefore, in continuous time, the dependence structure is simply an Archimedean copula. Regarding
the discrete-time setting, things are more complicated: the dependence among discrete random variables is a
complex topic. Genest and Nešlehová (2007) present issues linked to discrete copula. By the Sklar theorem,
see e.g. Joe (1997), Nelsen (2006), we recall that the copula C of a random pair (X,Y ) is not unique outside
the support of the random variables X and Y . So, when X,Y are discrete variables in N, C is only unique
on N2 but not on R2 \N2. The non-identifiability is a major source of issues. An example of discrete copulas
is the empirical copula for observation sample (Xi, Yi)1≤i≤n.

Let us introduce Genest and Nešlehová (2007)’s notation. Let A be the class of functions verifying

H(x, y) = C(FX(x), FY (y)), (13)

for all x, y ∈ R for given distribution functions FX , FY and H. Let us define the function B as for
all u, v ∈ [0, 1], B(u, v) = (F−1

X (u), F−1
Y (v)). We also denote by D the distribution function of the pair

(FX(X), FY (Y )). With a simple bivariate Bernoulli vector, Example 1 of Genest and Nešlehová (2007)
shows that (i) functions B and D are different, (ii) B is not a distribution function despite both B and D
belong to the class A. Even in that simple support {0, 1}2, the identifiability issue of the copula C cannot
be discarded. Proposition 1 of Genest and Nešlehová (2007) extends to any bivariate pair (X,Y ): B is not
a distribution, whereas D is a distribution function but not a copula.

The function D is not a copula but only a distribution function. This leads to the question of the maximal
differences between two copulas satisfying Equation (13) when X,Y take discrete values. The answer is given
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by the Carley bounds C−H , C
+
H . For all copulas CH verifying Equation (13), we have

C−H ≤ CH ≤ C
+
H ,

cf. Proposition 2 of Genest and Nešlehová (2007). The non-identifiability issue matters, since with discrete
copulas the dependence measure, such as the tau of Kendall or the rho of Spearman, are no longer unique.
Furthermore, if X and Y are independent, it does not imply that the copula of (X,Y ) is the independent
copula. In other words, the copula alone does not characterize the dependence: we need assumptions on
margins. In the copula literature, efforts have been done to tackle the non-identifiability issue of dependence
measure.

The current answer is the interpolated copula Cz
X,Y , which is a bilinear interpolation of the distribution

functionD of the pair (F (X), F (Y )) on the discrete set Im(FX)×Im(FY ). This copula was already mentioned
in Lemma 2.3.5 of Nelsen (2006) to prove the Sklar theorem. The interpolated copula can also be interpreted
as the copula of (X +U, Y + V ) where U, V are two independent uniform random variables, see e.g. Section
4 of Denuit and Lambert (2005). This formulation is useful when doing random generation. The properties
of the interpolated copula of the pair (X,Y ) are: (i) Kendall’s tau τ(X,Y ) = τ(Cz

X,Y ) and Spearman’s rho

ρ(X,Y ) = ρ(Cz
X,Y ), (ii) Cz

X,Y is absolutely continuous and (iii) X ⊥ Y ⇔ Cz
X,Y = Π, the independent

copula. Unfortunately, Cz
X,Y depends on marginals and FX = FY does not imply Cz

X,Y (u, v) = min(u, v),

as well as FX = 1− FY ; Cz
X,Y (u, v) = (u+ v − 1)+, see e.g. Genest and Nešlehová (2007).

Proposition 4.1. Let W1,W2 be conditionally independent 0-modified geometric random variables, i.e.
Wi|Θ = θ ∼ G(q, e−θ). The distribution function of (W1,W2) is given by

DW1,W2(u, v) =

{
0 if u < q or v < q,
1− (1− q)(LΘ(bluc) + LΘ(blvc)) + (1− q)2LΘ(bluc+ blvc) otherwise,

where for p ≥ q, lp = L−1
Θ ((1− p)/(1− q)) and bxc denotes the floor function.

The interpolated copula Cz
W1,W2

of (W1,W2) is expressed as

Cz
W1,W2

(u, v) = λ̄uλ̄vDW1,W2(ui, vj)+λuλ̄vDW1,W2(ui+1, vj)+λ̄uλvDW1,W2(ui, vj+1)+λuλvDW1,W2(ui+1, vj+1),

for (ui, vj) ∈ Im(FX)× Im(FY ) such that (u, v) ∈ [ui, ui+1]× [vj , vj+1] and where λu = (u−ui)/(ui+1−ui),
λv = (v − vj)/(vj+1 − vj). The density of the interpolated copula Cz

W1,W2
is given by

czW1,W2
(u, v) =

DW1,W2
(ui, vj)−DW1,W2

(ui+1, vj)−DW1,W2
(ui, vj+1) +DW1,W2

(ui+1, vj+1)

(ui+1 − ui)(vj+1 − vj)
,

for (u, v) ∈ [ui, ui+1]× [vj , vj+1].

Remark 5. Note there is a jump when u or v equal q, since DW1,W2
(q, v) = q − q(1 − q)LΘ(blvc) and

DW1,W2
(u, v) ≥ q2 for u, v ≥ q. Wi has the same distribution as IidYie where Ii (resp. Yi) follows a

Bernoulli distribution B(1 − q) (resp. an exponential distribution E(θ)) and the copula of (Y1, Y2) is an
Archimedean copula with generator L−1

Θ . Using floor functions on marginals of a continuous copula is also
considered in many other articles, e.g. Joe (1997) and Frees and Wang (2006).

Proof. If W follows a 0-modified geometric distribution G(q, 1− e−θ), then

P (W = k) = qδk,0 + (1− q)(1− δk,0)e−θ(k−1)(1− e−θ).

Furthermore, P (W ≤ x) = q + (1 − q)(1 − e−θ(bxc)) for all x ∈ R+. In particular for x = k ∈ N, we have
FW (k) = q + (1− q)(1− e−θk). Therefore, we have

P (Wi ≤ x) = 1− (1− q)LΘ(bxc),

and
P (W1 ≤ x,W2 ≤ y) = 1− (1− q)(LΘ(bxc) + LΘ(byc)) + (1− q)2LΘ(bxc+ byc).
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Let DW1,W2 be the distribution function of the pair (FW1(W1), FW2(W2)). Since P (Wi = 0) > 0, we get

DW1,W2
(u, v) =

{
0 if u < q or v < q
P (W1 ≤ lu,W2 ≤ lv) otherwise

.

And by conditioning we get for u, v ≥ q,

DW1,W2(u, v) = 1− (1− q)(LΘ(bluc) + LΘ(blvc)) + (1− q)2LΘ(bluc+ blvc).

The derivation of Cz
W1,W2

is the direct definition of a bilinear interpolation of DW1,W2 , whereas czW1,W2
(u, v)

is the direct differentiation of Cz
W1,W2

(u, v).
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Appendix A. For the continuous time model

The function Γ(., .; .) satisfies a recurrence on the a parameter,

Γ(a+ 1, x; b) = aΓ(a, x; b) + bΓ(a− 1, x; b) + xae−x−b/x,

see Theorem 2.2 of Chaudry and Zubair (2002). Thus we deduce

Γ(−3/2, x; b) =
1

b

(
Γ(1/2, x; b) + 1/2Γ(−1/2, x; b)− x−1/2e−x−b/x

)
.

As reported in Theorem 2.6 and Corollary 2.7 of Chaudry and Zubair (2002), Γ(a, x; b) has a simpler
expresssion in terms of the error function when a = 1/2,−1/2, . . . ,

Γ(1/2, x; b) =

√
π

2

[
e2
√
berfc

(
x+

√
b

x

)
+ e−2

√
berfc

(
x−
√
b

x

)]
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and

Γ(−1/2, x; b) =

√
π

2
√
b

[
−e2

√
berfc

(
x+

√
b

x

)
+ e−2

√
berfc

(
x−
√
b

x

)]
.

Therefore, we have

Γ(−3/2, x; b) =

√
π

2b

[(
1− 1

2
√
b

)
e2
√
berfc (d+) +

(
1 +

1

2
√
b

)
e−2
√
berfc (d−)− 2√

πx
e−x−b/x

]
,

with d+ =
√
x+
√
b/x and d− =

√
x−
√
b/x. It yields

Γ(−3/2, θ0u;α2u/4) =
2
√
π

α2u

[(
1− 1

α
√
u

)
eα
√
uerfc (d+) +

(
1 +

1

α
√
u

)
e−α

√
uerfc (d−)

− 2√
πuθ0

e−uθ0−α
2/(4θ0)

]
,

with d+ =
√
uθ0 + α/(2

√
θ0) and d− =

√
uθ0 − α/(2

√
θ0). We deduce that

I(u, θ0) =
θ0
√
u

α
euθ0

[(
1− 1

α
√
u

)
eα
√
uerfc (d+)

+

(
1 +

1

α
√
u

)
e−α

√
uerfc (d−)− 2√

πuθ0

e−uθ0−α
2/(4θ0)

]
.

By reordering the terms, we get the formula of Albrecher et al. (2011), which is

I(u, θ0) = e−α/(4θ0)
[
e(cα+2λ

√
u)2/4λc

(
−1 + α

√
u
)

erfc (d+)

+e(cα−2λ
√
u)2/4λc

(
1 + α

√
u
)

erfc (d−)− 2α√
πθ0

]
.

Appendix B. For the discrete time model

The geometric distribution G(p) has the probability mass function P (X = k) = p(1− p)k, k ∈ N, where
0 ≤ p ≤ 1. Note that P (X > k) = (1 − p)k+1. The geometric distribution parametrization depends one
parameter, which can be restrictive. The 0-modified geometric distribution, X ∼ G(q, ρ), has the probability
mass function

P (X = k) =

{
q for k = 0,

(1− q)ρ(1− ρ)k−1 for k ∈ N+,

with P (X > k) = (1− q)(1− ρ)k.

Appendix C. Error function linked terms

We want to compute the following integral, linked to the error function

J(a, b, x) =

∫ ∞
x

e−ay
2−b/y2dy,

where a, b, x > 0. The SAGE mathematical software (Stein et al. (2011)) suggests to do a change of variable

in order to get
∫
e−t

2

dt. Since the equation t2 = ay2 + b/y2 does not have a unique solution, we consider

t = ±
√
ay +

√
b/y. This leads to split the integral J(a, b, x). With algebric manipulations, we get

2
√
ady =

√
ady +

√
b

−y2
dy +

√
ady −

√
b

−y2
dy.

25



Therefore,

2
√
aJ(a, b, x) = e2

√
ab

∫ ∞
x̃1

e−t
2

dt+ e−2
√
ab

∫ ∞
x̃2

e−t
2

dt,

with x̃1 =
√
ax+

√
b
x and x̃2 =

√
ax−

√
b
x . Hence

J(a, b, x) =

√
π

4
√
a

[
e2
√
aberfc

(
√
ax+

√
b

x

)
+ e−2

√
aberfc

(
√
ax−

√
b

x

)]
.

This result is in line with Theorem 3.1 of Chaudry and Zubair (2002) and is closely related to the generalized
error function

erfc(x; b) =

√
π

4
e2
√
b

[
e2
√
berfc

(
x+

√
b

x

)
+ e−2

√
berfc

(
x−
√
b

x

)]
.

If x = 0, we get

J(a, b, x) =

√
π

2
√
a
e−2
√
ab 4= J(a, b).

If b = −1, then we replace
√
b by the imaginary number i, hence

J(a,−1, x) =

√
π

4
√
a

[
e2i
√
aerfc

(√
ax+

i

x

)
+ e−2i

√
aerfc

(√
ax− i

x

)]
.

This number is of type z1z2 + z̄1z̄2, where z1 = e2i
√
a and z2 = erfc

(√
ax+ i

x

)
. We check that z1z2 + z̄1z̄2 =

2|z1z2| cos(arg(z1)+arg(z2)) ∈ R. Thus, we extend the notation J(a, b, x) for b = −1 by the above expression.

26




