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Abstract

In this paper, we formulate a noncooperative game to model a non-life insurance market. The
aim is to analyze the effects of competition between insurers through different indicators:
the market premium, the solvency level, the market share and the underwriting results.
Resulting premium Nash equilibria are discussed and numerically illustrated.
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1. Introduction

Insurance pricing is a classical topic for both actuaries and academics. Standard actuarial
approaches for non-life insurance typically suggest to use expectation, standard deviation,
or quantiles of the underlying risk to derive a fair premium. For an overview of premium
principles, see, e.g., Teugels and Sundt (2004). This actuarially-based premium, which is
sometimes referred to as the technical premium, is then often altered by marketing and
management departments, and deviations from technical premium can be considerable. Af-
fordability by customers and mutualization across the portfolio are first reasons to explain
the economic reality that policyholders do not necessarily pay the risk-based premium. But
another major reason of such deviations from the fair premium is the dependency on market
conditions. A market model is needed to study the economic interactions between insurers
and policyholders.

Basic economic models suggest that the equilibrium premium is the marginal cost, as
any upward deviation from this equilibrium will result in losing all the policies in the next
period. This theory would imply that all insurers price at the market premium. However,
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1 INTRODUCTION 2

in practice customers do not move from an insurer to a cheaper one as swiftly as economic
models anticipate. There is an inertia of the insurance demand, preventing all policyholders
to always look for the cheapest insurer when their premium is slightly higher than the market
premium. So, the customer behavior is much more complicated. More refined economic
models focus on moral hazard and adverse selection. The celebrated model of Rothschild and
Stiglitz (see Rothschild and Stiglitz (1976)) deals with a utility-based agent framework where
insureds have private information on their own risk. Insurers provide a menu of contracts (a
pair of premium and deductible), and high-risk individuals choose full coverage, whereas low-
risk individuals are more attracted by partial coverage. Note that the equilibrium price may
not exist if all insurers offer just one type of contract. Picard (2009) considers an extension
by allowing insurers to offer participating contracts (such as mutual-type contracts). This
feature guarantees the existence of an equilibrium, which forces (rational) insureds to reveal
their risk level. An important source of applications of such models is health insurance,
where moral hazard and adverse selection play a major role, see, e.g., Geoffard et al. (1998),
Wambach (2000); Mimra and Wambach (2010) and Picard (2009).

However, the economic models mentioned above can not address the insurance market
cycle dynamics, so that one has to look for further alternatives. Taylor (1986, 1987) deals
with discrete-time underwriting strategies of insurers and provides first attempts to model
strategic responses to the market, see also Kliger and Levikson (1998); Emms et al. (2007);
Moreno-Codina and Gomez-Alvado (2008). The main pitfall of the optimal control approach
is that it focuses on one single insurer and thus implicitly assumes that insurers are playing
a game against an impersonal market player and the market price is independent of their
own actions.

In this paper, we want to investigate the suitability of game theory for insurance market
modelling. The use of game theory in actuarial science has a long history dating back to K.
Borch and J. Lemaire, who mainly used cooperative games to model risk transfer between
insurer and reinsurer, see, e.g., Borch (1960, 1975), Lemaire and Quairière (1986). Bühlmann
(1984) and Golubin (2006) also studied risk transfer with Pareto optimality. Among the
articles using noncooperative game theory to model the non-life insurance market, Bertrand
oligopoly models are studied by Polborn (1998), Rees et al. (1999), Hardelin and de Forge
(2009). Powers and Shubik (1998, 2006) also study scale effects of the number of insurers
and the optimal number of reinsurers in a market model having a central clearing house.
More recently, Taksar and Zeng (2011) study non-proportional reinsurance with zero-sum
stochastic continuous-time games. Demgne (2010) seems to be the first study from a game
theory point of view of (re)insurance market cycles. She uses well known economic concets:
pure monopoly, Cournot’s oligopoly (i.e. war of quantity), Bertrand’s oligopoly (i.e. war
of price) and the Stackelberg equilibrium (leader/follower game). For all these, she tests
various scenarios and checks the consistency of model outputs with reinsurance reality.

Finally, in many ruin theory models, one assumes that the portfolio size remains constant
over time (see, e.g., Asmussen and Albrecher (2010) for a recent survey). Non-homogeneous
claim arrival processes have usually been studied in the context of modelling catastrophe
events. More recently, non-constant portfolio size has been considered, see, e.g., Trufin et al.
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2 A ONE-PERIOD MODEL 3

(2009) and the references therein. Malinovskii (2010) uses a ruin framework to analyze
different situations for an insurer in its behavior against the market.

This paper aims to model competition in non-life insurance markets with noncooperative
game theory in order to extend the player-vs-market reasoning of Taylor (1986, 1987)’s
models. The main contribution is to show that incorporating competition when setting
premiums leads to a significant deviation from the actuarial premium and from a one-player
optimized premium. The rest of the paper is organized as follows. Section 2 introduces a
one-period noncooperative game. Existence and uniqueness of a premium equilibrium are
established. Section 3 relaxes assumptions on objective and constraint components of the
one-period model. The existence of a premium equilibrium is still guaranteed, but uniqueness
may not hold. A reasonable choice of an equilibrium is proposed in this situation. Section 4
presents numerical illustrations of the two games. A conclusion and perspectives are given
in Section 5.

2. A one-period model

Consider I insurers competing in a market of n policyholders with one-year contracts
(where n is considered constant). The “game” for insurers is to sell policies to the policy-
holders by setting the premium. Let (x1, . . . , xI) ∈ RI be a price vector, with xj representing
premium of insurer j. Once the premium is set by all insurers, the insureds choose to re-
new or to lapse from their current insurer. Then, insurers pay claims, according to their
portfolio size, during the coverage year. At the end of the period, underwriting results are
determined, and insurer capital is updated: some insurers may be bankrupt. As we deal
with a one-period model, we ignore for simplicity investment results.

In the next subsections, we present the four components of the game: a lapse model, a loss
model, an objective function and a solvency constraint function. In the sequel, a subscript
j ∈ {1, . . . , I} will always denote a player index, whereas a subscript i ∈ {1, . . . , n} denotes
an insured index.

2.1. Lapse model

Being with current insurer j, the insurer choice Ci of insured i for the next period
follows an I-dimensional multinomial distributionMI(1, pj→) with probability vector pj→ =
(pj→1, . . . , pj→I) summing to 1. The probability mass function is given by P (Ci = k | j) =
pj→k. It seems natural and it has been verified empirically that the probability to choose an
insurer is highly influenced by the previous period choice. In other words, the probability to
lapse pj→k with k 6= j is generally much lower than the probability to renew pj→j. To our
knowledge, only the UK market shows lapse rates above 50%. Those probabilities have to
depend on the premium xj, xk proposed by insurer j and k, respectively.

Assume at the beginning of the game that the insurer portfolio sizes are nj (such that
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2 A ONE-PERIOD MODEL 4

∑I
j=1 nj = n). The portfolio size Nj(x) of insurer j for the next period is a random variable

determined by the sum of renewed policies and businesses coming from other insurers. Hence,

Nj(x) = Bjj(x) +
I∑

k=1,k 6=j

Bkj(x).

Nj(x) is a sum of I independent binomial variables (Bkj)k whereBkj has parameters B(nk, pk→j(x)).

In the economics literature, pj→k is considered in the framework of discrete choice models.
In the random utility maximization setting, McFadden (1981) or Anderson et al. (1989)
propose multinomial logit and probit probability choice models. In this paper, we choose a
multinomial logit model, since the probit link function does not really enhance the choice
model despite its additional complexity. Working with unordered choices, we arbitrarily set
the insurer reference category for pj→k to j, the current insurer. We define the probability
for a customer to go from insurer j to k given the price vector x by the following multinomial
logit model

pj→k = lgk
j (x) =


1

1+
∑
l 6=j

efj(xj,xl)
if j = k,

efj(xj,xk)

1+
∑
l 6=j

efj(xj,xl)
if j 6= k,

(1)

where the sum is taken over the set {1, . . . , I} and fj is a price sensitivity function. In the
following, we consider two types of price functions

f̄j(xj, xl) = µj + αj
xj
xl

and f̃j(xj, xl) = µ̃j + α̃j(xj − xl).

The first function f̄j assumes a price sensitivity with the ratio of the proposed premium
xj and competitor premium xl, whereas f̃j works with the premium difference xj − xl.
Parameters µj, αj represent a base lapse level and price sensitivity. We assume that insurance
products display positive price elasiticity of demand αj > 0. One can check that

∑
k lgk

j (x) =
1.

The above expression can be rewritten as

lgk
j (x) = lgj

j(x)
(
δjk + (1− δjk)efj(xj ,xk)

)
,

with δij denoting the Kronecker product. It is difficult to derive general properties of the
distribution of a sum of binomial variables with different probabilities, except when the size
parameters nj are reasonably large, in which case the normal approximation is appropriate.
With this insurer choice probability, the expected portfolio size of insurer j reduces to

N̂j(x) = nj × lgj
j(x) +

∑
l 6=j

nl × lgj
l (x),

where nj denotes the last year portfolio size of insurer j.
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2 A ONE-PERIOD MODEL 5

2.2. Loss model

Let Yi be the aggregate loss of policy i during the coverage period. We assume no adverse
selection among insured of any insurers, i.e. Yi are independent and identically distributed
(i.i.d.) random variables, ∀i = 1, . . . , n. Let us assume a simple frequency – average severity
loss model

Yi =

Mi∑
l=1

Zi,l,

where the claim number Mi is independent from the i.i.d. claim severities (Zi,l)l. Therefore,
the aggregate claim amount for insurer j is

Sj(x) =

Nj(x)∑
i=1

Yi =

Nj(x)∑
i=1

Mi∑
l=1

Zi,l,

where Nj(x) is the portfolio size of insurer j given the price vector x. We consider two
claim number distributions: (i) Mi follows a Poisson distribution P(λ) and (ii) Mi follows a
negative binomial distribution NB(r, p). These instances of the frequency-average severity

model are such the aggregate claim amount Sj(x) =
∑Nj(x)

i=1 Yi is still a compound distribution
of the same kind, since Yi are assumed i.i.d. random variables. Hence, the insurer aggregate
claim amount Sj(x) is a compound distribution

Sj(x) =

M̃j(x)∑
l=1

Zl,

such that the claim number M̃j(x) and claim severity Zl follow

• a Poisson-lognormal with M̃j(x) ∼ P(Nj(x)λ) and Zl
i.i.d.∼ LN (µ1, σ

2
1),

• a negative binomial-lognormal with M̃j(x) ∼ NB(Nj(x)r, p) and Zl
i.i.d.∼ LN (µ1, σ

2
1).

In the numerical applications, these two loss models are denoted PLN and NBLN, respec-
tively.

2.3. Objective function

In the two previous subsections, we presented two components of the insurance markets:
the lapse model (how insureds react to premium changes) and the loss model (how insureds
face claims). We now turn our attention to the underwriting strategy of insurers, i.e. on
how they set premiums.

In Subsection 2.1, we assumed that price elasticity of demand for the insurance product
is positive. Thus, if the whole market underwrites at a loss, any actions of a particular
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2 A ONE-PERIOD MODEL 6

insurer to get back to profitability will result in a reduction of his business volume. This has
two consequences for possible choice of objective functions: (i) it should use a decreasing
demand function of price xj given the competitors price x−j = (x1, . . . , xj−1, xj+1, . . . , xI)
and (ii) it should depend on an assessment of the insurer break-even premium per unit of
exposure πj.

We suppose that insurer j maximizes the expected profit of renewing policies defined as

Oj(x) =
nj

n

(
1− βj

(
xj

mj(x)
− 1

))
(xj − πj) , (2)

where πj is the break-even premium j and mj(x) is a market premium proxy. The objective
function Oj defined as the product of a demand function and an expected profit per policy
represents a company-wide expected profit. Oj targets renewal business and does not take
into account new business explicitly. In addition to focusing on renewal business only, the
objective function locally approximates the true insurer choice probability lgj

j presented in
Subsection 2.1. However, since the demand function Dj(x) = nj/n(1− βj(xj/mj(x)− 1)) is
not restricted to [0,1], demand Dj can exceed the current market share nj/n, but profit per
policy will decline when the premium decreases. Thus, maximising the objective function Oj

leads to a trade-off between increasing premium to favour higher projected profit margins and
decreasing premium to defend the current market share. Note that Oj has the nice property
to be infinitely differentiable. The parameter πj corresponds to the estimated mean loss of
insurer j and is expressed as

πj = ωjaj,0 + (1− ωj)m0

where aj,0 is the actuarial premium based on the past loss experience of insurer j, m0 is the
market premium, available for instance, via rating bureaus or through insurer associations
and ωj ∈ [0, 1] is the credibility factor of insurer j. If insurer j is the market leader, then
ωj should be close to 1, whereas when insurer j is a follower, ωj should be close to 0. Note
that πj takes into account expenses implicitly via the actuarial and the market premiums.

The market proxy used in Equation (2) is the mean price of the other competitors

mj(x) =
1

I − 1

∑
k 6=j

xk.

The market proxy aims to assess other insurer premiums without specifically targeting one
competitor. By excluding the price xj to compute the market proxy mj(x), we suppose
insurer j is not dominant in the market. If, for example, insurer j underwrites 80% of the
total premium available in the market, mj(x) will not be appropriate, but in such cases the
market competition is low. We could have used the minimum of the competitors’ premium,
but thenmj(x) would not have been a continuous function of the price vector x. Furthermore,
insurer j does not necessarily take into account to be the cheapest insurer.

2.4. Solvency constraint function

In addition to maximizing a certain objective function, insurers must satisfy a solvency
constraint imposed by the regulator. Currently, European insurers report their solvency
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2 A ONE-PERIOD MODEL 7

margin in the Solvency I framework, based on the maximum of a percentage of gross written
premium and aggregate claim mean. According to Derien (2010), a non-life insurer computes
its solvency margin as

SM = max(18%×GWP, 26%× AC)×max(50%,AC net of reins/AC gross of reins),

where GWP denotes the gross written premium and AC the aggregate claim mean1. Dis-
carding reinsurance, the Solvency I framework leads to a solvency margin

SM = max(9%×GWP, 13%× AC).

This approach is not really satisfactory, as it does not take into account the risk volality
of underwritten business. Since 2005, actuaries are well busy with the upcoming Solvency
II framework. In this new framework, the quantitative part leads to the computation of
two capital values, both based on the difference between a certain quantile and the mean of
the aggregate loss. The solvency capital requirement (SCR) is based on the 99.5%-quantile,
whereas the minimum capital requirement (MCR) is based on the 85%-quantile.

In our game context, we want to avoid the simplistic Solvency I framework, but still want
to keep the tractablity for the SCR computation rule. We recall that the aggregate claim
amount is assumed to be a frequency – average severity model, i.e. Cat-losses are ignored.
A simplification is to approximate a q-quantile Q(n, q) of aggregate claim amount of n i.i.d.
risks by a bilinear function of n and

√
n

Q(n, q) = E(Y )n+ kqσ(Y )
√
n, (3)

where the coefficient kq has to be determined and Y is the generic individual claim severity
variable. The first term corresponds to the mean of the aggregate claim amount, while the
second term is related to standard deviation.

Three methods have been tested to compute the solvency coefficient kq: (i) a normal
approximation kNq = Φ−1(q), where Φ is the distribution function of the standard normal
distribution, (ii) a simulation procedure with 105 sample size to get kSq as the empirical
quantile and (iii) the Panjer recursion to compute the aggregate claim quantile kPq

2.

While the normal approximation is based on the first two moments of the distribution
only, simulation and Panjer methods need to have assumptions on claim frequency and claim
severity distributions: we use the PLN and NBLN models defined in Subsection 2.2. We also
need a risk number n. In Table 1, we report solvency coefficients for n = 1000 risks. Panjer
and simulation methods appear twice since two loss models (PLN and NBLN) are tested.

Numerical experiments show that the normal approximation is less conservative for high
quantiles (i.e. kNq < kPq ) when the claim number follows a negative binomial distribution,

1The percentages 18% and 26% are replaced respectively by 16% and 23% when the GWP exceeds 57.5
Meur or AC exceeds 40.3 Meur.

2See, e.g., Theorem 12.4.3 of Bowers et al. (1997). Panjer recursion requires that the claim distribution is
discrete. So before using Panjer algorithm, we use a lower discretization of the lognormal claim distribution.



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

2 A ONE-PERIOD MODEL 8

prob q kNq kPq -PLN kPq -NBLN kSq -PLN kSq -NBLN

0.75 0.674 1.251 0.913 0.649 0.627
0.8 0.842 1.431 1.104 0.829 0.812
0.85 1.036 1.642 1.332 1.029 1.03
0.9 1.282 1.912 1.627 1.299 1.312
0.95 1.645 2.321 2.083 1.695 1.759
0.99 2.326 3.117 2.997 2.475 2.633
0.995 2.576 3.419 3.352 2.777 2.976

Table 1: Solvency coefficient k

and the reverse for the Poisson distribution. Based on this study, we choose to approximate
quantiles at 85% and 99.5% levels with coefficients k85 = 1 and k995 = 3.

Thus, using the approximation (3), the solvency capital requirement SCR is deduced as

SCRq ≈ kqσ(Y )
√
n,

which is more complex than the Solvency I framework. Numerical investigations show that
the Solvency I requirement corresponds to a 75% quantile. Therefore, we decide to choose
the adapted solvency constraint function

g1
j (xj) =

Kj + nj(xj − πj)(1− ej)
k995σ(Y )

√
nj

− 1, (4)

where k995 is the solvency coefficient and ej denotes the expense rate as a percentage of gross
written premium. The numerator corresponds to the sum of current capital Kj and expected
profit on the in-force portfolio (without taking into account new business). It is easy to see
that the constraint g1

j (x) ≥ 0, is equivalent to Kj + nj(xj − πj)(1− ej) ≥ k995σ(Y )
√
nj, but

g1
j is normalized with respect to capital, providing a better numerical stability.

In addition to the solvency constraint, we need to impose bounds on the possible pre-
mium. A first choice could be simple linear constraints as xj − x ≥ 0 and x− xj ≥ 0, where
x and x represent the minimum and the maximum premium, respectively. But the following
reformulation is equivalent and numerically more stable:

g2
j (xj) = 1− e−(xj−x) ≥ 0 and g3

j (xj) = 1− e−(x−xj) ≥ 0.

The minimum premium x could be justified by a prudent point of view of regulators while
the maximum premium x could be set, e.g., by a consumer right defense association. In the
sequel, we set x = E(Y )/(1− emin) < x = 3E(Y ), where emin is the minimum expense rate.

Overall, the constraint function gj(xj) ≥ 0 is equivalent to

{xj, gj(xj) ≥ 0} =
{
xj ∈ [x, x], Kj + nj(xj − πj)(1− ej) ≥ k995σ(Y )

√
nj

}
. (5)
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2.5. Game sequence

For noncooperative games, there are two main solution concepts, Nash equilibrium and
Stackelberg equilibrium: the Nash equilibrium assumes player actions are taken simultane-
ously while for the Stackelberg equilibrium actions take place sequentially, see, e.g., Fuden-
berg and Tirole (1991); Osborne and Rubinstein (2006). In our setting, we consider the Nash
equilibrium as the most appropriate concept. We give below the definition of a generalized
Nash equilibrium extending the Nash equilibrium with constraint functions.

Definition. For a game with I players, with payoff functions Oj and constraint function gj,
a generalized Nash equilibrium is a vector x? = (x?1, . . . , x

?
I) such that for all j = 1, . . . , I, x?j

solves the subproblem
max
xj

Oj(xj, x
?
−j) s.t. gj(xj, x

?
−j) ≥ 0.

where xj and x−j denote action of player j and the other players’ action, respectively.

A (generalized) Nash equilibrium is interpreted as a point at which no player can prof-
itably deviate, given the actions of the other players. When each player’s strategy set does
not depend on the other players’ strategies, a generalized Nash equilibrium reduces to a
standard Nash equilibrium. Our game is a Nash equilibrium problem since our constraint
functions gj defined in Equation (4) depend on the price xj only.

The game sequence is given as follows:

(i) Insurers set their premium according to a generalized Nash equilibrium x?, solving for
all j ∈ {1, . . . , I}

x−j 7→ arg max
xj ,gj(xj)≥0

Oj(xj, x−j).

(ii) Insureds randomly choose their new insurer according to probabilities pk→j(x
?): we

get Nj(x).

(iii) For the one-year coverage, claims are random according to a frequency-average severity
model relative to the portfolio size Nj(x

?).

(iv) Finally the underwriting result is determined by UWj(x
?) = Nj(x

?)x?j(1−ej)−Sj(x
?),

where ej denotes the expense rate.

If the solvency requirement is not fullfilled, in Solvency I, the regulator response is im-
mediate: depending on the insolvency severity, regulators can withdraw the authorisation to
underwrite new business or even force the company to go run-off or to sell part of its port-
folio. In Solvency II, this happens only when the MCR level is not met. There is a buffer
between MCR and SCR where regulators impose some specific actions to help returning to
the SCR level.
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2 A ONE-PERIOD MODEL 10

In our game, we choose to remove players which have a capital below MCR and to
authorize players to continue underwriting when capital is between the MCR and the SCR.
Note that the constraint function will be active when computing the Nash equilibrium, if
the capital is between the MCR and SCR.

2.6. Properties of the premium equilibrium

In this subsection, we investigate properties of the premium equilibrium. We start by
showing existence and uniqueness of a Nash equilibrium. Then, we focus on the sensitivity
analysis on model parameters of such an equilibrium.

Proposition 2.1. The I-player insurance game with objective function and solvency con-
straint function defined in Equations (2) and (5), respectively, admits a unique (Nash) pre-
mium equilibrium.

Proof. The strategy set is R = [x, x]I , which is nonempty, convex and compact. Given
x−j ∈ [x, x], the function xj 7→ Oj(x) is a quadratic function with second-degree term
−βjx2

j/mj(x) < 0 up to a constant nj/n. Thus, this function is (strictly) concave. Moreover,
for all players, the constraint functions g1

j are linear functions, hence also concave. By
Theorem 1 of Rosen (1965), the game admits a Nash equilibrium, i.e. existence is guaranteed.
By Theorem 2 of Rosen (1965), uniqueness is verified if we have the following inequality for
all x, y ∈ R,

I∑
j=1

rj(xj − yj)∇xj
Oj(y) +

I∑
j=1

rj(yj − xj)∇xj
Oj(x) > 0, (6)

for some r ∈ RI with strictly positive components ri > 0. As the function xj 7→ Oj(x)
is a strictly concave and differentiable function for all x−j, we have ∇xj

Oj(x)(yj − xj) >
Oj(y)−Oj(x) and equivalently ∇xj

Oj(y)(xj − yj) > Oj(x)−Oj(y). Thus,

(xj − yj)∇xj
Oj(y) + (yj − xj)∇xj

Oj(x) > Oj(y)−Oj(x) +Oj(x)−Oj(y) = 0.

Taking r = 1, equation (6) is verified.

Proposition 2.2. Let x? be the premium equilibrium of the I-player insurance game. For
each player j, if x?j ∈]x, x[, the player equilibrium x?j depends on the parameters in the fol-
lowing way: it increases with break-even premium πj, solvency coefficient k995, loss volatility
σ(Y ), expense rate ej and decreases with sensitivity parameter βj and capital Kj. When
x?j = x or x, the premium equilibrium is independent of those parameters.

Proof. The premium equilibrium x?j of insurer j solves the necessary Karush-Kuhn-Tucker
conditions:

∇xj
Oj(x

?) +
∑

1≤l≤3

λj?l ∇xj
glj(x

?
j) = 0,

0 ≤ λj?, gj(x
?
j) ≥ 0, gj(x

?
j)

Tλj? = 0,

(7)
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2 A ONE-PERIOD MODEL 11

where λj? ∈ R3 are Lagrange multipliers, see, e.g., Facchinei and Kanzow (2009). In the last
part of equation (7), gj(x

?
j)

Tλj? = 0 is the complementarity equation implying that the l

constraint glj is either active (glj(x
?
j) = 0) or inactive (glj(x

?
j) > 0), but λj?l = 0.

We suppose that x?j ∈]x, x[. Hence, λj?2 = λj?3 = 0. There are two cases: either the
solvency constraint g1

j is active or not. Let us assume the solvency constraint is inactive.
Insurer j’s premium equilibrium verifies ∇xj

Oj(x
?) = 0, i.e.

nj

n

(
1− 2βj

x?j
mj(x?)

+ βj + βj
πj

mj(x?)

)
= 0. (8)

Let xjy be the premium vector with the j component being y, i.e. xjy = (x1, . . . , xj−1, y, xj+1, . . . , xI).
We denote by z a parameter of interest and define the function F as

F j
x(z, y) =

∂Oj

∂xj
(xjy, z),

where the objective function depends (also) on the interest parameter z. Equation (8) can
be rewritten as F j

x?(z, x?j) = 0.

By the continuous differentiability of F with respect to z and y and the fact that
F j
x(z, y) = 0 has at least one solution (z0, y0), we can invoke the implicit function theo-

rem, see Appendix Appendix A.1. So there exists a function ϕ defined in a neighborhood

of (z0, y0) such that F j
x(z, ϕ(z)) = 0 and ϕ(z0) = y0. Furthermore, if ∂F j

x

∂y
(z0, y0) 6= 0, the

derivative of ϕ is given by

ϕ′(z) = −
∂F j

x

∂z
(z, y)

∂F j
x

∂y
(z, y)

∣∣∣∣∣∣
y=ϕ(z)

.

In our case, we have

∂F j
x

∂y
(z, y) =

∂2Oj

∂x2
j

(xjy, z) = −2αj
nj

nmj(x)
< 0.

As a consequence, the sign of ϕ′ is simply

sign(ϕ′(z)) = sign

(
∂F j

x

∂z
(z, ϕ(z))

)
.

Let us consider z = πj. We have

∂F j
x

∂z
(z, y) =

njβj
nmj(x)

> 0.

Thus, the function πj 7→ x?j(πj) is increasing.

Let z be the sensitivity coefficient βj. We have

∂F j
x

∂z
(z, y) =

nj

n

(
−2βj

y

mj(x)
+ 1 +

πj
mj(x)

)
.
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3 REFINEMENTS OF THE ONE-PERIOD MODEL 12

Using F j
x(z, ϕ(z)) = 0, it leads to

∂F j
x

∂z
(z, ϕ(z)) =

nj

n

−1

z
< 0.

Thus, the function βj 7→ x?j(βj) is decreasing. In such a case of an inactive constraint, the
premium equilibrium is independent of the initial portfolio size nj.

When the solvency constraint is active, the premium equilibrium x?j verifies g1
j (x?j) = 0,

i.e.

x?j = πj +
k995σ(Y )

√
nj −Kj

nj(1− ej)
. (9)

Here, the implicit function theorem is not necessary since x?j does not depend on x?−j. We
deduce that x?j is an increasing function of πj, k995, σ(Y ), ej and a decreasing function Kj.

The function nj 7→ x?j(nj) is not necessarily monotone. Let z be nj. Differentiating
Equation (9) with respect to z, we get

ϕ′(z) =
1

z3/2(1− ej)

(
−kσ(Y )

2
+
Kj√
z

)
,

whose sign depends on the value of the other parameters.

3. Refinements of the one-period model

In this section, we propose refinements on the objective and constraint functions of the
previous section.

3.1. Objective function

The objective function given in Subsection 2.3 is based on an approximation of the true
demand function. For insurer j, the expected portfolio size is given by

N̂j(x) = nj × lgj
j(x) +

∑
l 6=j

nl × lgj
l (x),

where lgl
j’s are lapse functions and lgj

j the “renew” function. Note that the expected size

N̂j(x) contains both renewal and new businesses. So, a new objective function could be

Õj(x) =
N̂j(x)

n
(xj − πj),
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3 REFINEMENTS OF THE ONE-PERIOD MODEL 13

where πj is the break-even premium as defined in Subsection 2.3. However, we do not consider

this function, since the function xj 7→ Õj(x) does not verify some generalized convexity
properties, which we will explain in Subsection 3.3. And also, the implicit assumption is
that insurer j targets the whole market: this may not be true in most competitive insurance
markets.

Instead, we will test the following objective function

Õj(x) =
nj lgj

j(x)

n
(xj − πj), (10)

taking into account only renewal business. This function is infinitely differentiable. Using
the definition lgj

j in Equation (1), one can show that the function xj 7→ lgj
j(x) is a strictly

decreasing function, see Appendix Appendix A.3. As for the objective function Oj, maximis-

ing Õj is a trade-off between increasing premium for better expected profit and decreasing
premium for better market share.

3.2. Constraint function

We also change the solvency constraint function xj 7→ g1
j (xj) defined in Equation (4),

which is a basic linear function of the premium xj. We also integrate other insurer premium
x−j in the new constraint function, i.e. xj 7→ g̃1

j (x). We could use the following constraint
function

g̃1
j (x) =

Kj + N̂j(x)(xj − πj)(1− ej)

k995σ(Y )
√
N̂j(x)

− 1,

the ratio of the expected capital and the required solvency capital. Unfortunately, this func-
tion does not respect a generalized convexity property, that we will define in the Subsection
3.3. So instead, we consider a simpler version

g̃1
j (x) =

Kj + nj(xj − πj)(1− ej)

k995σ(Y )
√
N̂j(x)

− 1, (11)

by removing the expected portfolio size N̂j in the numerator. This function is also infinitely
differentiable. The other two constraint functions g2

j , g
3
j are identical as in Subsection 2.4.

3.3. Properties of premium equilibrium

Conditions on the existence of a generalized Nash equilibrium can be found in Facchinei
and Kanzow (2009) or Dutang (2012b). In our setting, we need to show (i) the objective
function Oj(x) is quasiconcave with respect to xj, (ii) the constraint function gj(x) is qua-
siconcave with respect to xj, (iii) the action set {xj ∈ Xj, gj(xj, x−j) ≥ 0} is nonempty.

Recall that a function f : X 7→ Y is concave if ∀x, y ∈ X, ∀λ ∈ [0, 1], we have f(λx +
(1 − λ)y) ≥ λf(x) + (1 − λ)f(y). Note that a convex and concave function is linear. If
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3 REFINEMENTS OF THE ONE-PERIOD MODEL 14

inequalities are strict, we speak about concavity. A function f : X 7→ Y is quasiconcave if
∀x, y ∈ X, ∀λ ∈]0, 1[, we have

f(λx+ (1− λ)y) ≥ min(f(x), f(y)).

Again, if inequalities are strict, we speak about strict quasiconcavity. As for concavity, there
exist special characterizations when f is C2.

Proposition. When f is a differentiable function on an open convex O ⊂ Rn, then f is
quasiconcave if and only if ∀x, y ∈ O, f(x) ≥ f(y)⇒ ∇f(y)T (x− y) ≥ 0.
When f is a C2 function on an open convex O ⊂ Rn, then f is quasiconcave if and only if
∀x ∈ O, ∀d ∈ Rn, dT∇f(x) = 0⇒ dT∇2f(x)d ≤ 0.

Proof. See Theorems 2 and 5 of Diewert et al. (1981).

From the last proposition, it is easy to see that for a C2 univariate function, quasicon-
cavity implies unimodality. Furthermore, f is pseudoconcave if and only if ∀x, y, we have
f(x) > f(y)⇒ ∇f(y)T (x− y) > 0.

Proposition. When f is a C2-function on an open convex O ⊂ Rn, then if ∀x ∈ O, ∀d ∈
Rn, dT∇f(x) = 0 ⇒ dT∇2f(x)d < 0, then f is pseudoconcave, which in turn implies strict
quasiconcavity.

Proof. See Corollary 10.1 of Diewert et al. (1981).

Examples of quasiconcave functions include monotone, concave or log-concave functions.
A univariate quasiconcave function is either monotone or unimodal. More properties can be
found in Diewert et al. (1981). Figure A.4 in Appendix Appendix A.5 relates the different
concepts of convexity.

Proposition 3.1. The I-player insurance game with objective function and solvency con-
straint function defined in Equations (10) and (11), respectively, admits a generalized Nash
premium equilibrium, if for all j = 1, . . . , I, g̃1

j (x) > 0.

Proof. Properties of the expected portfolio size function have been established in Appendix
Appendix A.3. The objective function can be rewritten as

Õj(x) = lgj
j(x, f)(xj − πj),

up to a constant nj/n. Õj has been built to be continuous on RI
+. Note that we stress the

dependence on the price sensitivity function f . Using Appendix Appendix A.4, the gradient
of the objective function is proportional to

∂Õj(x)

∂xj
= lgj

j(x, f)(1− Sj(x)(xj − πj)), where Sj(x) =
∑
l 6=j

f ′j1(xj, xl) lgl
j(x, f).
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3 REFINEMENTS OF THE ONE-PERIOD MODEL 15

The gradients cancel at 1 = Sj(x
j?)(x?j − πj), where xj? = (x1, . . . , xj−1, x

?
j , xj+1, . . . , xI).

The second-order derivative is given by

∂2Õj(x)

∂x2
j

= lgj
j(x, f)

(
(xj − πj)2S2

j (x)− 2Sj(x)− (xj − πj)
∑
l 6=j

f ′j1(xj, xl)
2 lgl

j(x, f)

)
= lgj

j(x, f)2Sj(x) [(xj − πj)Sj(x)− 1]− lgj
j(x, f)(xj − πj)

∑
l 6=j

f ′j1(xj, xl)
2 lgl

j(x, f).

The sign of the second order derivative at xj? is

sign

(
∂2Õj(x

j?)

∂x2
j

)
= − lgj

j(x
j?, f)(x?j − πj)

∑
l 6=j

f ′j1(x?j , xl)
2 lgl

j(x
j?, f).

However, the root of the gradient is such that x?j − πj = 1/Sj(x
j?) > 0. So we have

sign

(
∂2Oj(x

j?)

∂x2
j

)
< 0.

Hence, the function xj 7→ Oj(x) is pseudoconcave, and thus strictly quasiconcave.

Functions g2
j , g

3
j are strictly concave since second-order derivatives are

∂2g2
j (x)

∂2xj
= −e−(xj−x) < 0 and

∂2g3
j (x)

∂2xj
= −e−(x−xj) < 0.

We verify quasiconcavity of the function g̃1
j with respect to xj. The function xj 7→ g̃1

j (x) is
monotone since its gradient

∂g̃1
j (x)

∂xj
=
Kj + nj(xj − πj)(1− ej)

2k995σ(Y )N̂
3/2
j (x)

(
−∂N̂j(x)

∂xj

)
+

nj(1− ej)

k995σ(Y )
√
N̂j(x)

is positive for all x ∈ RI
+. Thus, function xj 7→ g̃1

j (x) is (strictly) quasiconcave.

Let Xj = [x, x]. The constraint set is Cj(x−j) = {xj ∈ Xj, g̃
1
j (xj, x−j) ≥ 0} where xj 7→

g̃1
j (x) is strictly increasing, continuous and by assumption, for all j = 1, . . . , I, g̃1

j (x) > 0.
Thus, Cj(x−j) is a nonempty convex closed set. Furthermore, the point-to-set mapping Cj

is upper semi-continuous by using Example 5.10 of Rockafellar and Wets (1997). Using
Theorem 13 of Hogan (1973) and the continuity of g̃1

j , the point-to-set mapping is also lower
semi-continuous. By Theorem 4.1 of Facchinei and Kanzow (2009), there exists a generalized
Nash equilibrium.

3.3.1. Non-uniqueness issues

Uniqueness of a generalized Nash equilibrium is not guaranteed in general. Furthermore,
there is no particular reason for a player to choose a certain Nash equilibrium rather than
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another one. Rosen (1965) studied uniqueness of such an equilibrium in a jointly convex
game (i.e. where objective functions are convex and the constraint function is common and
convex). To deal with non-uniqueness, he studies a subset of generalized Nash equilibrium,
where Lagrange multipliers resulting from the Karush-Kuhn-Tucker (KKT) conditions are
normalized. Such a normalized equilibrium is unique given a scale of the Lagrange multiplier
when the constraint function verifies additional assumptions. Other authors such as von
Heusinger and Kanzow (2009) or Facchinei et al. (2007) define normalized equilibrium when
Lagrange multipliers are set equal.

Another way is to look for generalized Nash equilibria having some specific properties,
such as Pareto optimality. The selection of the equilibrium is particularly developed for
games with finite action sets. In that setting, one can also use a mixed strategy, by playing
ramdomly one among many equilibrium strategies.

3.3.2. Parameter sensitivity

Proposition. Let x? be a premium equilibrium of the I-player insurance game. For each
player j, if x?j ∈]x, x[, player equilibrium x?j depends on parameter in the following way: it
increases with break-even premium πj, solvency coefficient k995, loss volatility σ(Y ), expense
rate ej and decreases with lapse parameter µj, αj and capital Kj. Otherwise when x?j = x
or x, premium equilibrium is independent of any parameters.

Proof. As explained in Appendix Appendix A.2, the KKT conditions at a premium equilib-
rium x? are such there exist Lagrange multipliers λj?,

∂Õj

∂xj
(x)− λj?1

∂g̃1
j

∂xj
(x) = 0,

when assuming g2
j , g

3
j functions are not active. And the complementarity constraint is such

that λj?1 × g̃1
j (x?) = 0.

If the solvency constraint g̃1
j is inactive, then we necessarily have λ?j1 = 0. Let xjy be the

premium vector with the j component being y, i.e. xjy = (x1, . . . , xj−1, y, xj+1, . . . , xI). We
denote by z a parameter of interest, say for example ej. We define the function F as

F j
x(z, y) =

∂Oj

∂xj
(xjy, z),

where the objective function depends on the interest parameter z. By the continuous dif-
ferentiability of F with respect to z and y, we can invoke the implicit function theorem, see
Appendix Appendix A.1. So there exists a function ϕ such that F j

x(z, ϕ(z)) = 0, and the
derivative is given by

ϕ′(x) = −
∂F j

x

∂z
(z, y)

∂F j
x

∂y
(z, y)

∣∣∣∣∣∣
y=ϕ(z)

.
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In our case1, we have

F j
x(z, y) =

nj

n
lgj

j(x
j
y)[1− Sj(x

j
y)(y − πj)],

and
∂F j

x

∂z
(z, y) =

∂2Oj

∂z∂xj
(xjy, z), and

∂F j
x

∂y
(z, y) =

∂2Oj

∂x2
j

(xjy, z).

The first-order derivative is given by

∂F j
x

∂y
(z, y) = 2

nj

n
lgj

j(x
j
y)Sj(x

j
y)
[
(y − πj)Sj(x

j
y)− 1

]
−nj

n
lgj

j(x
j
y)(y−πj)

∑
l 6=j

f ′j1(y, xl)
2 lgl

j(x
j
y).

Using F j
x(z, ϕ(z)) = 0 whatever z represents, it simplifies to

∂F j
x

∂y
(z, ϕ(z)) = −nj

n
lgj

j(x
j
ϕ(z))(ϕ(z)− πj)

∑
l 6=j

f ′j1(ϕ(z), xl)
2 lgl

j(x
j
ϕ(z)).

Let z now be the insurer’s break-even premium z = πj. We have

∂F j
x

∂z
(z, y) = nj lgj

j(x
j
y)Sj(x

j
y).

Thus, the derivative of ϕ is

ϕ′(z) =
Sj

(
xjϕ(z)

)
(ϕ(z)− z)

∑
l 6=j

f ′j1 (ϕ(z), xl)
2 lgl

j

(
xjϕ(z)

) .
By definition, F j

x(z, ϕ(z)) = 0 is equivalent to

1 = Sj

(
xjϕ(z)

)
(ϕ(z)− z).

Thus ϕ(z)− z > 0. We conclude that ϕ′(z) > 0, i.e. the function πj 7→ x?j(πj) is increasing.

Let z be the intercept lapse parameter z = µj. By differentiating the lapse probability,
we have

∂ lgj
j

∂z
(xjy) = − lgj

j(x
j
y)
∑
l 6=j

lgl
j(x

j
y) and

∂ lgk
j

∂z
(xjy)

∣∣∣∣∣
j 6=k

= − lgk
j (xjy)

∑
l 6=j

lgl
j(x

j
y) + lgk

j (xjy).

We get

∂F j
x

∂z
(z, y) = −nj lgj

j(x
j
y)(1− lgj

j(x
j
y))
[
1− Sj(x

j
y)(y − πj)

]
− nj lgj

j(x
j
y)

2Sj(x
j
y).

1To simplify, we do not stress the dependence of lgk
j and Sj on f .
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3 REFINEMENTS OF THE ONE-PERIOD MODEL 18

Note the first term when y = ϕ(z) since F j
x(z, ϕ(z)) = 0. We finally obtain

ϕ′(x) = −
Sj

(
xjϕ(z)

)
lgj

j

(
xjϕ(z)

)
(ϕ(z)− z)

∑
l 6=j

f ′j1 (ϕ(z), xl)
2 lgl

j

(
xjϕ(z)

) .
Using 1 = Sj

(
xjϕ(z)

)
(ϕ(z)− z), we have

ϕ′(x) = −
Sj

(
xjϕ(z)

)2

lgj
j

(
xjϕ(z)

)
∑
l 6=j

f ′j1 (ϕ(z), xl)
2 lgl

j

(
xjϕ(z)

) < 0.

Thus, the function µj 7→ x?j(µj) is decreasing.

Let z be the slope lapse parameter z = αj.

∂ lgj
j

∂z
(xjy) = − lgj

j(x
j
y)
∑
l 6=j

∆j,l(x
j
y) lgl

j(x
j
y)

and
∂ lgk

j

∂z
(xjy)

∣∣∣∣∣
j 6=k

= − lgk
j (xjy)

∑
l 6=j

∆j,l(x
j
y) lgl

j(x
j
y) + lgk

j (xjy)∆j,k(xjy),

where ∆j,l(x
j
y) = xj/xl if we use the premium ratio function fj and xj − xl if we use the

premium difference function f̃j. We get

∂F j
x

∂z
(z, y) = −nj lgj

j(x
j
y)S

∆
j (xjy)[1− Sj(x

j
y)(y − πj)]

− nj lgj
j(x

j
y)

2S∆
j (xjy)− nj lgj

j(x
j
y)
∑
l 6=j

f ′j1(y, xl)∆j,l(x
j
y) lgl

j(x
j
y),

where S∆
j (xjy) =

∑
l 6=j ∆j,l(x

j
y) lgl

j(x
j
y). Again the first term cancels when y = ϕ(z). Hence,

we have

ϕ′(z) = −
lgj

j

(
xjϕ(z)

)
S∆
j

(
xjϕ(z)

)
+
∑

l 6=j f
′
j1(ϕ(z), xl)∆j,l lgl

j

(
xjϕ(z)

)
(ϕ(z)− z)

∑
l 6=j

f ′j1 (ϕ(z), xl)
2 lgl

j

(
xjϕ(z)

) .

Using 1 = Sj

(
xjϕ(z)

)
(ϕ(z)− z), we have

ϕ′(z) = −Sj

(
xjϕ(z)

) lgj
j

(
xjϕ(z)

)
S∆
j

(
xjϕ(z)

)
+
∑

l 6=j f
′
j1(ϕ(z), xl)∆j,l

(
xjϕ(z)

)
lgl

j

(
xjϕ(z)

)
∑
l 6=j

f ′j1 (ϕ(z), xl)
2 lgl

j

(
xjϕ(z)

) .
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3 REFINEMENTS OF THE ONE-PERIOD MODEL 19

If we use the premium ratio function, we have ∆j,l(.) = ϕ(z)/xl > 0 as well as f ′j1 (ϕ(z), xl) >
0. It is immediate that ϕ′(z) < 0. Otherwise when we use the premium difference function
(∆j,l(.) = ϕ(z)− xl), we cannot guarantee that the numerator is positive.

If the solvency constraint g̃1
j is active, then we necessarily have λ?j1 > 0, g1

j (x?) = 0.
Let xjy be the premium vector with the j component being y as above. We denote by z a
parameter of interest, then we define the function G as

Gj
x(z, y) = g̃1

j (xjy, z),

where the objective function depends on the interest parameter z. Again, we apply the
implicit function theorem with a function φ such that Gj

x(z, φ(z)) = 0. The first-order
derivative is given by

∂Gj
x

∂y
(z, y) =

∂g1
j

∂xj
(z, y) > 0,

since xj 7→ g̃1
j is a strictly increasing function. Therefore, the sign of φ′ is

sign(φ′(z)) = −sign

(
∂Gj

x

∂z
(z, φ(z))

)
.

Let z = πj be the actuarial premium. We have

∂Gj
x

∂z
(z, y) = − nj(1− ej)

k995σ(Y )
√
N̂j(x

j
y)
< 0,

independently of y or z. So, sign(φ′(z)) > 0, i.e. the function πj 7→ x?j(πj) is increasing as
in the previous case.

Let z = Kj be the capital. We have

∂Gj
x

∂z
(z, y) =

1

k995σ(Y )
√
N̂j(x

j
y)
> 0.

So sign(φ′(z)) < 0, i.e. the function Kj 7→ x?j(Kj) is decreasing.

Let z = σ(Y ) be the actuarial premium. We have

∂Gj
x

∂z
(z, y) = − 1

z2
× Kj + nj(y − πj)(1− ej)

k995

√
N̂j(x

j
y)

,

which simplifies to ∂Gj
x

∂z
(z, φ(z)) = −1/z < 0 using the definition of Gj. Thus, the function

σ(Y ) 7→ x?j(σ(Y )) is decreasing. By a similar reasoning, we have for z = k995, that φ is
decreasing.
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4 NUMERICAL ILLUSTRATION 20

4. Numerical illustration

All numerical applications are carried out with the R software, R Core Team (2012), cf.
Appendix Appendix A.2 for computation details. We start with the one-period model of
Section 2, referred to as the simple model. Then, we continue with the Section 3’s model,
referred to as the refined model.

4.1. The simple model

4.1.1. Base parameters

We consider a three-player game operating a 10 000-customer insurance market, i.e.
n = 10000, I = 3. Insurer initial portfolio sizes are (n1, n2, n3) = (4500, 3200, 2300). The
portfolio size is chosen such that player 1 is the leader, player 2 the challenger and player 3
the outsider with 45%, 32% and 23% market shares, respectively.

We consider two types of loss models: (i) loss E(Y ) = 1, σ(Y ) = 4.472, Poisson-
Lognormal model, (ii) loss E(Y ) = 1, σ(Y ) = 9.487, Negative Binomial-Lognormal model.
The loss history is such that the actuarially based premiums āj,0’s and the market premium
m̄0 are given in Table 2.

P1 P2 P3 market

PLN 1.129 1.227 1.029 1.190
NBLN 1.142 1.258 1.095 1.299

Table 2: Actuarially based premium āj,0 and market premium m̄0

The weight parameters ωj used in the computation of the insurer break-even premium
are ω = (1/3, 1/3, 1/3). Before giving the sensitivity parameters βj, we present the lapse
models. For customer behavior, we have two parameters µj, αj per player given a price
sensitivity function. At first, we consider the price function based on the premium ratio

f̄j(xj, xl) = µj + αj
xj
xl
.

The central lapse rate parameters (i.e. lapse rate when every insurers use the same premium)
are set to 10%, 14% and 18% for j = 1, 2 or 3, respectively. In addition to this first constraint,
we also impose that an increase of 5% compared to other players increases the total lapse
rate by 5%. Let x1 = (1, 1, 1) and x1.05 = (1.05, 1, 1). The two constraints are equivalent to

lg2
1(x1) + lg3

1(x1) = 10% and lg2
1(x1.05) + lg3

1(x1.05) = 15%

for Insurer 1. We get µ1 = −12.14284 and α1 = 9.25247. With this central lapse rate pa-
rameters, the expected numbers of lost policies when all insurers propose the same premium
are 450.1, 448.0 and 414.0.
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4 NUMERICAL ILLUSTRATION 21

Secondly, we consider the price function based on the premium difference

f̃j(xj, xl) = µ̃j + α̃j(xj − xl).

Calibration is done similarly as for fj. In Figure 1, we plot the total lapse rate function of
insurer j defined as

xj
rj7→
∑
l 6=j

lgl
j(x),

where x−j = 1.4 for other player than j. On the left and right graphs, we plot total lapse
rate functions rj for the price functions f̄j and f̃j, respectively. In the central graph, we plot
the total lapse rate function of player 1 with the two different price functions. The horizontal
line corresponds to x−j = 1.4 and its intersections with total lapse rate curves correspond to
central lapse rates.

Figure 1: Total lapse rate functions

Price sensitivity parameters βj of objective functions are fitted using 1−βj
(

xj

mj(x)
− 1
)
≈

lgj
j(x). With x = (1.05, 1, 1), we get

βj =
1− lgj

j(x)

0.05
.

Using the premium ratio function f̄j, we have (β1, β2, β3) = (3.0, 3.8, 4.6).

The remaining parameters are capital values and the expense rates. Capital values
(K1, K2, K3) are set such that the solvency coverage ratio is 133%. Expense rates are
(e1, e2, e3) = (15%, 15%, 15%).

4.1.2. Base results

Since we consider two loss models (PLN, NBLN) and two price sensitivity functions f̄j, f̃j
(denoted by ‘ratio’ and ‘diff’, respectively), we implicitly define four sets of parameters, which
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4 NUMERICAL ILLUSTRATION 22

differ on loss model and price sensitivity functions. In Table 3, we report premium equilibria
of the four models (PLN-ratio, PLN-diff, NBLN-ratio and NBLN-diff), differences between
equilibrium vector x? and actuarial and average market premium, and expected difference
in portfolio size (∆N̂1 negative means insurer 1 expects to lose customers).

x?1 x?2 x?3 ||x? − ā||2 ||x? − m̄||2 ∆N̂1 ∆N̂2 ∆N̂3

PLN-ratio 1.642 1.612 1.558 0.6914 0.5171 -258.7 -46.26 305
PLN-diff 1.600 1.577 1.527 0.5934 0.4316 -280.5 -63.11 343.6
NBLN-ratio 1.758 1.727 1.676 0.9354 0.5362 -238.9 -37.78 276.7
NBLN-diff 1.713 1.690 1.643 0.8119 0.443 -273.9 -55.78 329.7

Table 3: Base premium equilibrium

The premium equilibrium vector x? is quite similar between the four different tested
models. The change between price sensitivity functions f̄j, f̃j from an insurer point of view
is a change in sensitivity parameter βj in its objective function. The change between f̄j, f̃j
results in a slight increase of premium equilibrium whereas the change between PLN or
NBLN loss models is significantly higher. Unlike the sensitivity function change, the choice
of loss model does not affect the objective function but the constraint function (an increase
in σ(Y )).

4.1.3. Sensitivity analysis to parameters

In Tables 4 and 5, we perform a sensitivity analysis considering the NBLN-ratio model
as the base model. Table 4 reports the analysis with respect to capital (K3 decreases) and
sensitvity parameter (βj increases). Table 5 focuses on actuarially based premiums (āj,0
increases), average market premium (m̄0 increases) and credibility factors (ωj increases).
The results of this sensitivity analysis are in line with Proposition 2.2.

In Table 5, we also provide a comparison with a one-player optimization by testing the
following objection function

OF
j (xj) =

nj

n

(
1− βj

(
xj
m0

− 1

))
(xj − πj) .

This objective function OF
j does not depend on other competitor premiums. Insurers opti-

mize their premium xj against the past market premium m0. We observe that the premium
equilibrium x? is well higher than “optimized” premiums xF?.

4.1.4. Loss uncertainty analysis

On Figure 2, we plot the histograms of insurer capitals at the game end for the base case,
i.e. the NBLN loss with the price ratio function. Knowing that the initial capital values
are (K1, K2, K3) = (2683, 2263, 1918), the premium equilibrium x? = (1.758, 1.727, 1.676)
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x?1 x?2 x?3 ||x? − ā||2 ||x? − m̄0||2 ∆N̂1 ∆N̂2 ∆N̂3

base 1.758 1.727 1.676 0.9354 0.5362 -238.9 -37.78 276.7
capital down 1.845 1.79 1.885 1.003 1.045 -70.3 225 -154.7

x?1 x?2 x?3 ||x? − ā||2 ||x? − m̄0||2 ∆N̂1 ∆N̂2 ∆N̂3

base 1.758 1.727 1.676 0.9354 0.5362 -238.9 -37.78 276.7
sensitivity up 1.672 1.623 1.644 0.4655 0.4707 -174.2 119.9 54.35

Table 4: Sensitivity to capital and βj parameters

x?1 x?2 x?3 ||x? − ā||2 ||x? − m̄0||2 ∆N̂1 ∆N̂2 ∆N̂3

base 1.758 1.727 1.676 0.9354 0.5362 -238.9 -37.78 276.7
actuarial up 1.801 1.725 1.724 0.5672 0.752 -314.3 136.6 177.7
market up 1.933 1.876 1.873 1.224 0.6252 -223.4 83.93 139.5

x?1 x?2 x?3 ||x? − ā||2 ||x? − m̄0||2 ∆N̂1 ∆N̂2 ∆N̂3

base 1.758 1.727 1.676 0.9354 0.5362 -238.9 -37.78 276.7
credibility up 1.758 1.702 1.718 0.6693 0.6794 -205.7 120.8 84.87

x?1 x?2 x?3 ||x? − ā||2 ||x? − m̄0||2 ∆N̂1 ∆N̂2 ∆N̂3

base 1.758 1.727 1.676 0.9354 0.5362 -238.9 -37.78 276.7
follow 1.489 1.463 1.406 0.2587 0.07469 -278.1 -65.75 343.8

Table 5: Sensitivity to break-even premium

contains very high safety margins. From an insured point of view, x? seems unfair compared
to the actuarial premium a = (1.142, 1.258, 1.095). In practice, two scenarios seem natural:
(i) some customers leave the market because they cannot afford such high premium and start
a mutual fund or (ii) no customer notices this gap.

4.2. The refined model

Now, we consider the refined model of Subsection 3. We use the same set of parameters
as in Subsection 4.1 for a 3-player game. As discussed above, a generalized premium equi-
librium is not necessarily unique: in fact there are many of them. In Tables 6 and 7, we
report generalized Nash equilibria found with different starting points (210 feasible points
randomly drawn in the hypercube [x, x]I). The premium equilibria are sorted according to
their difference to the average market premium m̄.

In Table 7, this computation is done for the Negative Binomial-Lognormal loss model
(NBLN), whereas Table 6 reports the computation for the Poisson-Lognormal model (PLN).
Both tables use the price ratio function f̄j. The last column of those tables reports the
number of optimization sequences converging to a given equilibrium. Most of the time,
equilibriums found have one of their component hitting one of the barriers x, x. It may
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Figure 2: Histograms of capitals, sample size of 5000

x?1 x?2 x?3 ||x? − ā||2 ||x? − m̄0||2 ∆N̂1 ∆N̂2 ∆N̂3 Nb

1 1 1 0.1132 0.0084 -19 -16 35 1
1.3041 1.025 1.0283 0.0497 0.0645 -2479 1264 1216 13

1 1.3183 1.0065 0.0964 0.0754 1001 -1899 898 4
1 1.0001 1.3427 0.1162 0.0896 722 701 -1423 3

1.0185 1.3694 1.3993 0.133 0.2215 2646 -1507 -1139 114
1.3856 1.0844 1.4501 0.1144 0.2696 -1729 2758 -1029 142
1.419 1.4541 1.1247 0.1121 0.3004 -1564 -1233 2797 111
1.0449 1.3931 3 3.4379 3.9075 3787 -1490 -2297 1

3 1.1738 1.5381 3.2767 4.0418 -4490 5412 -922 3

Table 6: Premium equilibria - PLN price ratio function

x?1 x?2 x?3 ||x? − ā||2 ||x? − m̄0||2 ∆N̂1 ∆N̂2 ∆N̂3 Nb

1.3644 1.0574 1.0661 0.1239 0.0611 -2635 1397 1239 10
1 1.3942 1.0208 0.1201 0.1003 1315 -2258 943 1
1 1.001 1.4206 0.1398 0.1192 851 818 -1670 3

1.0044 1.4216 1.4569 0.0887 0.1781 3333 -1923 -1411 109
1.4875 1.1726 1.5792 0.1836 0.2781 -1622 2696 -1075 116
1.555 1.6092 1.2508 0.2323 0.3598 -1369 -1210 2579 97
1.561 1.2526 3 3.0865 3.5394 -1405 3695 -2291 4
1.7346 3 1.4348 3.2546 3.7733 -955 -3174 4129 5

3 1.3699 1.7658 3.4794 3.7789 -4482 5299 -817 4
3 1.9041 1.5497 3.6941 4.0712 -4462 -743 5205 12
3 1.4664 3 6.226 6.8384 -4485 6746 -2261 2
3 3 1.7542 6.407 7.0956 -4354 -2970 7324 4

Table 7: Premium equilibria - NBLN price ratio function
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appear awkward that such points are optimal in a sense, but one must not forget the Lagrange
multipliers (not reported here). Those are not zero when a constraint gij is active, (where
i = 1, 2, 3 and j = 1, . . . , I). Thus, it is not easy to understand the difference between two
premium equilibria. On Figures 3a and 3b, we plot a 3-dimensional graph with premium
equilibria of Tables 6 and 7. We observe that most premium equilibria are near the pure
premium point (E(Y ), E(Y ), E(Y )) = (1, 1, 1). Thus, these premium equilibria appear more
fair than the premium equilibrium for the simple model of Subsection 4.1.

(a) PLN (b) NBLN

Figure 3: 3D plot of premium equilibria

Tables A.8 and A.9 in Appendix Appendix A.6 report the computation when we use
the price difference function f̃j. The number of different premium equilibria is similar as
in the previous case, but most optimization sequences converge. For example for the PLN
loss model, there were 392 converging sequences with the price ratio function f̄j against 956
with the price difference function f̃j. Premium equilibria seem easier to find for this price
function.

This numerical application reveals that in our refined game, we have many generalized
premium equilibria. In a game context, we can select one particular generalized equilibria
for its properties or randomly draw one of them. In our insurance context, a possible way
to deal with multiple equilibria is to choose as a premium equilibrium the generalized Nash
equilibrium x? that is closest to the average market premium m̄. This option is motivated
by the high level of competition present in most mature insurance markets (e.g. Europe
and North America) where each insurer sets the premium with a view towards the market
premium. However, this solution has drawbacks: while a single Nash equilibrium may be
seen as a self-enforcing solution, multiple generalized Nash equilibria cannot be self-enforcing.
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5. Conclusion

This paper assesses the suitability of noncooperative game theory of insurance market
modelling. It extends the one-player models of Taylor (1986, 1987) and subsequent extensions
based on optimal control theory. The game-theoretic approach proposed in this paper gives a
first indicator of the effect of competition on the insurer solvency. The proposed game models
a rational behavior of insurers in setting premiums taking into account other insurers. The
ability of an insurer to sell contracts is essential for its survival. Unlike the classic risk theory
where the collection of premiums is fixed per unit of time, the main source of risk for an
insurance company in our game is a premium risk.

The game can be extended in various directions. A natural next step is to consider
adverse selection among policyholders, since insurers do not propose the same premium to
all customers. A second extension is to model investment results as well as loss reserves and
reinsurance treaties. Furthermore, in practice, insurers play an insurance game over several
years, gather new information on incurred losses, available capital and competition level. In
addition from being dynamic, the market premium shows patterns of cycles with hard and
soft phases, known as insurance market cycles, see, e.g., Feldblum (2001) for a recent survey.
Hence, a dynamic game model for insurance markets to explain the occurence of market
cycles could be of particular interest. This will be pursued in a future study.
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Appendix A. Appendix

Appendix A.1. Implicit function theorem

Below the implicit function theorem, see, e.g., (Zorich, 2000, Chap. 8).

Theorem. Let F be a bivariate C1 function on some open disk with center in (a, b), such
that F (a, b) = 0. If ∂F

∂y
(a, b) 6= 0, then there exists an h > 0, and a unique function ϕ defined

for ]a− h, a+ h[, such that

ϕ(a) = b and ∀|x− a| < h, F (x, ϕ(x)) = 0.

Moreover on |x− a| < h, the function ϕ is C1 and

ϕ′(x) = −
∂F
∂x

(x, y)
∂F
∂y

(x, y)

∣∣∣∣∣
y=ϕ(x)

.

Appendix A.2. Computation details

Computation is based on a Karush-Kuhn-Tucker (KKT) reformulation of the generalized
Nash equilibrium problem (GNEP). We present briefly the problem reformulation and refer
the interested readers to e.g. Facchinei and Kanzow (2009), Dreves et al. (2011) or Dutang
(2012a). In our setting we have I players and three constraints for each player. For each j
of the I subproblems, the KKT conditions are

∇xj
Oj(x)−

∑
1≤m≤3

λjm∇xj
gmj (x) = 0,

0 ≤ λj ⊥ gj(x) ≥ 0.
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The inequality part is called the complementarity constraint. The reformulation proposed
uses a complementarity function φ(a, b) to reformulate the inequality constraints λj, gj(x) ≥
0 and λjTgj(x) = 0.

A point satisfying the KKT conditions is also a generalized Nash equilibrium if the
objective functions are pseudoconcave and a constraint qualification holds. We have seen
that objective functions are either strictly concave or pseudoconcave. Whereas constraint
qualifications are always verified for linear constraints, or strictly monotone functions, see
Theorem 2 of Arrow and Enthoven (1961), which is also verified.

By definition, a complementarity function is such that φ(a, b) = 0 is equivalent to a, b ≥ 0
and ab = 0. A typical example is φ(a, b) = min(a, b) or φ(a, b) =

√
a2 + b2 − (a + b) called

the Fischer-Burmeister function. With this tool, the KKT condition can be rewritten as

∇xj
Lj(x, λ

j) = 0

φ.(λ
j, gj(x)) = 0

,

where Lj is the Lagrangian function for the subproblem j and φ. denotes the component
wise version of φ. So, subproblem j reduces to solving a so-called nonsmooth equation.
In this paper, we use the Fischer-Burmeister complementarity function. This method is
implemented in the R package GNE1.

Appendix A.3. Properties of multinomial logit function

We recall that the choice probability function is defined as

lgk
j (x) = lgj

j(x)
(
δjk + (1− δjk)efj(xj ,xk)

)
,

and

lgj
j(x) =

1

1 +
∑
l 6=j

efj(xj ,xl)
,

where the summation is over l ∈ {1, . . . , I} − {j} and fj is the price function. The price
function fj goes from (t, u) ∈ R2 7→ fj(t, u) ∈ R. Partial derivatives are denoted by

∂fj(t, u)

∂t
= f ′j1(t, u) and

∂fj(t, u)

∂u
= f ′j2(t, u).

Derivatives of higher order use the same notation principle.

The lg function has the good property to be infinitely differentiable. We have

∂ lgj
j(x)

∂xi
= − ∂

∂xi

(∑
l 6=j

efj(xj ,xl)

)
1(

1 +
∑
l 6=j

efj(xj ,xl)

)2 .

1Dutang (2012c).
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Since we have

∂

∂xi

∑
l 6=j

efj(xj ,xl) = δji
∑
l 6=j

f ′j1(xj, xl)e
fj(xj ,xl) + (1− δji)f ′j2(xj, xl)e

fj(xj ,xi),

we deduce

∂ lgj
j(x)

∂xi
= −δji

∑
l 6=j

f ′j1(xj, xl)e
fj(xj ,xl)(

1 +
∑
l 6=j

efj(xj ,xl)

)2 − (1− δji)f ′j2(xj, xl)
f ′j1(xj, xi)(

1 +
∑
l 6=j

ef
′
j1(xj ,xl)

)2 .

This is equivalent to

∂ lgj
j(x)

∂xi
= −

(∑
l 6=j

f ′j1(xj, xl) lgl
j(x)

)
lgj

j(x)δij − f ′j2(xj, xl) lgi
j(x) lgj

j(x)(1− δij).

Furthermore,

∂ lgj
j(x)

∂xi

(
δjk + (1− δjk)efj(xj ,xk)

)
= −

(∑
l 6=j

f ′j1(xj, xl) lgl
j(x)

)
lgk

j (x)δij−f ′j2(xj, xi) lgi
j(x) lgk

j (x)(1−δij).

and also

lgj
j(x)

∂

∂xi

(
δjk + (1− δjk)efj(xj ,xk)

)
= lgj

j(x)(1−δjk)
(
δikf

′
j2(xj, xk)efj(xj ,xk) + δijf

′
j1(xj, xk)efj(xj ,xk)

)
.

Hence, we get

∂ lgk
j (x)

∂xi
= −δij

(∑
l 6=j

f ′j1(xj, xl) lgl
j(x)

)
lgk

j (x)− (1− δij)f ′j2(xj, xi) lgi
j(x) lgk

j (x)

+ (1− δjk)
[
δijf

′
j1(xj, xk) lgk

j (x) + δikf
′
j2(xj, xk) lgk

j (x)
]
.
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Similarly, the second order derivative is given by1

∂2 lgk
j (x)

∂xm∂xi
= −δij

(
δjm

∑
l 6=j

f ′′j11(xj, xl) lgl
j +(1− δjm)f ′′j12(xj, xm) lgm

j +
∑
l 6=j

f ′j1(xj, xl)
∂ lgl

j

∂xm

)
lgk

j

− δij

(∑
l 6=j

f ′j1(xj, xl) lgl
j

)
∂ lgk

j

∂xm

−(1−δij)

((
δjmf

′′
j21(xj, xi) + δimf

′′
j22(xj, xi)

)
lgi

j lgk
j +f ′j2(xj, xi)

∂ lgi
j

∂xm
lgk

j +f ′j2(xj, xi) lgi
j

∂ lgk
j

∂xm

)

+ (1− δjk)δij

((
f ′′j11(xj, xk)δjm + f ′′j12(xj, xk)δkm

)
lgk

j +f ′j1(xj, xk)
∂ lgk

j

∂xm

)

+ (1− δjk)δik

((
f ′′j21(xj, xk)δjm + f ′′j22(xj, xk)δim

)
lgk

j +f ′j2(xj, xk)
∂ lgk

j

∂xm

)
.

Appendix A.4. Portfolio size function

We recall that the expected portfolio size of insurer j is defined as

N̂j(x) = nj × lgj
j(x) +

∑
l 6=j

nl × lgj
l (x),

where nj’s denotes last year portfolio size of insurer j and lgk
j is defined in equation (1).

The function φj : xj 7→ lgj
j(x) has the following derivative

φ′j(xj) =
∂ lgj

j(x)

∂xj
= −

(∑
l 6=j

f ′j1(xj, xl) lgl
j(x)

)
lgj

j(x).

For the two considered price function, we have

f ′j1(xj, xl) = αj
1

xl
and f̃ ′j1(xj, xl) = α̃j,

which are positive. So, the function φj will be a decreasing function.

For l 6= j, the function φl : xj 7→ lgj
l (x) has the following derivative

φ′l(xj) =
∂ lgj

l (x)

∂xj
= −f ′j2(xl, xj) lgj

l (x) lgj
l (x)+f ′j2(xl, xj) lgj

l (x) = f ′j2(xl, xj) lgj
l (x)(1−lgj

l (x)).

For the two considered price function, we have

f ′j2(xj, xl) = −αj
xj
x2
l

and f̃ ′j2(xj, xl) = −α̃j,

1We remove the variable x when possible.
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which are negative. So, the function φl will also be a decreasing function.

Therefore the portfolio size xj 7→ N̂j(x) function has the following derivative

∂N̂j(x)

∂xj
= −nj

(∑
l 6=j

f ′j1(xj, xl) lgl
j(x)

)
lgj

j(x) +
∑
l 6=j

nlf
′
j2(xl, xj) lgj

l (x)(1− lgj
l (x)).

Hence, it is decreasing from the total market size
∑

l nl to 0. So the function xj 7→ N̂j is
both a quasiconcave and a quasiconvex function.

Therefore, using the C2 characterization of quasiconcave and quasiconvex functions, we
have that

∂N̂j(x)

∂xj
= 0⇒ ∂2N̂j(x)

∂x2
j

= 0.

Note that the function N̂j(x) is horizontal (i.e. has gradient of 0) when xj → 0 and xj → +∞
for fixed x−j.

Finally, we also need

∂2 lgj
j(x)

∂x2
j

= −
∑
l 6=j

f ′j1(xj, xl)
∂ lgl

j

∂xj
lgj

j −

(∑
l 6=j

f ′j1(xj, xl) lgl
j

)
∂ lgj

j

∂xj
,

as f ′′j11 is 0 for the two considered functions. Since,

∂ lgl
j

∂xj

∣∣∣∣∣
l 6=j

= − lgl
j

∑
n 6=j

f ′j1(xj, xn) lgn
j + lgl

j f
′
j1(xj, xl) and

∂ lgj
j

∂xj
= −

(∑
l 6=j

f ′j1(xj, xl) lgl
j

)
lgj

j,

then we get

∂2 lgj
j(x)

∂x2
j

= − lgj
j

∑
l 6=j

(
f ′j1(xj, xl)

)2
lgl

j +2

(∑
l 6=j

f ′j1(xj, xl) lgl
j

)2

lgj
j .

Appendix A.5. Convexity concepts

Appendix A.6. Numerical applications for the refined one-period game
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Figure A.4: Convexity and generalized convexity, from Bazaraa et al. (2006)

x?1 x?2 x?3 ||x? − ā||2 ||x? − m̄0||2 ∆N̂1 ∆N̂2 ∆N̂3 Nb

3 1.0705 1.085 3.1581 3.793 -4500 2390 2110 1
1.3535 1.0236 1.0273 0.0604 0.092 -2430 1231 1200 17
1.4282 1.084 1.4974 0.1587 0.3395 -1707 2746 -1039 108
1.4508 1.4873 1.1251 0.1444 0.3524 -1561 -1243 2804 117

3 2.7871 2.7716 8.2894 9.7537 -1494 652 842 30
1.4514 1.1173 3 3.4138 3.9547 -1379 3678 -2298 2

3 3 2.8892 9.4096 10.9558 -352 -272 623 3
2.3218 2.3114 2.2994 3.7533 4.7485 -104 -12 116 511

3 3 3 9.8033 11.3748 -19 -16 35 1
2.8669 2.8507 3 8.8286 10.3147 205 314 -519 13
2.8287 3 2.798 8.526 9.9912 314 -900 586 15

1 1 1.4139 0.1463 0.136 714 698 -1412 6
1 1.3819 1.0065 0.1178 0.1133 966 -1865 899 11

1.0168 1.4362 1.4698 0.2009 0.3221 2576 -1460 -1117 118
1.0396 1.4538 3 3.4692 3.9526 3553 -1254 -2299 3

Table A.8: Premium equilibria - PLN with price difference function
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x?1 x?2 x?3 ||x? − ā||2 ||x? − m̄0||2 ∆N̂1 ∆N̂2 ∆N̂3 Nb

3 1.7906 1.5134 3.5479 3.8892 -4498 -357 4856 9
3 3 1.7839 6.436 7.1316 -4487 -3167 7654 1

1.4048 1.0537 1.0642 0.1413 0.0802 -2583 1357 1226 11
1.507 1.1725 1.5968 0.2059 0.3061 -1609 2695 -1086 128
1.5527 1.6031 1.2504 0.2267 0.3525 -1359 -1217 2576 106

3 2.8239 2.8087 7.9441 8.838 -1191 509 683 38
1.5495 1.2359 3 3.0797 3.5277 -1182 3479 -2297 2
1.6611 3 1.3993 3.172 3.6768 -616 -3197 3813 6

3 3 2.9022 8.812 9.7701 -305 -238 543 2
3 2.9326 3 8.912 9.877 -219 321 -102 6

2.4177 2.4107 2.3994 4.0024 4.6571 -83 -21 104 542
2.8877 2.874 3 8.3306 9.273 175 264 -439 11
2.8559 3 2.8279 8.0789 9.0088 259 -759 500 20

1 1.0214 3 3.065 3.4201 1277 1023 -2299 1
1 1.4896 1.5299 0.1449 0.2675 3127 -1790 -1338 56

Table A.9: Premium equilibria - NBLN with price difference function




