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Abstract

The paper presents two new results in the domain of the elastoplastic buckling
and post-buckling of beams under axial compression. (i) First, the tangent modulus
critical load, the buckling mode and the initial slope of the bifurcated branch are
given for a Timoshenko beam (with the transverse shear effects). The result is
derived from the 3D J2 flow plastic bifurcation theory with the von Mises yield
criterion and a linear isotropic hardening. (ii) Second, use is made of a specific
method in order to provide the asymptotic expansion of the post-critical branch
for a Euler-Bernoulli beam, exhibiting one new non-linear fractional term. All the
analytical results are validated by finite element computations.

Key words: Axially compressed beams, Bifurcation, Buckling, Elastoplasticity,
Asymptotic developments

1 Introduction

Failure of slender or thin structures is mainly due to the buckling phenomenon
and necessitates the analysis of the buckling and post-buckling behaviors for
their mechanical design, namely the calculation of the critical loads, the bi-
furcation modes and the post-critical equilibrium branches.
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The buckling of a straight beam under axial compression is the most com-
monly studied in the literature, either in elasticity or in plasticity. The first
critical load of a compressed beam in elasticity was found as the solution of an
eigenvalue problem by Euler at the beginning of the eighteenth century. Much
later on, in 1945, Koiter succeeded in describing the elastic post-bifurcation
behavior using an asymptotic power expansion. At the same time, he also
achieved the imperfection sensitivity analysis for an elastic buckled beam. On
the other hand, the plastic bifurcation analysis, even on a simple model such
as a beam, makes much less progress than in elasticity. It still is the subject
of a lot of recent theoretical as well as experimental investigations.

In the sequel, we will briefly recall the main results available in the literature
on the plastic bifurcation, with no attempt to make an exhaustive review
(see, for instance, the survey paper of Sewell (1972) for a general review on
plastic buckling). The interested reader can find more details on the theoretical
developments and more complete states-of-art in the quoted references below.

The pioneering works on the critical load of an elastoplastic beam under ax-
ial compression dated back to the end of the nineteenth century and were
conducted by Engesser, Considère, and later by von Karman. Yet, the early
results before the 1940’s were not quite correct or properly justified. Some
authors derived the tangent modulus critical load by discarding the unloading
possibility in the structure; others obtained the reduced modulus critical load
by assuming that the bifurcation takes place at constant load as in elasticity.
The first significant result is due to Shanley (1947), who provided a rational
explanation for the plastic buckling of the so-called Shanley’s column, which
had been introduced by von Karman in elasticity. The considered model is
a rigid rod with two degrees of freedom; it is supported by two elastoplas-
tic springs at the bottom and subjected to an axial compressive force at the
tip. This discrete model supposedly able to reproduce the behavior of a beam
cross-section did lead to results which are qualitatively similar to those of a
continuum structure under plastic buckling. Shanley thus provided a satisfac-
tory answer to the value and the nature of the first critical load. In discrete
or continuous structures, the first bifurcation occurs at the tangent modulus
critical load, giving rise to an incipient unloaded zone and an increasing load
during the initial post-bifurcation. Hill (1958) extended these results to a 3D
continuum by using the concept of ”comparison elastic solid”. He examined
the uniqueness and stability criteria, and pointed out the difference between
bifurcation and stability.

As regards the plasticity theory to be used for solving the plastic buckling
problem, one can choose between the J2 deformation and flow theories. These
two theories may yield different critical values and they coexist as they have
each their own advantages and drawbacks. The deformation theory, although
it does not take into account the elastic unloading possibility, yields critical
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loads that compare best with the experiments, whereas the flow theory gen-
erally overpredicts the critical values. The discrepancy - known as the plastic
buckling paradox - can be accounted for and quantified through an analysis
of imperfection sensitivity, as can be found in Durban (1998).

In order to study the plastic post-buckling, Hutchinson (1974) extended Koi-
ter’s results in elasticity by using a series expansion with fractional expo-
nents. He improved the Shanley model by replacing the above-mentioned two
springs system with a uniform distribution of springs. He also studied com-
pressed beams and some more general cases by assuming a homogeneous pre-
bifurcation state. The series expansion with fractional exponents was derived
laboriously and is only valid in initial post-bifurcation. Much later, Cimetière,
El Koulani and Léger (Cimetière, El Koulani and Léger, 1994; El Koulani,
1996; El Koulani and Léger, 1996, 1997) thoroughly solved the bifurcation
problem for the Shanley column and the compressed beam, and first provided
the necessary theoretical ingredients such as the validity, the convergence of
the previous expansion and the existence of the post-critical branches. In the
beam case, the Hutchinson asymptotic expansion giving the load parameter
versus the perturbation parameter (i.e. the bifurcation mode amplitude) was
limited to the first non-linear term, because of the complexity of the coordi-
nate system used to describe the evolution of the unloaded zone. In the 1980’s,
Nguyen and Stolz (1985) and Akel (1987) reformulated the problem within the
framework of the generalized standard materials and expanded both the load
and the perturbation parameter in power series of a ”time” parameter. They
showed that these simple power series yield the same series with fractional
exponents as obtained by Hutchinson.

Another significant result in plastic buckling problems is the existence of con-
tinua of bifurcation points, which was discovered by Cimetière (1987) when
dealing with the case of compressed rectangular plates. These continua enable
the structure to bifurcate within intervals of critical loads, by continuously
modifying the unloaded zone and the structural stiffness. Each continuous
range of bifurcation points (one per mode) observed in plasticity spreads from
the tangent modulus critical value λT to the elastic one λE. It contains a
particular intermediate value which is the reduced modulus critical load λR

corresponding to a constant loading bifurcation. In general, the plastic buck-
ling may appear in three different ways, depending on the yield strength value
λy. If the yield force precedes the first continuous range (λy � λT ), the plastic
buckling occurs at the tangent modulus critical load. If λy � λE , the buckling
is purely elastic. Eventually, in the intermediate case when λT � λy � λE ,
referred to as the plastic breakdown (Akel, 1987), the plastic buckling occurs
at the plastification load λy precisely.

Most results were obtained for the plastic bifurcation at the tangent modulus
critical value. The load λ acts as a bifurcation parameter; the perturbation
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parameter denoted by ξ (ξ � 0) can be viewed as a measure of the differ-
ence between the fundamental and post-buckling solutions. The asymptotic
expansion proposed by Hutchinson (1974) for a general structure reads:

λ = λT + λ1ξ + λ2ξ
1+β + ... (1)

where λ1 is generally positive, thus verifying the hypothesis of an increasing
bifurcation load, λ2 is negative, and the exponent β is a rational number such
that 0 < β < 1. The λ2 < 0 condition leads one to predict a load limit
point on the bifurcated branch, i.e. an upper bound for the strength of the
elastoplastic structure in the post-critical behavior. In the case of a beam with
a circular cross-section, the unloading initiates at a single point and β is 1/3.
For a rectangular cross-section, a whole line is simultaneously unloaded and β
is 2/5. It is noteworthy that in the case of a symmetric section, the previous
expansion can be used with ξ < 0 by replacing ξ with −ξ in relation (1), thus
making λ(ξ) an even function; conversely, this procedure does not work for a
non-symmetric section, as mentionned by Tvergaard and Needleman (1975).

More recently, Cheng, Lu and Fang (1995) proposed a simpler approach in
order to obtain the second fractional term in the beam case with a rectangu-
lar cross-section (the method can be applied to plates and shells as well). By
means of a new coordinate system which is not directly related to the geom-
etry of the unloaded zone, they found the known first three terms in relation
(1) again, determined the fourth term, and showed that one cannot go fur-
ther without breaking the continuity of the solution. Writing the virtual work
principle at different ”time” orders enabled them to obtain a new equilibrium
branch, bifurcating at the tangent modulus critical value, with a new maxi-
mum load, much greater than that found in earlier works. Later on, the same
authors extended their analysis by adding a geometric imperfection (Cheng,
Fang and Lu, 1998). They emphasized that the elastic unloading prevails over
geometric non-linearities, at least in a first deformation stage. Moreover, they
showed that a growing imperfection modifies the previous maximum load value
and finally makes it completely disappear.

Whilst the bifurcation occurs at the tangent modulus critical load in practice,
it can theoretically take place at any other point of the continuous range. Yet,
only a few qualitative results are available for the bifurcated branches arising
from the critical loads other than the tangent modulus one. During initial
post-bifurcation, the load increases when bifurcation occurs between λT and
λR and decreases between λR and λE . By using a stability criterion based
on a plastic potential, Nguyen (1984) showed that the bifurcated branches
with an increasing load (λc ∈ [λT , λR]) have a stable behavior and the post-
buckling behavior far from the fundamental solution depends on the geometric
non-linearities taken into account.
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2 Scope and outline of the paper

This paper is devoted to two new theoretical issues of the plastic bifurcation
and post-bifurcation of axially compressed beams. The beams have no geo-
metric imperfection and the bifurcation is assumed to occur at the tangent
modulus value.

(i) Section 3 deals with the plastic bifurcation of a Timoshenko beam, where
the transverse shear effects are taken into account. The analysis is based on the
3D plastic bifurcation theory, using the J2 flow theory assuming the von Mises
yield criterion and a linear isotropic hardening. This 3D approach is a general
and efficient way to cope with structures subjected to a uniform uniaxial pre-
critical stress state. It was successfully applied to the case of compressed plates
and cylinders in an earlier study (Le Grognec and Le van, 2009). Here, the
same approach will provide the tangent modulus critical load, the buckling
mode and the initial slope of the bifurcated branch for a Timoshenko beam.
The analytical values will be displayed together with finite element results for
a beam with a hollow rectangular section, where the transverse shear effects
are significant.

(ii) In Section 4, we will limit ourselves to Euler-Bernoulli beams and aim to
go further in the post-bifurcation analysis stemming from the tangent mod-
ulus bifurcation. The goal will be achieved by using a specific method which
provides both the fractional expansion of the post-critical branch containing
one new non-linear term and the shape of the elastic unloading region in the
beam during the bifurcation process. All the analytical solutions presented
will be compared to finite element results.

3 Plastic bifurcation analysis of a Timoshenko beam

3.1 Critical load and bifurcation mode

Let us consider a straight Timoshenko beam subjected to an axial compressive
force which leads to the buckling in the plastic regime. The critical load and
the bifurcation mode of the beam will be derived from a 3D approach which is
in essence similar to that presented in Le Grognec and Le van (2009) for the
plastic buckling of plates and cylinders. The ingredients in the quoted reference
will be summarized below and it will be shown how the 3D approach can also
be applied to the beam case.

The theory is developed using a total Lagrangian formulation where the beam
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is seen as a 3D body. In the reference configuration, the beam occupies a cylin-
drical volume Ωo of constant cross-section area S and length L. In the elastic
regime, the material is assumed to be isotropic, defined by the fourth-order
elasticity tensor D whose components in an orthonormal basis are Dijkl =
λδijδkl + μ (δikδjl + δilδkj), where δij is the Kronecker symbol, λ and μ are the
Lamé constants. Use is also made of the Young’s modulus E and the Pois-
son’s ratio ν related to λ and μ by standard relations λ = Eν

(1+ν)(1−2ν)
and

μ = E
2(1+ν)

. We assume that the plastic threshold is defined by the von Mises
yield function with a linear isotropic hardening:

f(Σ, A) =

√
3

2
Σd : Σd − σ0 − A A = Hp (2)

where Σ denotes the second Kirchhoff stress tensor (symmetric), Σd its devi-
atoric part, σ0 the yield stress, H the isotropic hardening modulus (constant)
and p the equivalent plastic strain.

The material tangent elastoplastic tensor is:

Dp =
∂Σ

∂E
= D− D : ∂f

∂Σ
⊗ ∂f

∂Σ
: D

H + ∂f
∂Σ

: D : ∂f
∂Σ

(3)

where E denotes the Green strain tensor and the tensor product ⊗ of two
second-order tensors S and T is defined by (S⊗ T)ijkl = SijTkl. Relation (3)
can be recast as:

Dp = D−N⊗N (4)

where the symmetric tensor N is:

N =
D : ∂f

∂Σ√
H + ∂f

∂Σ
: D : ∂f

∂Σ

(5)

One then derives the nominal tangent elastoplastic tensor by:

Kp =
∂Π

∂F
= F.

∂Σ

∂E
.FT + (I.Σ)T (6)

In the previous equation, F is the deformation gradient, Π = F.Σ the first
Kirchhoff stress tensor (non-symmetric), I represents the fourth-order unit
tensor (Iijkl = δilδkj) and the superscript T the major transposition of a fourth-

order tensor (
(
DT

)
ijkl

= Dklij). Like (4), Equation (6) can be rewritten as:

Kp = Ke −MT ⊗M (7)

with:
Ke = F.D.FT + (I.Σ)T M = N.FT (8)
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Now, let us assume that there exists a fundamental equilibrium path λ �→
Uf (λ), which is the displacement solution of the elastoplastic problem under
an increasing load factor λ (λ̇ > 0), and that there exists a bifurcated solution
U at a critical time tc corresponding to λc = λ (tc). Furthermore, the yield
stress σ0 is assumed to be small enough for the plastic strains to appear before
the tangent modulus critical load is reached.

The bifurcated branch is described by an asymptotic expansion with respect
to the perturbation parameter ξ (ξ � 0):

λ = λc + λ1ξ + o(ξ)

U = Uf (λ) + ξX + o(ξ)
(9)

Let us make the following assumption:

Assumption 1

• At critical time tc, the plastic zone Ωp (tc) corresponding to the bifurcated
solution is equal to that of the fundamental solution Ωp

f (tc), i.e. the bi-
furcation takes place at the tangent modulus critical load with incipient
unloading.

• The whole solid is plastified on the fundamental branch:

Ωp
f (tc) = Ωo (10)

which implies that the nominal tangent elastoplastic tensor is equal to Kp

throughout the solid �

With the above assumption, the critical load λc = λT and the bifurcation mode
X are obtained by solving the following bifurcation equation (Hutchinson,
1972; Nguyen, 2000):

∀ δU,
∫
Ωo

∇T δU : Kp (Uf (λc)) : ∇XdΩo = 0 (11)

We shall now derive more explicit expressions of the above results by ex-
ploiting the uniaxial stress state in the compressed beam at hand. Let the
beam be subjected in the pre-critical state to a nominal axial compressive
stress ΠXX = −λ < 0, so that the first Kirchhoff stress tensor Π is expressed
in an orthonormal basis (e1, e2, e3) as (we indifferently denote (X, Y, Z) and
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(1, 2, 3)):

Π = −λe1 ⊗ e1 =

⎡
⎢⎢⎢⎢⎢⎣
−λ 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎦ (λ > 0) (12)

Let us make the following assumption, which is usually satisfied in practice:

Assumption 2. The pre-critical deformations are small:

‖∇U‖ 
 1 (13)

Thus, the stress tensor Σ writes:

Σ = F−1.Π ≈ Π (14)

The tensor N in Equation (5) then simplifies as follows:

N =
μ√

H + 3μ
(I− 3e1 ⊗ e1) =

μ√
H + 3μ

⎡
⎢⎢⎢⎢⎢⎣
−2 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦ (15)

Hence, the material tangent elastoplastic tensor in Equation (4) reads:

Dp = D− μ2

H + 3μ
(I− 3e1 ⊗ e1)⊗ (I− 3e1 ⊗ e1) (16)

The components of Dp in the orthonormal basis (e1, e2, e3) are:

Dp
1111 = λ + 2μ− 4μ2

H+3μ
Dp

2233 = λ− μ2

H+3μ

Dp
2222 = λ + 2μ− μ2

H+3μ
Dp

1133 = λ + 2μ2

H+3μ

Dp
3333 = λ + 2μ− μ2

H+3μ
Dp

1122 = λ + 2μ2

H+3μ

Dp
1212 = Dp

1313 = Dp
2323 = μ

(17)

The other components are either zero or derived from Equation (17) using both
major and minor symmetries of tensor Dp (Dp

ijkl = Dp
klij = Dp

jikl = Dp
ijlk).

The nominal tangent elastoplastic tensor in Equation (7) becomes:

Kp ≈ ∂Σ

∂E
+ (I.Σ)T = Dp − λei ⊗ e1 ⊗ e1 ⊗ ei (18)
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which is independent of the spatial coordinates.

Furthermore, when dealing with 1D models like beams, ad hoc assumptions are
usually added in order to enforce some specific stress state in the body. Namely,
the transverse normal material stresses are assumed to be zero: Σ22 = Σ33 = 0.
Taking into account these assumptions leads one to replace tensor Dp in (16)
with the reduced tensor Cp defined as:

Cp
ijkl = Dp

ijkl +
Dp

ij22(Dp
2233Dp

33kl
−Dp

3333Dp
22kl)+Dp

ij33(Dp
3322Dp

22kl
−Dp

2222Dp
33kl)

Dp
2222Dp

3333−Dp
2233Dp

3322

(i, j) 
= (2, 2), (3, 3) (k, l) 
= (2, 2), (3, 3)
(19)

It can be readily checked that tensor Cp has the major and both minor sym-
metries. In the sequel, we only need the following reduced moduli (and their
equivalents obtained by major or minor symmetries):

Cp
1111 = ET Cp

1212 = Cp
1313 = Cp

2323 = μ (20)

where ET is the tangent elastoplastic modulus related to Young’s modulus E
and the isotropic hardening modulus H by 1

ET
= 1

E
+ 1

H
.

Eventually, the bifurcation equation (11) writes in the uniaxial stress case:

∀ δU,
∫
Ωo

∇T δU : (Cp − λcei ⊗ e1 ⊗ e1 ⊗ ei) : ∇XdΩo = 0 (21)

Let us consider the bending problem in the xy-plane of a beam built-in at end
X = 0 and compressed by load λ at end X = L. The Timoshenko kinematics
is defined by two scalar displacement fields U(X, t) and V (X, t), respectively
the axial and transverse displacements of the centroid axis of the beam, and
the cross-section rotation θ(X, t), independent of deflection V . When the beam
buckles from the straight position (the fundamental solution) to a bent shape,
the expressions for the bifurcation mode X and the displacement variation δU
are chosen according to the Timoshenko kinematics:

X =

∣∣∣∣∣∣∣∣∣∣∣

U − Y Θ

V
0

δU =

∣∣∣∣∣∣∣∣∣∣∣

δU − Y δθ

δV

0

(22)
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The bifurcation equation (21) becomes:

∀ δU, δV, δθ satisfying δU(0) = δV (0) = δθ(0) = 0,∫
Ωo

[ET (U ,X −Y Θ,X ) (δU,X −Y δθ,X )

−μV,X δθ − μΘδV,X +μV,X δV,X +μΘδθ

−λc (U ,X −Y Θ,X ) (δU,X −Y δθ,X )− λcV,X δV,X ] dΩo = 0

(23)

First, integrating over the cross-section, then integrating by parts with respect
to X and eliminating negligible higher-order terms yields three local equations
for the components U , V and Θ of the eigenmode:

ET SU ,XX = 0

kμS (Θ,X −V,XX ) + λcSV,XX = 0

ET IΘ,XX +kμS (V,X −Θ) = 0

(24)

together with the stress boundary conditions at the end X = L: U ,X (L) = 0,
kμS (Θ(L)− V,X (L)) + λcSV,X (L) = 0 and Θ,X (L) = 0, where S denotes
the cross-section area, I the second moment of area and k is introduced as the
transverse shear correction factor depending on the cross-section of the beam.

Taking into account U(0) = V(0) = Θ(0) = 0, one obtains the first critical
load and the corresponding bifurcation mode (Le Grognec and Le van, 2004):

λcS = λT S =
π2ET I

4L2

1 + π2ET I
4kμSL2

(25)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

U = 0

V = C
(
1 + π2ET I

4kμSL2

) (
1− cos πX

2L

)
(C is an arbitrary constant)

Θ = πC
2L

sin πX
2L

(26)

Similar differential equations and solutions for the J2 deformation theory can
be obtained from the above results, provided the tangent moduli are replaced
by the equivalent secant moduli.
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3.2 Initial slope of the bifurcated branch

The initial slope of the bifurcated branch at the critical point, equal to coeffi-
cient λ1 in the expansion (9), can be expressed under the following assumption:

Assumption 3

• λc is a simple eigenvalue.
• The so-called transversality coefficient Tr is positive:

Tr
.
= −

∫
Ωo

∇TX :
dKp (Uf (λ))

dλ |λ=λc

: ∇XdΩo > 0 (27)

• The plastic zone corresponding to the fundamental solution at the critical
time Ωp

f (tc) (= Ωo) is active (i.e. there is loading and no neutral loading).
• ∃ Δ > 0, ∀ X ∈ Ωp

f (tc) ,M (X, λc) : ∇Uf,λ (X, λc) � Δ > 0, where X ∈ Ωo

denotes the position of the current particle in the reference configuration �

Under this assumption, one has an angular bifurcation and the initial slope
λ1 is given by:

λ1 = max
X∈Ωp

f
(tc)

(
− M (X, λc) : ∇X

M (X, λc) : ∇Uf,λ (X, λc)

)
(28)

In fact, it can be readily checked that the transversality condition (27) is al-
ways satisfied in the uniaxial stress state. From expression (18) for the nominal
tangent elastoplastic tensor, the transversality coefficient Tr in (27) is reduced
to:

Tr =
∫
Ωo

|X,1 |2 dΩo (29)

whence, by (26), Tr is strictly positive.

Furthermore, from Equation (8) and assumption (13), one has M = N.FT ≈
N. Hence:

M : ∇X = μ√
H+3μ

(I− 3e1 ⊗ e1) : ∇X

= μ√
H+3μ

(divX− 3(∇X)11)
(30)

Accordingly, the initial slope of the bifurcated branch (28) becomes:

λ1 = max
X∈Ωo

⎛
⎝− 3(∇X)11 − divX

3
(
∇Uc

f,λ

)
11
− div

(
Uc

f,λ

)
⎞
⎠ (31)

where Uc
f,λ denotes the differentiation Uf,λ(X, λ) evaluated at λ = λc.
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The fundamental solution for the entirely plastified beam subjected to load
λ � σ0 has the same form as in small deformations:

Uf = −
(

λ− σ0

ET
+

σ0

E

)
Xx (32)

From Equation (31), one then can derive the initial slope for a beam with a
rectangular cross-section of height e in the y-direction, choosing the value of
C equal to e/2 in expression (26) for V:

λ1S =
3π2ET I

4L2
= 3

(
1 +

π2ET I

4kμSL2

)
λT S (33)

Remark. Making k tend to infinity in relations (25), (26) and (33) yields the
well-known expressions for the first critical load, the corresponding bifurcation
mode and the initial slope in the case of a Euler-Bernoulli beam:

λcS = λTS =
π2ET I

4L2
(34)

⎧⎪⎨
⎪⎩
U = 0

V = C
(
1− cos πX

2L

)
(C is an arbitrary constant)

(35)

λ1S =
3π2ET I

4L2
= 3λT S (36)

The Timoshenko beam model provides a slightly smaller critical load than the
Euler-Bernoulli model, whereas the initial slope is the same �

3.3 Finite element validation

In order to check the plastic buckling load expression (25) for a Timoshenko
beam, a numerical computation is performed by means of a home-made fi-
nite element program. Developed within a total Lagrangian framework, the
program encompasses finite plasticity and geometric non-linearities (finite dis-
placements and rotations) in order to deal with the plastic buckling and ad-
vanced post-critical behavior of general structures. For the computation of
interest, the beam is discretized using a finite rotation shell finite element
which is described in full details in Le Grognec and Le van (2008) in the
context of cylindrical shells under axial compression.

Consider a beam of length L = 1 m in the x-direction, with a rectangular
hollow cross-section of height e = 250 mm in the y-direction and width b =
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200 mm in the z-direction. The wall thickness is 2, 3 or 5 mm. The Young’s
modulus is E = 2.1 1011 Pa, the Poisson’s ratio ν = 0.3 and the yield stress
σ0 = 5.107 Pa. The isotropic hardening modulus is H = 1.5 1011 Pa, hence
the tangent elastoplastic modulus ET = EH

E+H
= 8.75 1010 Pa (the hardening

modulus H has been given a high value in order to separate the different
continua of bifurcation points and thus help us to analyze the numerical results
more easily). The shear correction factor introduced in Equation (24) takes
the value k = 5/12 ≈ 0.417 usually chosen for square hollow sections. Some
rotational degrees of freedom of the shell elements are prescribed to zero in
order to prevent a local buckling mode and enforce the global mode to take
place in the xy-plane. Figure 1 shows the buckling mode obtained by the finite
element computation.

Z

Y

X

X

Y

Z

Fig. 1. Plastic buckling mode of a compressed Timoshenko beam with a rectangular
hollow cross-section, obtained by the finite element method

The analytical critical loads obtained from the Timoshenko model (25) and
the Euler-Bernoulli model (34) are compared with the finite element values in

Table 1 and Figure 2 for various thicknesses. The term π2ET I
4kμSL2 in (25) respon-

sible for the difference between the two kinematical models does not depend
on the thickness of the thin-walled beam and is about 6.3 %. It is found that
for cross-section geometries such as the one considered here – for which the
transverse effects are significant – the Timoshenko model gives better results
and is more relevant than the Euler-Bernoulli one.

Thickness λcS (N) λcS (N) λcS (N) Error (%)

(mm) (Euler-Bernoulli) (Timoshenko) (FE) (Timoshenko vs. FE)

2 3.823 106 3.596 106 3.596 106 0.0005

3 5.735 106 5.395 106 5.444 106 0.9

5 9.558 106 8.991 106 9.11 106 1.3
Table 1
Critical loads of a rectangular hollow beam under axial compression with various
thicknesses
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Bernoulli
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Fig. 2. Comparison between numerical and analytical critical values with or without
transverse shear effect

4 Plastic post-bifurcation analysis of a Euler-Bernoulli beam

The aim of this section is to go further in the expansion (9) and investigate
the post-bifurcation behavior of the beam.

The post-bifurcation analysis will be carried out for the Euler-Bernoulli beam
model only; although the Timoshenko model could be treated using the same
line of argument, the corresponding equations would be much more intricate.
Also, for the sake of definiteness, we will focus on the first bifurcation mode
arising from the tangent modulus critical load of a beam, built-in at end X = 0,
with a rectangular cross-section of height e in the y-direction and width b in
the z-direction, see Figure 3.

A generic approach will be presented, which enables one to obtain one more
term in comparison with Hutchinson’s asymptotic expansion of the bifurcated
branch.

Let the compressed beam buckle into a bent position with negative Y -values.
The elastic unloaded zone, reduced to a single point in the xy-plane at the
critical time, is assumed to spread out into a connected region separated from
the plastic zone by a smooth boundary defined by Y = d(X, t), X ∈ [0, a], as
shown in Figure 3.
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Fig. 3. Unloaded zone (shaded) during the plastic buckling of a cantilever beam

4.1 Power series expansions for the load and the deflection

According to the procedure described in Nguyen (2000), the four following
operations are performed:

(a) To define v(X, t) = V (X, t)− V (L, t).

(b) To assume a non-constant load factor: λ̇ 
= 0 (in this section, λ denotes
the axial force instead of the axial stress) and introduce the function r(X, t)
defined by:

v̇(X, t) = λ̇(t)r(X, t) (37)

(c) To use the following change of variables, which enables one to eliminate
parameter a and write the equations on fixed space intervals:

• for X ∈]0, a[: X = as ↔ s = X
a

with s ∈]0, 1[
• for X ∈]a, L[: X = a+(L−a)(s−1) ↔ s = X−a

L−a
+1 with s ∈]1, 2[

(d) To choose as the kinematic ”time” t the non-dimensional infinitesimal pa-

15



rameter t = a/L, thus making the critical time tc equal to zero. The so-defined
time plays the role of the first-order infinitesimal parameter in the asymptotic
expressions for λ, v, r and d.

The quantities introduced above depend on s and t, and the following no-
tations are used for the sake of brevity: v(X, t) = v(s(X, a(t)), t) = v(s, t),
r(X, t) = r(s(X, a(t)), t) = r(s, t), d(X, t) = d(s(X, a(t)), t) = d(s, t).

It is shown in Nguyen (2000) that functions λ(t), v(s, t), r(s, t) and d(s, t) are
governed by the following equation system:

• for s ∈]0, 1[:

P (d)r” + t2L2 = 0 (a)

Q(d)r” + t2L2(λr + v) = 0 (b)

λ̇r = v̇ − v′ s
t

(c)

where the dot denotes the derivative with respect to time, v′ and r” stand
for the first and second derivatives with respect to the space variable s,
respectively. Functions P (d) and Q(d) are polynomials defined as:

P (d) = − ∫S(d− Y )EidS = b
8
[4 (ET −E) d2 + 4 (ET + E) ed + (ET − E) e2]

Q(d) = − ∫S(d− Y )Y EidS = b
24

[−4 (ET −E) d3 + 3 (ET −E) e2d + (ET + E) e3]

(38)
where S is the cross-section of the beam and Ei = E or ET , depending
on whether the considered point in the cross-section belongs to the elastic
unloading zone or the plastic loading zone;

• for s ∈]1, 2[:

ET Ir” + (1− t)2L2(λr + v) = 0 (d)

λ̇r = v̇ − v′ 2−s
1−t

(e)

• furthermore, the boundary and connecting conditions write:

d(1, t) = e
2

(f) r′(0, t) = 0 (g) r(2, t) = 0 (h)

v′(0, t) = 0 (i) v(2, t) = 0 (j)

r (1−, t) = r (1+, t) (k) v (1−, t) = v (1+, t) (l)

(1− t)r′ (1−, t) = tr′ (1+, t) (m)

• the initial conditions at tc = 0 are:

λ(0) = λc (n) v(s, 0) = 0 (o) d(s, 0) =
e

2
(p)
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The non-linear system (a)−(p) is solved by the asymptotic expansion method,
according to which the unknowns in hand are expanded into power series
involving the non-dimensional small parameter t:

λ(t) = λ0 + λ1t + λ2
t2

2
+ ...

v(s, t) = v1(s)t + v2(s)
t2

2
+ ...

r(s, t) = r0(s) + r1(s)t + r2(s)
t2

2
+ ...

d(s, t) = d0(s) + d1(s)t + d2(s)
t2

2
+ ...

(39)

Let us explain in detail the calculations up to the second-order terms. The
remaining terms can be addressed in the same way.

Order 0

Equations of order 0 are (P0
.
= P (0), Q0

.
= Q(0)):

s ∈]0, 1[: P0r”0 = 0 Q0r”0 = 0 λ1r0 = v1 − v′1s

s ∈]1, 2[: ET Ir”0 + L2λ0r0 = 0 λ1r0 = v1

The boundary conditions are: r′0(0) = 0, r0(2) = 0.

The connecting conditions are: r0 (1−) = r0 (1+), r′0 (1−) = 0.

Order 1

Equations of order 1 are (P1
.
= P,d (0), Q1

.
= Q,d (0)):

s ∈]0, 1[: P0r”1 + P1d1r”0 = 0

Q0r”1 + Q1d1r”0 = 0

λ2r0 + λ1r1 = v2 − v′2
s
2

s ∈]1, 2[: ET Ir”1 + L2 (λ1r0 + v1 + λ0r1 − 2λ0r0) = 0

λ2r0 + λ1r1 = v2 − v′1(2− s)

The boundary conditions are: d1(1) = 0, r′1(0) = 0, r1(2) = 0, v′1(0) = 0,
v1(2) = 0.

The connecting conditions are: r1 (1−) = r1 (1+), v1 (1−) = v1 (1+), r′1 (1−) =
r′0 (1−) + r′0 (1+).
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Order 2

Equations of order 2 are (P2
.
= P,dd (0), Q2

.
= Q,dd (0)):

s ∈]0, 1[: P0r”2 + 2P1d1r”1 + (P1d2 + P2d
2
1) r”0 + 2L2 = 0

Q0r”2 + 2Q1d1r”1 + (Q1d2 + Q2d
2
1) r”0 + 2L2λ0r0 = 0

λ3r0 + 2λ2r1 + λ1r2 = v3 − v′3
s
3

s ∈]1, 2[: ET Ir”2 + L2 (λ2r0 + v2 + 2λ1r1 − 8λ1r0 + λ0r2 − 4λ0r1 + 2λ0r0) = 0

λ3r0 + 2λ2r1 + λ1r2 = v3 − (v′2 + 2v′1) (2− s)

The boundary conditions are: d2(1) = 0, r′2(0) = 0, r2(2) = 0, v′2(0) = 0,
v2(2) = 0.

The connecting conditions are: r2 (1−) = r2 (1+), v2 (1−) = v2 (1+), r′2 (1−) =
2 (r′1 (1−) + r′1 (1+)).

Equations (a)− (p) are solved sequentially, giving the λi values together with
the functions vi(s), ri(s) and di(s) involved in expansions (39). At order 0,
one gets r0(s) = C for s ∈ [0, 1], where C is unknown so far. At order 1, one
gets r0(s) for s ∈ [1, 2], and the same expression for the critical stress λ0 = λT

as in (34). At order 2, the value for constant C is determined together with
v1(s) = 0 for s ∈ [0, 2] and λ1 = 0, and so on. Solving equations at order 3
provides d1(s) = 0 for s ∈ [0, 1], r1(s) for s ∈ [0, 2], v2(s) = 0 for s ∈ [0, 2]
and λ2 = 0. The calculations are carried out in a similar way up to the tenth
order. The higher the considered order, the more intricate and lengthy the
equations. Without going into details, we give the resulting load factor λ and
deflection v, as summarized in Tables 2 and 3.

λ0 λ1 λ2 λ3 λ4 λ5 λ6

π2ET I
4L2 0 0 0 0 3π6(E−ET )I

16L2 0

λ7 λ8 λ9

−3π8(E−ET )(36E−25ET )I
64ET L2 0

9π10(E−ET )(240E2−402EET +173E2
T )I

64E2
T L2

Table 2
Coefficients for load factor λ in expansion (39)

Lastly, expressions for the plastic boundary di(s = 0) (i = 0 to 8) in the ex-
pansion (39) can be obtained simultaneously with coefficients λi and functions
vi(s), as shown in Table 4.
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v1 0

v2 0

v3 0

v4 0

v5

⎧⎨
⎩

π4e(E−ET )
8ET

s ∈ [0, 1]
π4e(E−ET )

8ET
sin πs

2 s ∈ [1, 2]

v6

⎧⎨
⎩ 0 s ∈ [0, 1]

3π5e(E−ET )
8ET

(2− s) cos πs
2 s ∈ [1, 2]

v7

⎧⎨
⎩

π6e
32E2

T
(E − ET )

(−36E + 40ET − 21s2ET

)
s ∈ [0, 1]

π6e
32E2

T
(E − ET )

(−36E − 44ET + 84sET − 21s2ET

)
sin πs

2 s ∈ [1, 2]

v8

⎧⎨
⎩

0 s ∈ [0, 1]
π7e
8E2

T
(E − ET )

[−72E + 24ET + s (36E + 44ET )− 42s2ET + 7s3ET

]
cos πs

2 s ∈ [1, 2]

v9

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3π8e
64E3

T
(E −ET )

[
480E2 − 972EET + 521E2

T + 24s2ET (9E − 10ET ) + 21s4E2
T

]
s ∈ [0, 1]

3π8e
64E3

T
(E −ET )

[
480E2 − 108EET − 103E2

T − 288sET (3E − ET )

+24s2ET (9E + 11ET )− 168s3E2
T + 21s4E2

T

]
sin πs

2 s ∈ [1, 2]
Table 3
Coefficients for deflection v in expansion (39)

d0(0) d1(0) d2(0) d3(0) d4(0) d5(0) d6(0)
e
2 0 −π2e

8 0 π4e
32ET

(6E − 5ET ) 0 − π6e
256E2

T

(
360E2 − 579EET + 221E2

T

)

d7(0) d8(0)

−63π6e
16ET

(E − ET ) π8e
512E3

T

(
12600E3 − 29853E2ET + 22851EE2

T − 5597E3
T

)
Table 4
Coefficients for the plastic boundary d(0, t) in expansion (39)

4.2 Asymptotic expansion of the bifurcated branch

From Tables 2 and 3, one can rewrite the truncated expansions for the load λ
and the maximum deflection-to-thickness ratio ξ = 2v(0,t)

e
as follows:

λ = λ0 + λ5
t5

5!
+ λ7

t7

7!
+ λ9

t9

9!

ξ = ξ5
t5

5!
+ ξ7

t7

7!
+ ξ9

t9

9!

(40)

where ξi = 2vi(0)
e

for i = 5, 7, 9.
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By eliminating parameter t from relations (40) in a step-by-step manner, one
gets the following asymptotic expansion with fractional exponents for the load
λ with respect to parameter ξ:

λ = λ0

(
1 + c1ξ + c2ξ

7
5 + c3ξ

9
5 + o

(
ξ

9
5

))
(41)

where:

c1 = 3 c2 = −15
7

⎛
⎝ 15π

ET
E

4
√

2

(
1−ET

E

)
⎞
⎠

2
5

c3 =
65

ET
E
−48

42
ET
E

⎛
⎝ 15π

ET
E

4
√

2

(
1−ET

E

)
⎞
⎠

4
5

(42)

Expressions for c1 and c2 agree well with those proposed by Cheng, Lu and
Fang (1995). On the other hand, our expression for c3 slightly differs from that

of Cheng, Lu and Fang, which is 17
42

⎛
⎝ 15π

ET
E

4
√

2

(
1−ET

E

)
⎞
⎠

4
5

. They would be the same

if one made ET = E in the first ratio in (42).

It should be noted that the fractional expansion (41) is only valid if the max-

imum deflection-to-thickness ratio ξ = 2v(0,t)
e

is small, in the same way as the
time parameter t = a/L related to it by the second relation in (40). Let us
consider, as an example, the validity domain in ξ for a beam with E/ET = 2.4
(the same material as in Subsection 3.3).

Figure 4 displays ξ versus t and λ/λT versus ξ, making use of relations (40)-
(42). As can be seen in Figure 4(a), at the beginning of the bifurcation process,
the elastic unloading region with length a spreads out very quickly up to
about a third of the beam length, while ξ remains very small, of the order of
0.001. Moreover, Figure 4(b) shows that the fractional expansion up to the
9/5-order (41) can be identified to the parametric expansion up to the ninth
order (40) with parameter t if ξ is small enough. Thus, in the sequel, we will
limit ourselves to ξ � 0.01 (corresponding to t � 0.51), so that the difference
between the fractional and parameter expansions do not exceed 0.7 %.

4.3 Finite element validation

Several finite element computations are presented hereafter in order to check
the previous analytical results obtained for the plastic post-buckling of a beam.
The numerical computations are conducted on a simply-supported beam,
which actually gives the same results as a cantilever beam because of symme-
try. The geometry and material data are given in Table 5 with the notations
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Fig. 4. Validity of expansion (41) in terms of the maximum deflection-to-thickness
ratio ξ = 2v(0,t)

e

defined in Figure 3. One tip is fixed in the x-direction and the other is loaded
by a uniform compressive force λ. Only the middle node at each tip is fixed in
the z-direction, which enables a uniform stress state in the beam during the
pre-critical deformations. Since the thickness is very thin, the numerical solu-
tion of the bending problem can be performed using the shell finite element
described in Le Grognec and Le van (2008). One single finite element in the
z-direction is used, whereas 50 elements along the length are necessary to cor-
rectly represent finite rotations. Use is made of two Gaussian points in the x-
and z-directions and four Gaussian points through the thickness y-direction.
Use is made of the same computer program as in Subsection 3.3. Here, one
also needs additional branch-switching and arc-length methods (Riks, 1979,
1991; Lam and Morley, 1992; Seydel, 1994) in order to bifurcate from a specific
point of the continuous bifurcation range and pass through load or displace-
ment limit points on the bifurcated paths.

L e b E ET σ0

0.5 m 1 mm 5 cm 2.1 1011 Pa 8.75 1010 Pa 5.104 Pa

Table 5
Data for the finite element computation of the bifurcated branch

The material is the same as in Subsections 3.3 and 4.2, except for the yield
stress: as the beam is very thin in the y-direction, σ0 has been given a very
small value for the plastification to occur before the beam buckles at the
tangent modulus critical load λT . The ratio E/ET = 2.4 is small enough to
obtain separate continua of bifurcation points and simplify the analysis. In
the case of a rectangular cross-section, the so-called reduced modulus can be
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expressed as follows:

ER =
4EET(√

E +
√

ET

)2 = 1.29 1011 Pa (43)

In each continuous range of bifurcation points, the critical loads corresponding
to the three moduli – the tangent modulus, the reduced modulus and the
elastic modulus – are in ascending order:

λTn =
n2π2ET I

4L2
λRn =

n2π2ERI

4L2
λEn =

n2π2EI

4L2
(44)

whence the numerical values for the first mode:

λT1 = 3.6 N λR1 = 5.3 N λE1 = 8.64 N (45)

4.3.1 Elastoplastic bifurcation diagrams

In plasticity, each point of the continuous bifurcation range is a potential bifur-
cation point, and the corresponding non-trivial rate solution involves an elastic
unloading zone whose shape depends on the compressive force value. At the
tangent modulus critical load, the concept of ”comparison elastic solid” allows
one to use the same approach as in elasticity: the critical load λT is detected
when the stiffness matrix becomes singular and the bifurcated branch (which
starts with a single unloading point) can be predicted by the corresponding
eigenmode. If one wishes to bifurcate at another point in the continuous range
of bifurcation points, the prediction is based on the eigenmode corresponding
to the smallest eigenvalue of the tangent stiffness matrix.

The obtained numerical results show that this procedure enables one to cor-
rectly bifurcate in the whole continuous range of bifurcation points. In agree-
ment with the well-known theoretical results, the obtained curves are bounded
by those corresponding to the tangent modulus critical load λT and the elastic
critical load λE. Figure 5 plots the maximum displacement at the middle of
the beam versus the compressive force. It can be seen that the bifurcation
takes place with an increasing load when λc ∈ [λT , λR [ , with a decreasing
load when λc ∈ ] λR, λE ], and with a constant load at λR, as predicted by the
theory.

In the initial post-critical zone (small deflections), say V < 0.0005 m in Figure
5(a), all the bifurcated branches converge towards the asymptotic curve λ =
λR, as predicted by the analytical solution of El Koulani (1996). However,
Figure 5(b) shows that, in the advanced post-critical zone where the deflections
are larger and the geometric non-linearities prevail, the bifurcated branches
tend towards another asymptote.
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Fig. 5. Elastoplastic bifurcation diagrams

Let us now focus on the bifurcated branch arising from the first tangent
modulus critical load λT1. Figure 6 displays four different post-critical curves
λ = λ(ξ):

• the curve obtained from the finite element results;
• the analytical fractional curve (41) including two non-linear terms with

exponents 7/5 and 9/5;
• for comparison purposes, the fractional curves with only the linear term and

with the 7/5-order term, as obtained by Hutchinson (1974).

All the fractional curves are drawn for ξ � 0.01, in accordance with the validity
domain in ξ, as discussed in Subsection 4.2. Figure 6 shows that the finite
element results are in very good agreement with the fractional expansion (41).
Over the considered range of ξ, the difference is less than 0.1 % in absolute
value.

4.3.2 Plastic boundary and unloading zone

Let us focus now on the evolution of the shape of the unloading zone in the
beam along the bifurcated branch arising from the tangent modulus critical
load.

Again, consider a simply-supported beam of length l = 2L = 1 m. Here, in
order to make the unloading zone visible, let us now take the height e = 10 cm
along the y-axis, the width b = 1 cm along the z-axis, and enforce the bending
to take place in the xy-plane by prescribing all the out-of-plane degrees of
freedom to zero, see Figure 7.

The material is the same as before, except for σ0 which is again 5.107 Pa.
The mesh for the new geometry involves 30 elements along the x-direction
and 4 elements along the y-direction. In each element, use is made of seven
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Fig. 6. Tangent modulus bifurcation: comparison between different fractional expan-
sions and the finite element results. Linear: curve with only the linear term in (41);
7/5: curve with terms up to exponent 7/5; 9/5: curve with terms up to exponent
9/5

X

Y

Z

λ

λ

Fig. 7. Geometry, mesh and boundary conditions for the analysis of the unloading
zone

Gaussian points in both x- and y-directions. Only two Gaussian points along
the z-direction are used for the numerical integration through the thickness,
as the elastoplastic state is uniform along that direction. In theory, the plastic
points are those with positive plastic strain rates. Here, in the numerical com-
putations, they are detected in a discrete way: since the unloading zone keeps
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growing (at least in the vicinity of the bifurcation point), the plastic points
at increment n are numerically detected by comparing the equivalent plastic
strains between steps n and n + 1.

At the tangent modulus critical load, the unloading zone spreads out from a
single point, as one advances on the bifurcated branch. Applying the procedure
above, the unloading zones obtained by numerical computations (symmetric
with respect to the median plan of the beam) are in very good agreement with
the theoretical ones, as shown in Figure 8 for a same load level.

d(0) 2a

Numerical result

Analytical result

2ad(0)

Fig. 8. Unloading zone for the bifurcated branch arising from the tangent modulus
critical load (first mode)

5 Conclusions

Two new issues have been investigated in the field of the elastoplastic buckling
and post-buckling of beams under axial compression.

(i) The first issue is the plastic bifurcation of a Timoshenko beam, where the
transverse shear effects are taken into account. The analysis is based on the
3D plastic bifurcation theory and proves to be an efficient way to deal with
structures subjected to a uniform uniaxial pre-critical stress state, as shown in
an earlier study on compressed plates and cylinders (Le Grognec and Le van,
2009). Here, the same 3D approach has been applied to a Timoshenko beam
and enabled one to obtain the tangent modulus critical load, the buckling
mode and the initial slope of the bifurcated branch. The transverse shear
effects may be significant depending on the cross-section geometry, as clearly
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shown in the finite element computation with a hollow rectangular section,
where the Timoshenko theory gives better results than the Euler-Bernoulli
one.

(ii) The second issue of the paper is a further analysis of the post-bifurcation of
a Euler-Bernoulli beam, stemming from the tangent modulus bifurcation. Use
has been made of a specific method in order to provide the fractional expansion
of the post-critical branch, exhibiting one new non-linear term. Also, the shape
of the elastic unloading region in the beam during the bifurcation process has
been obtained in the form of an asymptotic expansion. The finite element
computations are in very good agreement with the presented analytical results.

Two conclusions may be drawn from the fractional expansion study of the
post-bifurcated branch:

• Compared to the 7/5-order term, the 9/5-order one brings about a slight
change and a better description of the post-critical behavior.

• For all practical purposes, there would be no need to go further than the
9/5-order term in the fractional expansion.
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structures élastoplastiques), PhD Thesis (Ecole Nationale des Ponts et
Chaussées, France, 1987).

Cheng, Y.S., Lu, W.D. and Fang, H., Plastic post-buckling of a simply-
supported column with a solid rectangular cross-section, Applied Mathe-
matics and Mechanics 16 Issue 8 (1995) 713–722.

Cheng, Y.S., Fang, H. and Lu, W.D., Imperfection sensitivity analysis of a
rectangular column compressed into the plastic range, Applied Mathematics
and Mechanics 19 Issue 1 (1998) 9–14.

Cimetière, A., On the modelling and buckling of elastoplastic plates (Sur la
modélisation et le flambage des plaques élastoplastiques), PhD Thesis (Uni-
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Cimetière, A., El Koulani, A. and Léger, A., Buckling and post-buckling of
an elastoplastic simple model (Flambage naissant et post-flambage d’un
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irréversibles obéissant au principe de dissipation maximale), Journal de
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