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Abstract 

In this paper, a boundary element method is developed for the nonlinear flexural-

torsional dynamic analysis of beams of arbitrary, simply or multiply connected, 

constant cross section, undergoing moderately large deflections and twisting rotations 

under general boundary conditions, taking into account the effects of rotary and 

warping inertia. The beam is subjected to the combined action of arbitrarily 

distributed or concentrated transverse loading in both directions as well as to twisting 
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and/or axial loading. Four boundary value problems are formulated with respect to the 

transverse displacements, to the axial displacement and to the angle of twist and 

solved using the Analog Equation Method, a BEM based method. Application of the 

boundary element technique leads to a system of nonlinear coupled Differential – 

Algebraic Equations (DAE) of motion, which is solved iteratively using the Petzold-

Gear Backward Differentiation Formula (BDF), a linear multistep method for 

differential equations coupled to algebraic equations. The geometric, inertia, torsion 

and warping constants are evaluated employing the Boundary Element Method. The 

proposed model takes into account, both the Wagner’s coefficients and the shortening 

effect. Numerical examples are worked out to illustrate the efficiency, wherever 

possible the accuracy, the range of applications of the developed method as well as 

the influence of the nonlinear effects to the response of the beam. 

 

1.  INTRODUCTION 

In engineering practice the dynamic analysis of beam-like continuous systems is 

frequently encountered. Such structures often undergo arbitrary external loading, 

leading to the formulation of the flexural-torsional vibration problem. The complexity 

of this problem increases significantly in the case the cross section’s centroid does not 

coincide with its shear center (asymmetric beams). Furthermore when arbitrary 

torsional boundary conditions are applied either at the edges or at any other interior 

point of a beam due to construction requirements, the beam under the action of 

general twisting loading is leaded to nonuniform torsion. Moreover, since requirement 

of weight saving is a major aspect in the design of structures, thin-walled elements of 

arbitrary cross section and low flexural and/or torsional stiffness are extensively used. 

Treating displacements and angles of rotation of these elements as being small, leads 



in many cases to inadequate prediction of the dynamic response; hence the occurring 

nonlinear effects should be taken into account. This can be achieved by retaining the 

nonlinear terms in the strain–displacement relations (finite displacement – small strain 

theory). When finite displacements are considered, the flexural-torsional dynamic 

analysis of bars becomes much more complicated, leading to the formulation of 

coupled and nonlinear flexural, torsional and axial equations of motion. 

When the displacement components of a member are small, a wide range of 

linear analysis tools, such as modal analysis, can be used and some analytical results 

are possible. As these components become larger, the induced geometric 

nonlinearities result in effects that are not observed in linear systems. In such 

situations the possibility of an analytical solution method is significantly reduced and 

is restricted to special cases of beam boundary conditions or loading. 

During the past few years, the nonlinear dynamic analysis of beams undergoing 

large deflections has received a good amount of attention in the literature. More 

specifically, Rozmarynowski and Szymczak in [1] studied the nonlinear free torsional 

vibrations of axially immovable thin-walled beams with doubly symmetric open cross 

section, employing the Finite Element Method. In this research only free vibrations 

are examined; the solution is provided only at points of reversal of motion (not in the 

time domain), no general axial, torsional or warping boundary conditions (elastic 

support case) are studied, while some nonlinear terms related to the finite twisting 

rotations as well as the axial inertia term are ignored. Crespo Da Silva in [2-3] 

presented the nonlinear flexural-torsional-extensional vibrations of Euler-Bernoulli 

doubly symmetric thin-walled closed cross section beams, primarily focusing on 

flexural vibrations and neglecting the effect of torsional warping. Pai and Nayfeh in 

[4-6] studied also the nonlinear flexural-torsional-extensional vibrations of metallic 



and composite slewing or rotating closed cross section beams, primarily focusing to 

flexural vibrations and neglecting again the effect of torsional warping. Simo and Vu-

Quoc in [7] presented a FEM solution to a fully nonlinear (small or large strains, 

hyperelastic material) three dimensional rod model including the effects of transverse 

shear and torsion-warping deformation based on a geometrically exact description of 

the kinematics of deformation. Qaisi in [8] obtained nonlinear normal modes of free 

vibrating geometrically nonlinear beams of various edge conditions employing the 

harmonic balance analytical method. Moreover, Pai and Nayfeh in [9] studied a 

geometrically exact nonlinear curved beam model for solid composite rotor blades 

using the concept of local engineering stress and strain measures and taking into 

account the in-plane and out-of-plane warpings. Di Egidio et al. in [10-11] presented 

also a FEM solution to the nonlinear flexural-torsional vibrations of shear 

undeformable thin-walled open beams taking into account in-plane and out-of-plane 

warpings and neglecting warping inertia. In this paper, the torsional-extensional 

coupling is taken into account but the inextensionality assumption leads to the fact 

that the axial boundary conditions are not general. Mohri et al. in [12] proposed a 

FEM solution to the linear vibration problem of pre- and post- buckled thin-walled 

open cross section beams, neglecting warping and axial inertia, considering 

geometrical nonlinearity only for the static loading and presenting examples of bars 

subjected to free vibrations and special boundary conditions. Machado and Cortinez 

in [13] presented also a FEM solution to the linear free vibration analysis of 

bisymmetric thin-walled composite beams of open cross section, taking into account 

initial stresses and deformations considering geometrical nonlinearity only for the 

static loading and presenting examples of bars subjected to special boundary 

conditions. Avramov et al. [14-15] studied the free flexural-torsional vibrations of 



beams and obtained nonlinear normal modes by expansion of the equations of motion 

employing the Galerkin technique and neglecting the cross section warping. Lopes 

and Ribeiro [16] studied also the nonlinear flexural-torsional free vibrations of beams 

employing a FEM solution and neglecting the longitudinal and rotary inertia as well 

as the cross-section warping. Duan [17] presented a FEM formulation for the 

nonlinear free vibration problem of thin-walled curved beams of asymmetric cross-

section based on a simplified displacement field. Finally, the boundary element 

method has also been used for the nonlinear flexural [18-20] and torsional [21] 

dynamic analysis of only doubly symmetric beams. To the authors’ knowledge the 

general problem of coupled nonlinear flexural – torsional free or forced vibrations of 

asymmetric beams has not yet been presented. 

In this paper, a boundary element method is developed for the nonlinear 

flexural-torsional dynamic analysis of beams of arbitrary, simply or multiply 

connected, constant cross section, undergoing moderately large deflections and 

twisting rotations under general boundary conditions, taking into account the effects 

of rotary and warping inertia. The beam is subjected to the combined action of 

arbitrarily distributed or concentrated transverse loading in both directions as well as 

to twisting and/or axial loading. Four boundary value problems are formulated with 

respect to the transverse displacements, to the axial displacement and to the angle of 

twist and solved using the Analog Equation Method [22], a BEM based method. 

Application of the boundary element technique leads to a system of nonlinear coupled 

Differential – Algebraic Equations (DAE) of motion, which is solved iteratively using 

the Petzold-Gear Backward Differentiation Formula (BDF) [23], a linear multistep 

method for differential equations coupled to algebraic equations. The geometric, 

inertia, torsion and warping constants are evaluated employing the Boundary Element 



Method. The essential features and novel aspects of the present formulation compared 

with previous ones are summarized as follows. 

i. The cross section is an arbitrarily shaped thin- or thick-walled one. The 

formulation does not stand on the assumption of a thin-walled structure and 

therefore the cross section’s torsional and warping rigidities are evaluated 

“exactly” in a numerical sense. 

ii. The beam is subjected to arbitrarily distributed or concentrated transverse 

loading in both directions as well as to twisting and axial loading. 

iii. The beam is supported by the most general boundary conditions including 

elastic support or restraint. 

iv. The effects of rotary and warping inertia are taken into account on the 

nonlinear flexural-torsional dynamic analysis of asymmetric beams subjected 

to arbitrary loading and boundary conditions. 

v. The transverse loading can be applied at any arbitrary point of the beam cross 

section. The eccentricity change of the transverse loading during the torsional 

beam motion, resulting in additional torsional moment is taken into account. 

vi. The proposed model takes into account the coupling effects of bending, axial 

and torsional response of the beam as well as the Wagner’s coefficients and 

the shortening effect.  

vii. The proposed method employs a BEM approach (requiring boundary 

discretization for the cross sectional analysis) resulting in line or parabolic 

elements instead of area elements of the FEM solutions (requiring the whole 

cross section to be discretized into triangular or quadrilateral area elements), 

while a small number of line elements are required to achieve high accuracy. 



Numerical examples are worked out to illustrate the efficiency, wherever possible the 

accuracy, the range of applications of the developed method as well as the influence 

of the nonlinear effects to the response of the beam. 

 

2. STATEMENT OF THE PROBLEM  

Let us consider a prismatic beam of length l  (Fig.1), of constant arbitrary cross 

section of area . A .. The homogeneous isotropic and linearly elastic material of the 

beam’s cross section, with modulus of elasticity . E ., shear modulus .. and Poisson’s 

ratio .ν . occupies the two dimensional multiply connected region . Ω . of the y,z  

plane and is bounded by the .. ( )j j 1,2,...,KΓ =   .. boundary curves, which are 

piecewise smooth, i.e. they may have a finite number of corners. In Fig. 1 CYZ  is the 

principal bending coordinate system through the cross section’s centroid C , while 

Cy , Cz  are its coordinates with respect to the Syz  shear system of axes through the 

cross section’s shear center S , with axes parallel to those of the .. system. The beam 

is subjected to the combined action of the arbitrarily distributed or concentrated, time 

dependent and conservative axial loading ( )X Xp p X ,t=  along X  direction, twisting 

moment .. along x  direction and transverse loading ( )y yp p x,t= , ( )z zp p x,t=  

acting along the y  and z  directions, applied at distances 
ypy , 

ypz  and 
zpy , 

zpz ,  

with respect to the Syz  shear system of axes, respectively (Fig. 1b). 

Under the action of the aforementioned loading, the displacement field of an 

arbitrary point of the cross section can be derived with respect to those of the shear 

center as [12] 

 

. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )P
C Z C Y x Su x, y,z,t u x,t y y x,t z z x,t x,t y,zθ θ θ ϕ′= − − + − + . (1a) 



( ) ( ) ( )( ) ( )( )x xv x, y,z,t v x,t z sin x,t y 1 cos x,tθ θ⎡ ⎤= − − −⎣ ⎦   (1b) 

( ) ( ) ( )( ) ( )( )x xw x, y,z,t w x,t y sin x,t z 1 cos x,tθ θ⎡ ⎤= + − −⎣ ⎦  (1c) 

( ) ( ) ( )( ) ( ) ( )( )Y x xx,t v x,t sin x,t w x,t cos x,tθ θ θ′ ′= −  (1d) 

( ) ( ) ( )( ) ( ) ( )( )Z x xx,t v x,t cos x,t w x,t sin x,tθ θ θ′ ′= +  (1e) 

 

where u , v , w  are the axial and transverse beam displacement components with 

respect to the Syz  shear system of axes;  ( ) ( )A
1u x,t u x, y,z,t dA
A

= ∫  denotes the 

average axial displacement of the cross section [24] and ( )v v x,t= , ( )w w x,t=  are 

the corresponding components of the shear center S ; ( )Y x,tθ , ( )Z x,tθ  are the 

angles of rotation of the cross section due to bending, with respect to its centroid; 

( )x x,tθ ′  denotes the rate of change of the angle of twist ( )x x,tθ  regarded as the 

torsional curvature and P
Sϕ  is the primary warping function with respect to the shear 

center S  [25]. 

Employing the strain-displacement relations of the three-dimensional elasticity 

for moderate displacements [26, 27]  

 

2 2 2

xx
u 1 u v w
x 2 x x x

ε
⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (2a) 

xy
v u u u v v w w
x y x y x y x y

γ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (2b) 

xz
w u u u v v w w
x z x z x z x z

γ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (2c) 

yy zz yz 0ε ε γ= = =  (2d) 



 

the following strain components can be easily obtained 

 

2 2

xx
u 1 v w
x 2 x x

ε
⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞≈ + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (3a) 

xy
v u v v w w
x y x y x y

γ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

≈ + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (3b) 

xz
w u v v w w
x z x z x z

γ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞≈ + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (3c) 

yy zz yz 0ε ε γ= = =  (3d) 

 

where it has been assumed that for moderate displacements ( ) ( )2u u
x x

∂ ∂
∂ ∂ , , 

( )( ) ( ) ( )u u u u
x y x y

∂ ∂ ∂ ∂+∂ ∂ ∂ ∂ . Substitu- ( )( ) ( ) ( )u u u u
x z x z

∂ ∂ ∂ ∂+∂ ∂ ∂ ∂ ting 

the displacement components (1a-1e) to the strain-displacement relations (3), the 

strain components can be written as 

 

( )( ) ( )( )
( ) ( )( )

( )( )

xx C x x C x x

P
x S x C x x C x x

22 2 2 2
x

u z z v sin w cos y y v cos w sin

z v cos w sin y v sin w cos

1 v w y z
2

ε θ θ θ θ

θ φ θ θ θ θ θ

θ

′ ′′ ′′ ′′ ′′= + − − − − + +

′′ ′ ′ ′ ′ ′     + − + + − +

⎛ ⎞′′ ′     + + + +⎜ ⎟
⎝ ⎠

 (4a) 

P
S

xy xy x2 z
y

φ
γ ε θ

⎛ ⎞∂ ′= = −⎜ ⎟⎜ ⎟∂⎝ ⎠
 (4b) 

P
S

xz xz x2 y
z

φγ ε θ
⎛ ⎞∂ ′= = +⎜ ⎟⎜ ⎟∂⎝ ⎠

 (4c) 

 



Considering strains to be small and employing the second Piola – Kirchhoff stress 

tensor, the non vanishing stress components are defined in terms of the strain ones as 

 

xx xx

xy xy

xz xz

S E 0 0
S 0 G 0

0 0 GS

ε

γ

γ

∗⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥

⎣ ⎦⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

 (5) 

 

where *E  is obtained from Hooke’s stress-strain law as ( )
( )( )

E 1
E

1 1 2
ν

ν ν
∗ −

=
+ −

. If the 

assumption of plane stress condition is made, the above expression is reduced in 

2
EE

1 ν
∗ =

−
 [28], while in beam formulations, E  is frequently considered instead of 

*E  ( E E∗ ≈ ) [28, 29]. This last consideration has been followed throughout the 

paper, while any other reasonable expression of *E  could also be used without any 

difficulty. Substituting eqns. (4) into eqns. (5), the non vanishing stress components 

are obtained as 

 

( )( ) ( )( )

( ) ( )( )

( )( )

xx C x x C x x

P
x S x C x x C x x

22 2 2 2
x

S E u z z v sin w cos y y v cos w sin

z v cos w sin y v sin w cos

1 v w y z
2

θ θ θ θ

θ φ θ θ θ θ θ

θ

′ ′′ ′′ ′′ ′′⎡= + − − − − + +⎣
′′ ′ ′ ′ ′ ′+ − + + − +

⎤⎛ ⎞′′ ′+ + + + ⎥⎜ ⎟
⎝ ⎠⎦

 (6a) 

P
S

xy xS G z
y

φ
θ

⎛ ⎞∂′= ⋅ ⋅ −⎜ ⎟⎜ ⎟∂⎝ ⎠
 (6b) 

P
S

xz xS G y
z

φθ
⎛ ⎞∂′= ⋅ ⋅ +⎜ ⎟⎜ ⎟∂⎝ ⎠

 (6c) 

 



In order to establish the nonlinear equations of motion, the principle of virtual 

work  

 

int mass extW W Wδ δ δ+ =  (7) 

 

where 

 

( )int xx xx xy xy xz xzVW S S S dVδ δε δγ δγ= + +∫  (8a) 

( )mass VW u u v v w w dVδ ρ δ δ δ= + +∫  (8b) 

( )y zext X C y p z p x xlW p u p v p w m dxδ δ δ δ δθ= + + +∫  (8c) 

 

under a Total Lagrangian formulation, is employed. In the above equations, ( )δ ⋅  

denotes virtual quantities, ( )  denotes differentiation with respect to time, V  is the 

volume of the beam, Cu  is the axial displacement of the centroid and  
ypv , 

zpv are the 

transverse displacements of the points where the loads yp , zp , respectively, are 

applied. It is worth here noting that the aforementioned expression of the external 

work (eqn. (8c)) takes into account the change of the eccentricity of the external 

conservative transverse loading, arising from the cross section torsional rotation, 

inducing additional (positive or negative) torsional moment. This effect may influence 

substantially the torsional response of the beam. Moreover, the stress resultants of the 

beam can be defined as 

 

xxN S dΩ Ω= ∫  (9a) 



xxM S ZdΥ Ω Ω= ∫  (9b) 

Z xxM S YdΩ Ω= −∫  (9c) 

P P
S S

t xy xzM S z S y d
y zΩ

ϕ ϕ
Ω

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
= − + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫  (9d) 

P
w xx SM S dΩ ϕ Ω= −∫  (9e) 

( )2 2
R xxM S y z dΩ Ω= +∫  (9f) 

 

where tΜ  is the primary twisting moment [25] resulting from the primary shear 

stress distribution xyS , xzS , wM  is the warping moment due to torsional curvature 

and RM  is a higher order stress resultant. Substituting the expressions of the stress 

components (6) into equations (9a-9f), the stress resultants are obtained as 

 

( ) ( )( )

2 2 2S
x

x C x x C x x

I1N EA u v w
2 A

z v cos w sin y v sin w cos

θ

θ θ θ θ θ

⎡ ⎛ ⎞′′ ′ ′= + + + −⎜ ⎟⎢ ⎝ ⎠⎣
⎤′ ′ ′ ′ ′ − + + − ⎥⎦

 (10a) 

( )2
Y Y x x Z xM EI w cos v sinθ θ β θ ′′′ ′′= − − −  (10b) 

( )2
Z Z x x Y xM EI v cos w sinθ θ β θ ′′′ ′′= + −  (10c) 

t t xM GI θ ′=  (10d) 

( )2
w S x xM EC ωθ β θ′′ ′= − +  (10e) 



( ) ( )S
R Z Y x x Y Z x x

2
2S

S x R x

IM N 2EI v cos w sin 2EI w cos v sin
A

I12EC E I
2 Aω

β θ θ β θ θ

β θ θ

′′ ′′ ′′ ′′= − + − − +

⎛ ⎞
′′ ′+ + −⎜ ⎟⎜ ⎟

⎝ ⎠

 (10f) 

 

where the area A, the polar moment of inertia SI  with respect to the shear center S, 

the principal moments of inertia YI , ZI  with respect to the cross section’s centroid, 

the fourth moment of inertia RI  with respect to the shear center S, the torsion constant 

tI  and the warping constant SC  with respect to the shear center S , are given as 

 

A dΩ Ω= ∫  (11a) 

( )2 2
SI y z dΩ Ω= +∫  (11b) 

2
YI Z dΩ Ω= ∫  (11c) 

2
ZI Y dΩ Ω= ∫  (11d) 

( )22 2
RI y z dΩ Ω= +∫  (11e) 

( )2P
S SC dΩ ϕ Ω= ∫  (11f) 

P P
2 2 S S

tI y z y z d
z yΩ

ϕ ϕ Ω
⎛ ⎞∂ ∂

= + + −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
∫  (11g) 

 

while the Wagner’s coefficients Zβ , Yβ  and ωβ  are given as 

 

( )( )2 2
Z C

Y

1 z z y z d
2I Ωβ Ω= − +∫  (12a) 



( )( )2 2
Y C

Z

1 y y y z d
2I Ωβ Ω= − +∫  (12b) 

( )2 2 P
S

S

1 y z d
2Cω Ωβ ϕ Ω= +∫  (12c) 

 

Using the expressions of strain obtained in equations (4), the definitions of the 

stress resultants given in equations (9) and applying the principle of virtual work (eqn. 

(7)), the equations of motion of the beam can be derived as  

 

XN Au pρ′− + =  (13a) 

 

( ) ( ) ( ) ( )2
v1 Z x Y x v2 x v3 x v4 xNF M cos M sin Av F F Fθ θ ρ ρ θ ρ θ ρ θ ′′ ′′ ′′− + + + − + − −  

( ) ( ) ( )2
v5 x v6 x v7 x yF F 2 v w F 2 w v pρ θ ρ θ ρ θ′ ′ ′⎡ ⎤ ⎡ ⎤′ ′ ′ ′− − − + + =⎣ ⎦ ⎣ ⎦   (13b) 

 

( ) ( ) ( ) ( )2
w1 Y x Z x w2 x w3 x w4 xNF M cos M sin Aw F F Fθ θ ρ ρ θ ρ θ ρ θ ′′ ′′ ′′− − + + − − − +  

( ) ( ) ( )2
w5 x w6 x w7 x zF F 2 w v F w 2 v pρ θ ρ θ ρ θ′ ′ ′⎡ ⎤ ⎡ ⎤′ ′ ′ ′+ − + + − =⎣ ⎦ ⎣ ⎦   (13c) 

 

( ) ( ) ( )1 2 3 Y 4 Z 5 t w R xNF NF NF M F M F M M Mθ θ θ θ θ θ
′′ ′ ′ ′′ ′+ + + + − − − −  

( ) ( ) ( ) 2
6 7 8 x 9 x 10 x 11 xF v F w F F v 2 w F w 2 v Fθ θ θ θ θ θρ ρ θ ρ θ ρ θ ρ θ′ ′ ′ ′− + + + + + − − −  

( ) z y z yS x x z p x y p x z p x y p xC m p y cos p z cos p z sin p y sinρ θ θ θ θ θ
′′− = + − − −  (13d) 

 



where the expressions of the stress resultants are given from equations (10) and viF  

( )i 1,2,...,7= , wiF  ( )i 1,2,...,7=  and iFθ  ( )i 1,2,...,11=  are functions of v , w , xθ  

and their derivatives with respect to x , given in the Appendix A. Equations (13) are 

coupled and highly complicated. This set of equations can be simplified if the 

approximate expressions [12] 

 

2 2
x x

xcos 1 1
2 2

θ θθ ≈ − = −
!

                            (14a) 

3 3
x x

x x xsin
3 6

θ θθ θ θ≈ − = −
!

 (14b) 

 

are employed. Thus, using the aforementioned approximations, neglecting the term 

Auρ  of equation (13a) denoting the axial inertia of the beam, employing the 

expressions of the stress resultants (eqns. (10)) and ignoring the nonlinear terms of the 

fourth or greater order [12], the governing partial differential equations of motion for 

the beam at hand can be written as 

S
x x u1 X

IEA u w w v v G p
A

θ θ⎡ ⎤′ ′′′′ ′ ′′ ′ ′′− + + + − =⎢ ⎥⎣ ⎦
 (15a) 

 

( ) ( )Z v1 Z Y v2 Z Y v3 Y Z v4 v5 v6EI v NG EI EI G EI G EI G Av G Gβ β ρ′′′′ − + − + + + + − =   

 y v7 Xp G p= −  (15b) 

 

( ) ( )Y w1 Z Y w2 Z Y w3 Y Z w4 w5 w6EI w NG EI EI G EI G EI G Aw G Gβ β ρ′′′′ − + − + + + + − =  

  z w7 Xp G p= −  (15c) 

 



( )
2

2S
S x t x R x x 1 Z Y 2 Z Y 3

I3EC GI E I NG EI EI G EI G
2 A θ θ θθ θ θ θ β

⎛ ⎞
′′′′ ′′ ′ ′′− − − − + − + +⎜ ⎟⎜ ⎟

⎝ ⎠
 

 ( ) z zY Z 4 5 x 6 7 8 S x x z p y pEI G G G v G w G C m p y p zθ θ θ θ θβ ρ θ θ ′′+ + − + + − = + − +  

 9 y 10 z 11 XpG p G G pθ θ θ+  + −  (15d) 

 

where u1G , viG  ( )i 1,2,...,7= , wiG  ( )i 1,2,...,7=  and iGθ  ( )i 1,2,...,11=  are 

functions of v , w , xθ  and their derivatives with respect to . x ., t , given in the 

Appendix A, while the expression of the axial stress resultant N  is given as 

 

( ) ( )( )2 2 2S
x x C x C x

I1N EA u v w z w v y v w
2 A

θ θ θ θ⎡ ⎤⎛ ⎞′ ′′ ′ ′ ′ ′ ′ ′= + + + − + + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (16) 

 

The above governing differential equations (eqns. (15)) are also subjected to the 

initial conditions ( ( )x 0,l∈ ) 

 

( ) ( )0u x,0 u x=  ( ) ( )0u x,0 u x=  (17a,b) 

( ) ( )0v x,0 v x=  ( ) ( )0v x,0 v x=  (18a,b) 

( ) ( )0w x,0 w x=  ( ) ( )0w x,0 w x=  (19a,b) 

( ) ( )x x0x,0 xθ θ=  ( ) ( )x x0x,0 xθ θ=  (20a,b) 

 

together with the corresponding boundary conditions of the problem at hand, which 

are given as 

 



( ) ( )1 2 3a u x,t N x,tα α+ =  (21) 

( ) ( )1 2 y 3v x,t V x,tβ β β+ =  ( ) ( )1 Z 2 Z 3x,t x,tβ θ β Μ β+ =  (22a,b) 

( ) ( )1 2 z 3w x,t V x,tγ γ γ+ =  ( ) ( )1 Y 2 Y 3x,t x,tγ θ γ Μ γ+ =  (23a,b) 

( ) ( )1 x 2 t 3x,t M x,tδ θ δ δ+ =  ( ) ( )1 x 2 w 3x,t M x,tδ θ δ δ′ + =  (24a,b) 

 

at the beam ends x 0,l= , where yV , zV  and ZM , YM  are the reactions and bending 

moments with respect to y , z  or to Y , Z  axes, respectively, given by the following 

relations (ignoring again the nonlinear terms of the fourth or greater order) 

 

( )
( )
( )

y C x C x x

2
Z x x x x x Y x x

2 3
Y x x x x x Z x Z x x x

V N v z y

EI v w w v 2v 2

EI w w 2v v 2

θ θ θ

θ θ θ θ θ β θ θ

θ θ θ θ θ β θ β θ θ θ

′ ′′= − − +

′ ′ ′ ′′′′′ ′′ ′′′ ′′′ ′′+ − − − + + +

′ ′ ′ ′ ′′′′′ ′′ ′′ ′′′+ + − − − −

 (25a) 

 

( )
( )
( )

z C x C x x

2
Y x x x x x Z x x

2 3
Z x x x x x Y x x x Y x

V N w y z

EI w v w v 2w 2

EI v w v 2w 2

θ θ θ

θ θ θ θ θ β θ θ

θ θ θ θ θ β θ θ θ β θ

= ′ ′′ + − +

′ ′ ′ ′′′′′ ′′′ ′′′ ′′ ′′+ + − + + + −

′ ′ ′ ′′ ′′′ ′′′ ′′′ ′′− + + + − −

 (25b) 

 

( ) ( )2 2 2 2
Z Z x Y x x Y x x Z x xM EI w v v EI w vθ β θ θ θ θ β θ θ′ ′′′ ′′ ′′ ′′ ′′= − + − + − + +  (25c) 

 

( ) ( )2 2 2 2
Y Z x Y x x x Y Z x x xM EI w v EI w w vθ β θ θ θ β θ θ θ′ ′′′ ′′ ′′ ′′ ′′= − + − + − + +  (25d) 

 



while tM  and wM  are the torsional and warping moments at the boundaries of the 

bar, respectively, given as 

  

( ) ( )

S
t t x S x C x C C x C x

2
3S

Z Y x x x Y Z x x x R x

IM GI EC N z w y w y v z v
A

I1EI 2 v 2 w EI 2 w 2 v E I
2 A

θ θ θ θ θ

β θ θ θ β θ θ θ θ

⎛ ⎞′ ′′′ ′′ ′ ′ ′= − + − + − − + +⎜ ⎟
⎝ ⎠

⎛ ⎞
′ ′ ′ ′ ′′′ ′′ ′′ ′′+ − − + − + + −⎜ ⎟⎜ ⎟

⎝ ⎠
  (26a) 

 

( )2
w S x xM EC ωθ β θ′′ ′= − +  (26b) 

 

Finally, k k k k k k k, , , , , ,α β β γ γ δ δ             ( k 1,2,3= ) are time dependent functions 

specified at the boundaries of the bar ( x 0,l= ). The boundary conditions (21)-(24) are 

the most general boundary conditions for the problem at hand, including also the 

elastic support. It is apparent that all types of the conventional boundary conditions 

(clamped, simply supported, free or guided edge) can be derived from these equations 

by specifying appropriately these functions (e.g. for a clamped edge it is 

1 1 1 1 1 1 1 1α β β γ γ δ δ= = = = = = = , 2 3 2 3 2 3 2α α β β γ γ δ= = = = = = = 3 2δ β=  

2 33 2 3 0β γ γ δ δ= = = = = ). 

 

3. INTEGRAL REPRESENTATIONS-NUMERICAL SOLUTION 

 

3.1 For the axial displacement u x,t( ) , the transverse displacements v x,t( ) , 

w x,t( )  and the angle of twist x x,tθ ( )  



According to the precedent analysis, the nonlinear flexural-torsional vibration 

problem of a beam reduces in establishing the axial displacement component ( )u x,t  

having continuous partial derivatives up to the second order and the transverse 

displacement components ( )v x,t , ( )w x,t  and the angle of rotation ( )x x,tθ  having 

continuous partial derivatives up to the fourth order with respect to x  and up to the 

second order with respect to t , satisfying the nonlinear initial boundary value problem 

described by the coupled governing differential equations of motion (eqns. (15)) along 

the beam, the initial conditions (eqns. (17)-(20)) and the boundary conditions (eqns. 

(21)-(24)) at the beam ends x 0,l= . 

Eqns. (15) and (17)-(24) are solved using the Analog Equation Method [22] as it 

is developed for hyperbolic differential equations [30]. According to this method, let 

( )u x,t , ( )v x,t , ( )w x,t  and ( )x x,tθ  be the sought solutions of the aforementioned 

problem. Setting as ( ) ( )1u x,t u x,t= , ( ) ( )2u x,t v x,t= , ( ) ( )3u x,t w x,t=  and 

( ) ( )4 xu x,t x,tθ=  and differentiating with respect to x  these functions two and four 

times, respectively, yields 

 

( )
2

1
12

u q x,t
x

∂
=

∂
 ( ) )

4
i

i4
u q x,t , i 2,3,4

x
∂

=     ( =
∂

 (27a,b) 

 

Eqns. (27) are quasi-static, i.e. the time variable appears as a parameter. They indicate 

that the solution of eqns. (15) and (17)-(24) can be established by solving eqns. (27) 

under the same boundary conditions (eqns. (21)-(24)), provided that the fictitious load 

distributions ( )iq x,t  ( )i 1,2,3,4=  are first established. These distributions can be 

determined using BEM. Following the procedure presented in [30] and employing the 



constant element assumption for the load distributions iq  along the L internal beam 

elements (as the numerical implementation becomes very simple and the obtained 

results are of high accuracy), the integral representations of the displacement 

components iu  ( )i 1,2,3,4=  and their derivatives with respect to x  when applied for 

the beam ends (0,l ), together with the boundary conditions (21)-(24) are employed to 

express the unknown boundary quantities ( )iu ,tζ , ( )i xu , ,tζ , ( )i xxu , ,tζ  and 

( )i xxxu , ,tζ  ( 0,lζ = ) in terms of iq . Thus, the following set of 28 nonlinear algebraic 

equations is obtained 

 

nl
1 3

11 1 nl
2

22 2

33 3

44 4 nl
3

nl
4
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⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪

⎩ ⎭⎪ ⎪⎩ ⎭

0 0
D α
0 0
0 0

E 0 0 0 d
D β

0 E 0 0 d
0+ = 0

0 0 E 0 d
0 0

0 0 0 E d
γD
00
00
δD

 (28) 

 

where 

 

1 12 13
11

22 23

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

F E E
E

0 D D
 (29a) 



3 35 36 37 38

4 46 47 48
22

54 55 56 57 58

64 65 66 67 68

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

F E E E E
F 0 E E E

E
D D D D D
D D D D D

 (29b) 

7 79 7 11 7 12 7 13

8 8 11 8 12 8 13
33

99 9 10 9 11 9 12 9 13

10 9 10 10 10 11 10 12 10 13

   

   

    

     

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

F E E E E
F 0 E E E

E
D D D D D
D D D D D

 (29c) 

11 1115 1116 1117 1118

12 12 16 12 17 12 18
44

13 14 13 15 13 16 13 17 13 18

14 14 14 15 14 16 14 17 14 18

    

   

     

     

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

F E E E E
F 0 E E E

E
D D D D D
D D D D D

 (29d) 

 

{ } { } { }, ,
T TT

3 3 3 3 3 3=   =   =β β β γ γ γ δ δ δ  (29e,f,g) 

 

The matrices 22D  to 14 18 D , are 2 2×  rectangular known matrices including the 

values of the functions j j j j j j ja , , , , , ,β β γ γ δ δ  ( j 1,2= ) of eqns. (21)-(24); 3α , 3β , 

3β , 3γ , 3γ , 3δ , 3δ  are 2 1×  known column matrices including the boundary values 

of the functions , , , , , , 3 3 3 3 3 3 3a β β γ γ δ δ , of eqns. (21)-(24); 12E  to 12 18 E  are 

rectangular 2 2×  known coefficient matrices resulting from the values of kernels at 

the bar ends; , , , , , , 1 3 4 7 8 11 12F F F F F F F  are 2 L×  rectangular known matrices 

originating from the integration of kernels on the axis of the beam; nl
1D  is a 2 1 × and 

( )nl
i i 2,3,4 =D  are 4 1 ×  known column matrices containing the nonlinear terms 

included in the expressions of the boundary conditions (eqns. (21)-(24)). Finally 

 



{ }T
1 1 1 1 xˆ ˆ ,=d q u u  (30a) 

{ } , )T
i i i i x i xx i xxxˆ ˆ ˆ ˆ, , , i 2,3,4=   ( =d q u u u u  (30b) 

 

are generalized unknown vectors, where 

 

( ) ( ){ }T
i i iˆ u 0,t u l ,t=u  ,  ( )i 1,2,3,4=  (31a) 

( ) ( ) T
i i

i x
u 0,t u l ,tˆ ,

x x
∂ ∂⎧ ⎫

= ⎨ ⎬∂ ∂⎩ ⎭
u  ,  ( )i 1,2,3,4=  (31b) 

( ) ( )
T2 2

i i
i xx 2 2

u 0,t u l ,tˆ ,
x x

⎧ ⎫∂ ∂⎪ ⎪= ⎨ ⎬
∂ ∂⎪ ⎪⎩ ⎭

u  ,  ( )i 2,3,4=  (31c) 

( ) ( )
T3 3

i i
i xxx 3 3

u 0,t u l ,tˆ ,
x x

⎧ ⎫∂ ∂⎪ ⎪= ⎨ ⎬
∂ ∂⎪ ⎪⎩ ⎭

u  ,  ( )i 2,3,4=  (31d) 

 

are vectors including the two unknown time dependent boundary values of the 

respective boundary quantities and { }Ti i i
i 1 2 Nq q ... q=q  ( )i 1,2,3,4=  are vectors 

including the L  unknown time dependent nodal values of the fictitious loads. 

Discretization of the integral representations of the unknown quantities iu  

( )i 1,2,3,4=  inside the beam ( ( )x 0,l∈ ) and application to the L  collocation nodal 

points yields 

 

0
1 1 1 0 1 1 1 xˆ ˆ ,= + +u A q C u C u  (32a) 

1
1 x 1 1 0 1 xˆ, ,= +u A q C u  (32b) 



1 xx 1, =u q  (32c) 

0
i i i 0 i 1 i x 2 i xx 3 i xxxˆ ˆ ˆ ˆ, , ,′= + + + +u A q C u C u C u C u ,  ( )i 2,3,4=  (32d) 

1
i x i i 0 i x 1 i xx 2 i xxxˆ ˆ ˆ, , , ,′= + + +u A q C u C u C u ,  ( )i 2,3,4=  (32e) 

2
i xx i i 0 i xx 1 i xxxˆ ˆ, , ,′= + +u A q C u C u ,  ( )i 2,3,4=  (32f) 

3
i xxx 2 i 0 i xxxˆ, ,= +u A q C u ,  ( )i 2,3,4=  (32g) 

i xxxx i, =u q ,  ( )i 2,3,4=  (32h) 

 

where , ji
1 kA A  ( ) i 0, 1= , ( )  j 0, 1, 2, 3= , ( )k 2,3,4=    are L L×  known matrices; 

0C , 1C , 1′C , 2C , 3C  are L 2×  known matrices and iu , i x,u , i xx,u , i xxx,u , i xxxx,u  

are time dependent vectors including the values of ( )iu x,t  and their derivatives at the 

L  nodal points. Eqns. (32a, b, d, e, f, g) can be assembled more conveniently as 

 

0
1 1 1=u H d  (33a) 

1
1 x 1 1, =u H d  (33b) 

0
i i i=u H d ,  ( )i 2,3,4=  (33c) 

1
i x i i, =u H d ,  ( )i 2,3,4=  (33d) 

2
i xx i i, =u H d ,  ( )i 2,3,4=  (33e) 

3
i xxx i i, =u H d ,  ( )i 2,3,4=  (33f) 

 



where , ji
1 kH H  ( ) i 0, 1= , ( )  j 0, 1, 2, 3= , ( )k 2,3,4=    are ( )L L 4× +  and 

( )L L 8× +  known matrices, respectively arising from i
1A , j

2A , 0C , 1C , 1′C , 2C , 

3C . 

Applying eqns. (15) to the L  collocation points and employing eqns. (33), 

4 L×  semidiscretized nonlinear equations of motion are formulated as 

 

[ ] [ ] { } { } { }= 

1 1

2 2 nl nl

33

44

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪+ + +⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
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d d
d d

M K m k f
dd
dd

 (34) 

 

where , , M K f  are generalized mass matrix, stiffness matrix and force vector, 

respectively, while nlm , nlk  are nonlinear generalized mass vector and stiffness 

vector, respectively, containing all the nonlinear terms of the semidiscretized 

equations of motion. It is noted that the coefficients of the mass matrix M  

corresponding to the generalized vector 1d  are equal to zero as the axial inertia of the 

beam has been neglected. Equations (34) with equations (28) form a system of 

4 L 28× + equations with respect to the generalized unknown vectors ( )i i 1,2,3,4  =d

. 

Eqns. (33a,c) when combined with eqns. (17a)-(20a) yield the following 4 L×  

linear equations with respect to 1d , 2d , 3d , 4d  for t 0=  

 

( )0
2 1 0 = 0H d u   (35a) 

( )0
2 2 0 = 0H d v   (35b) 



( )0
3 3 0 = 0H d w   (35c) 

( )0
4 4 0 = x0H d θ   (35d) 

 

The above equations, together with eqns. (28) written for t 0= , form a set of 

4 L 28× +  nonlinear algebraic equations which are solved to establish the initial 

conditions ( )1 0d , ( )2 0d , ( )3 0d , ( )4 0d . Similarly, eqns. (33a,c) when combined 

with eqns. (17b)-(20b) yield the following 4 L×  linear equations with respect to 1d , 

2d , 3d , 4d  for t 0=  

 

( )0
1 1 0 = 0H d u   (36a) 

( )0
2 2 0 = 0H d v   (36b) 

( )0
3 3 0 = 0H d w   (36c) 

( )0
4 4 0 = x0H d θ   (36d) 

 

The above equations, together with the 28 equations resulting after differentiating 

eqns. (28) with respect to time and writing them for t 0= , form a set of 4 L 28× +  

algebraic equations, from which the initial conditions ( )1 0d , ( )2 0d , ( )3 0d , ( )4 0d  

are established. 

The aforementioned initial conditions along with eqns. (28), (34) form an initial 

value problem of Differential-Algebraic Equations (DAE), which can be solved using 

any efficient solver. In this study, the Petzold-Gear Backward Differentiation Formula 

(BDF) [23], which is a linear multistep method for differential equations coupled to 

algebraic equations, is employed. For this case, the method is applied after 



introducing new variables to reduce the order of the system [31] and after 

differentiating eqns. (28) with respect to time, in order to obtain an equivalent system 

with a value of system index ind 1=  [23].  

 

3.2 For the primary warping function P
Sϕ  

The numerical solution for the evaluation of the displacement and rotation 

components assume that the warping SC  and torsion tI  constants given from eqns. 

(10e), (10d) are already established. Eqns. (11f), (11g) indicate that the evaluation of 

the aforementioned constants presumes that the primary warping function P
Sϕ  at any 

interior point of the domain Ω  of the cross section of the beam is known. Once P
Sϕ  is 

established, SC  and tI  constants are evaluated by converting the domain integrals 

into line integrals along the boundary employing the following relations 

 

P
S

SC B ds
nΓ

ϕ∂
= −

∂∫  on 
K 1

j
j 1

Γ Γ
+

=
= ∪  (37a) 

( ) ( )2 P 2 P
t S y S zI yz z n y z y n dsΓ ϕ ϕ⎡ ⎤= − + +⎣ ⎦∫  on 

K 1
j

j 1
Γ Γ

+

=
= ∪  (37b) 

 

and using constant boundary elements for the approximation of these line integrals. In 

eqns. (37a,b) yn , zn  are the direction cosines, while ( )B y,z  is a fictitious function 

defined as the solution of the following Neumann problem 

 

2 P
SB ϕ∇ =  in Ω     (38a) 



B 0
n

∂
=

∂
 on 

K 1
j

j 1
Γ Γ

+

=
= ∪     (38b) 

 

The evaluation of the primary warping function P
Sϕ  and the fictitious function 

( )B y,z  is accomplished using BEM as this is presented in [25, 32, 33].  

Moreover, since the torsion and warping constants of the arbitrary beam cross 

section are evaluated employing the boundary element method, using only boundary 

integration, the domain integrals for the evaluation of the area, the bending, the fourth 

and the polar moments of inertia and the Wagner’s coefficients Zβ , Yβ  and ωβ  

given from expressions (12) have to be converted to boundary line integrals. This can 

be achieved using integration by parts, the Gauss theorem and the Green identity. 

Thus, the aforementioned quantities can be written as 

 

( ) ( )( )C y C z
1A y - y n z z n ds
2 Γ= + −∫  (39a) 

( )( )3
Y C z

1I z z n ds
3Γ= −∫  (39b) 

( )( )3
Z C y

1I y y n ds
3Γ= −∫   (39c) 

( ) ( )( )5 5 2 2
R y z y z

1 1I y n z n y z yn zn ds
5 3Γ= + + +∫  (39d) 

( )3 3
S y z

1I y n z n ds
3Γ= +∫  (39e) 

( ) ( )( )4 3
C C C

Y Y Z C
Z

y y y y z z1 n n ds y
2I 4 3Γβ

⎡ ⎤⎛ ⎞− − −⎢ ⎥⎜ ⎟= + +
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫  (39f) 



( ) ( ) ( )3 4
C C C

Z Y Z C
Y

y y z z z z1 n n ds z
2I 3 4Γβ

⎡ ⎤⎛ ⎞− − −⎢ ⎥⎜ ⎟= + +
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫  (39g) 

( ) ( )( )3 3 P 4 4
y z S y z

S

1 1 1y n z n y z zn yn ds
2C 3 12ω Γβ φ⎡ ⎤= + − + −⎢ ⎥⎣ ⎦

∫  (39h) 

 

 

 

4. Numerical examples 

On the basis of the analytical and numerical procedures presented in the 

previous sections, a computer program has been written and representative examples 

have been studied to demonstrate the validation, the efficiency, wherever possible the 

accuracy and the range of applications of the developed method. The numerical 

results have been obtained employing 21 nodal points (longitudinal discretization) and 

400 boundary elements (cross section discretization). 

  

Example 1 

In the first example, for comparison reasons, the forced vibration of a clamped 

beam (Fig. 2a), ( 8 2E 2,1 10 kN m= ×  , 7 2G 8,0769 10 kN m= ×  , 37,85 tn mρ =  , 

l 4 m=  ) of a hollow rectangular cross section,  having geometric constants presented 

in Table 1, is examined. The beam is subjected to the suddenly applied uniformly 

distributed loading ( )yp t 250 kN m=  , ( )zp t 500 kN m=   at its centroid, as this is 

shown in Fig. 2b. In Figs. 3, 4 the time histories of the midpoint displacements 

( )v l 2 ,t , ( )w l 2 ,t  and angle of twist ( )x l 2 ,tθ , respectively and in Table 2 the 

maximum values of these kinematical components are presented as compared with 

those obtained from a BEM solution [19], noting the accuracy of the proposed 



method. As it can be observed from these figures and table, the strong coupling 

between flexure and torsion may lead beams of doubly symmetric cross section 

undergoing biaxial transverse loading applied at their centroid to develop torsional 

rotation, a phenomenon that cannot be predicted from linear analysis. 

 

Example 2 

In this example, in order to investigate the response of a monosymmetric beam  

and the influence of the loading point upon the cross section, in nonlinear flexural-

torsional vibrations, the forced vibrations of a cantilever beam (

8 2E 2,164 10 kN m= ×  , 7 2G 8,0148 10 kN m= ×  , 37,85 tn mρ =  , l 1 m=  ) of a 

thin-walled open shaped cross section (Fig. 5), under two load cases have been 

studied (its geometric constants are given in Table 3). More specifically, the beam is 

subjected to a suddenly applied concentrated force ( )YP t 5 kN=   either on the right 

(load case (i), Fig. 5b) or on the left (load case (ii), Fig. 5c) flange. In Figs. 6-9 the 

time histories of the axial displacement ( )tu l, , the transverse displacements ( )tv l , , 

( )tw l,  and the angle of twist ( )tx l ,θ  of the cantilever beam, respectively and in 

Table 4 the maximum values of these kinematical components, are presented.  From 

the aforementioned figures and table, it can easily be observed that geometrical 

nonlinearity affects substantially the dynamic response of the beam inducing non 

vanishing axial displacement and displacement with respect to z  axis, while in linear 

analysis these kinematical components vanish. From the obtained results it can also be 

verified that the loading position has significant influence on the response, altering 

substantially the magnitude of the kinematical components. This discrepancy can be 

explained by the fact that in load case (ii), the change of eccentricity of the transverse 



load during torsional rotation increases the magnitude of the twisting moment, acting 

adversely compared with load case (i), where the applied twisting moment is reduced 

during torsional rotation. 

 

Example 3 

In order to demonstrate the range of applications of the developed method, in 

this final example the forced vibrations of a simply supported (free right end 

according to the axial boundary condition) steel L-shaped beam of unequal 

(asymmetric cross section) legs (Fig. 10a), ( 8 2E 2,1 10 kN m= ×  , 37,85 tn mρ =  , 

7 2G 8,0769 10 kN m= ×  , l 1 m=  ), having the geometric constants presented in Table 

5, is studied. The beam is subjected to a suddenly applied uniformly distributed 

twisting moment ( )xm x,t 8 kNm m=   (Fig. 10a,b). Due to lack of symmetry, apart 

from the angle of twist, the beam is expected to develop axial (axial displacement 

vanishes in linear analysis) and transverse displacements as well. In Figs. 11-14 the 

time histories of the axial displacement ( )u l,t , the transverse displacements ( )v l 2 ,t

, ( )w l 2 ,t  and the angle of twist ( )x l 2 ,tθ , respectively, are presented, while in 

Table 6 the maximum values of these kinematical components, taking into account or 

ignoring rotary inertia effect are also shown. From these figures and table, it is 

observed that the geometrical nonlinearity leads to the increase of torsional stiffness 

decreasing the magnitude of angle of twist, while transverse displacements get 

significantly higher values compared with the linear ones. From Table 6 it is also 

noted that the influence of rotary inertia proves to be negligible on the magnitude of 

kinematical components.  



 Moreover, the response of a hinged-hinged beam (axially immovable ends), 

having the same cross section and length, under harmonic excitation is examined. 

More specifically, the beam is subjected to a uniformly distributed harmonic load 

( ) ( ) ( )0 f ,linZp x,t p x sin tω= ⋅  ⋅ ,  as this is shown in Fig. 10a,c. The frequency f ,linω  

is considered as f ,lin 1,lin2 fω π= ⋅ , where 1,linf 118,200 Hz=  , is the first natural 

frequency of the examined beam, performing a linear analysis [34]. In Figs. 15-17 the 

time histories of the displacements ( )v l 2 ,t , ( )w l 2 ,t , with respect to the Syz

system of axes and the angle of twist ( )x l 2 ,tθ  are presented, noting the significant 

difference in response between linear and nonlinear analysis. More specifically, it is 

observed that only in the linear response deformations continue to increase with time, 

while the beating phenomenon observed in the nonlinear one is explained from the 

fact that large kinematical components increase the bar’s fundamental natural 

frequency fω  (by increasing the stiffness of the bar due to the tensile axial force 

induced by the axially immovable ends), thereby causing a detuning of fω  with the 

frequency of the external loading ( f ,linω ). After the kinematical components reach 

their maximum values, the amplitude of deformations decreases, leading to the 

reversal of the previously mentioned effects. 

 

5. CONCLUDING REMARKS  

In this article a boundary element method is developed for the nonlinear 

flexural-torsional dynamic analysis of beams of arbitrary cross section, undergoing  

moderately large displacements and twisting rotations and small deformations, taking 

into account the effect of rotary inertia, warping inertia and change of eccentricity of 

transverse loads during torsional rotation. The beam is subjected to arbitrarily 



distributed conservative transverse loads, which can be applied on any point of the 

cross section, and/or axial loads and twisting moments, while its edges are restrained 

by the most general boundary conditions. The main conclusions that can be drawn 

from this investigation are: 

a. The numerical technique presented in this investigation is well suited for computer 

aided analysis of beams of arbitrary simply or multiply connected cross section, 

supported by the most general boundary conditions and subjected to the combined 

action of arbitrarily distributed or concentrated time dependent loading. 

b. Accurate results are obtained using a relatively small number of nodal points along 

the beam. 

c. The geometrical nonlinearity leads to strong coupling between the axial, torsional 

and bending equilibrium equations resulting in a significantly different response of 

the beam compared to the one obtained by linear analysis. 

d. The strong coupling between flexure and torsion may lead beams of doubly 

symmetric cross sections, undergoing biaxial transverse loading applied on their 

centroid, to develop torsional rotation. 

e. The eccentricity change of the transverse loading during the torsional beam 

motion, resulting in additional torsional moment influences the beam response. 

f. The influence of rotary inertia, as shown in the treated examples, on the dynamic 

response of the beams, proves to be negligible on the magnitude of kinematical 

components. 

g. The developed procedure retains most of the advantages of a BEM solution over a 

FEM approach, although it requires longitudinal domain discretization. 
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APPENDIX A 

Functions viF  ( )i 1,2,...,7= , wiF  ( )i 1,2,...,7=  and iFθ  ( )i 1,2,...,11=  of the 

differential equations (13), concerning the nonlinear dynamic analysis of beams of 

arbitrary cross section are given as: 

v1 C x x C x xF v y sin z cosθ θ θ θ′ ′′= − −  (A.1a) 

( )v2 C x C xF A y sin z cosθ θ= +   (A.1b) 

( )v3 C x C xF A z sin y cosθ θ= −  (A.1c) 

( ) ( ) 2
v4 Y Z x x Y Z x YF I I sin cos v I I cos I wθ θ θ⎡ ⎤′ ′= − − − −⎣ ⎦  (A.1d) 



( ) ( ) 2
v5 Y Z x x Y Z x YF I I sin cos w I I cos I vθ θ θ⎡ ⎤′ ′= − + − −⎣ ⎦  (A.1e) 

( )v6 Y Z x xF I I cos sinθ θ= −  (A.1f) 

( ) 2
v7 Y Z x YF I I cos Iθ= − −  (A.1g) 

 

w1 C x x C x xF w y cos z sinθ θ θ θ′ ′′= + −  (A.2a) 

( )w2 C x C xF A y cos z sinθ θ= − +  (A.2b) 

( )w3 C x C xF A z cos y sinθ θ= +  (A.2c) 

( ) ( ) 2
w4 Z Y x x Z Y x ZF I I cos sin w I I cos I vθ θ θ⎡ ⎤′ ′= − + − −⎣ ⎦  (A.2d) 

( ) ( ) 2
w5 Z Y x x Z Y x ZF I I cos sin v I I cos I wθ θ θ⎡ ⎤′ ′= − − − −⎣ ⎦  (A.2e) 

( )w6 Z Y x xF I I cos sinθ θ= −  (A.2f) 

( ) 2
w7 Z Y x ZF I I cos Iθ= − −  (A.2g) 

 

1 C x x C x x C x x C x xF y v cos y w sin z w cos z v sinθ θ θ θ θ θ θ θ θ′ ′ ′ ′′ ′ ′ ′= − − − +  (A.3a) 

( )2 C x xF z v cos w sinθ θ θ′ ′= +  (A.3b) 

( )3 C x xF y v sin w cosθ θ θ′ ′= −  (A.3c) 

( )4 x xF w sin v cosθ θ θ′′ ′′= +  (A.3d) 

( )5 x xF w cos v sinθ θ θ′′ ′′= −  (A.3e) 

( )6 C x C xF A z cos y sinθ θ θ= +  (A.3f) 

( )7 C x C xF A z sin y cosθ θ θ= − +  (A.3g) 

( ) ( )2 2
8 Y Z x Z Z Y x x sF I I cos I v 2 I I v w sin cos Iθ θ θ θ⎡ ⎤ ′ ′ ′= − + − − + +⎣ ⎦   



 ( ) 2 2
Z Y x YI I cos I wθ⎡ ⎤ ′+ − +⎣ ⎦  (A.3h) 

( ) ( )2
9 Z Y x Y Y Z x xF I I cos I w I I sin cos vθ θ θ θ⎡ ⎤ ′ ′= − + + −⎣ ⎦  (A.3i) 

( ) ( )2
10 Z Y x Z Z Y x xF I I cos I v I I sin cos wθ θ θ θ⎡ ⎤ ′ ′= − − + −⎣ ⎦   (A.3j) 

( ) ( )2 2
11 Y Z x x Z Y x xF I I sin cos v I I sin cos wθ θ θ θ θ′ ′= − + − +  

 ( ) 2
Z Y x Z Y2 I I cos I I v wθ⎡ ⎤ ′ ′+ − − +⎣ ⎦   (A.3k) 

 

Functions u1G , viG  ( )i 1,2,...,7= , wiG  ( )i 1,2,...,7=  and iGθ  ( )i 1,2,...,11=  of the 

governing differential equations (15), concerning the nonlinear dynamic analysis of 

beams of arbitrary cross section are given as: 

 

( )2
u1 C x x x x x x xG z w w v v wθ θ θ θ θ θ θ′ ′′ ′′ ′ ′′′ ′ ′ ′′ ′= + + + + +  

 ( )2
C x x x x x x xy v v w w vθ θ θ θ θ θ θ′′ ′ ′′ ′ ′′ ′′ ′ ′′ ′+ + − − +  (A.4) 

 

( )2
v1 C x C x x xG z y vθ θ θ θ′′ ′ ′′ ′′= − − + +   (A.5a) 

2 2
v2 x x x x x x x x xG w 2w w v 4v 2v 2vθ θ θ θ θ θ θ θ θ′ ′′ ′ ′′ ′′′′′ ′′′ ′′ ′′′′ ′′′ ′′ ′′= + + − − − −   (A.5b) 

2
v3 x x xG 2 2θ θ θ′ ′′′ ′′= − −   (A.5c) 

2 2
v4 x x x x x x xG 2 2 5θ θ θ θ θ θ θ′ ′′′ ′′ ′ ′′= + +   (A.5d) 

( )( ) ( )2
v5 Z Y x x Z C x C C x x Z Y

1G I I v v I w A y z z I I
2

θ θ θ θ θ⎡ ⎤⎛ ⎞′′′ ′ ′′= − + − − + − + − ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

( )2
x x x x x x x x x x x x x2 v v 2 v 2 v w w vθ θ θ θ θ θ θ θ θ θ θ θ θ⎡ ⎤′ ′ ′ ′ ′′ ′′ ′ ′′ ′ ′′ ′⋅ + + + + − − + +⎢ ⎥⎣ ⎦

 



2
Z x x x x x xI w v 2 w v 2v 2 wθ θ θ θ θ θ⎡ ⎤′ ′ ′′ ′′ ′′ ′′ ′ ′+ ⋅ − − − + + −

⎣ ⎦
  (A.5e) 

( ) 2
v6 C C x xG A y z θ θ= −   (A.5f) 

v7 C x x C xG v y zθ θ θ′ ′′= − −   (A.5g) 

 

( )2
w1 C x C x x xG w y zθ θ θ θ′′ ′ ′′′′= + − +  (A.6a) 

2 2
w2 x x x x x x x x xG v 2v v w 4w 2w 2wθ θ θ θ θ θ θ θ θ′ ′′ ′ ′′ ′′′′′ ′′′ ′′ ′′′′ ′′′ ′′ ′′= + + + + + +  (A.6b) 

2 2
w3 x x x x x x xG 2 5 2θ θ θ θ θ θ θ′ ′′′ ′ ′′ ′′= − − −  (A.6c) 

2
w4 x x xG 2 2θ θ θ′ ′′′ ′′= − −  (A.6d) 

( )( ) ( )2
w5 Z Y x x Y C x C C x x Z Y

1G I I w w I v A z y y I I
2

θ θ θ θ θ⎡ ⎤⎛ ⎞′′′ ′ ′′= − − − + + − + − − − ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

( )2
x x x x x x x x x x x x x Y2 w w 2 w 2 w v v w Iθ θ θ θ θ θ θ θ θ θ θ θ θ⎡ ⎤′ ′ ′ ′ ′′ ′′ ′ ′′ ′ ′′ ′⋅ + + + + + + + − ⋅⎢ ⎥⎣ ⎦

2
x x x x x xv w 2 v w 2w 2 vθ θ θ θ θ θ⎡ ⎤′ ′ ′′ ′′ ′′ ′′ ′ ′⋅ − + − − − −

⎣ ⎦
  (A.6e) 

( ) 2
w6 C C x xG A z y θ θ= +   (A.6f) 

w7 C x C x xG w y zθ θ θ′ ′′= + −   (A.6g) 

 

( ) ( )S
1 x C x C x

IG y w v z v w
Aθ θ θ θ′′ ′′ ′′ ′′ ′′= + − − +  (A.7a) 

2 2
2 x xG v w v wθ θ θ′′ ′′ ′′ ′′= − +  (A.7b) 

2
3 x x x x x x xG 2 w w 2 v 2 v 2 wθ θ θ θ θ θ θ θ′′ ′ ′ ′′ ′′′ ′′ ′′′ ′′ ′′′= + + + +  (A.7c) 

2
4 x x x x x x xG 2 v 2 w 2 w v 2 vθ θ θ θ θ θ θ θ′′ ′′ ′ ′ ′′′ ′′ ′′′ ′′ ′′′= − + + − −  (A.7d) 

2 2
5 Y Z SG v I w I Iθ ′ ′= + +  (A.7e) 



2
6 C C x C x

1G A z y z
2θ θ θ⎛ ⎞= + −⎜ ⎟

⎝ ⎠
 (A.7f) 

2
7 C C x C x

1G A y z y
2θ θ θ⎛ ⎞= − −⎜ ⎟

⎝ ⎠
 (A.7g) 

( ) ( ) ( ) ( )8 Z Y x Z x xG I I w w v v I w v 2 w w I v w 2 v vθ Υθ θ θ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − − + + + − +  (A.7h) 

y y y
2 3
x x9 p p x p

1 1
2 6

G z y yθ θ θ θ+ −=  (A.7i) 

z z z
3 2
x x p10 p p x

1 1 z
2

G z y
6θ θ θ θ− −=  (A.7j) 

S
11 x C x C x C C

IG y v z w z v y w
Aθ θ θ θ′ ′ ′ ′ ′= − − − +  (A.7k) 

  



 

 

 

(a) 

(b) 

 

Fig. 1. Prismatic beam in axial - flexural - torsional loading (a) of an arbitrary 

cross-section occupying the two dimensional region Ω  (b). 

 
 
 



 
 
 
 
 
 
 
 

 

(a) 

 

(b) 

 

Fig. 2. Clamped beam of example 1 (a) and applied loading on the centroid of the 

cross section (b).  
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Fig. 3. Time history of the displacements v  and w  at the midpoint of the clamped 

beam of example 1. 

 
 

0 0.01 0.02 0.03

t (sec)

0

0.04

0.08

0.12

0.16

D
is

pl
ac

em
en

t (
m

)

v(l/2), present study
v(l/2), [19]
w(l/2), present study
w(l/2), [19]



 
 
 
 
 
 
 
 
 

 

Fig. 4. Time history of the angle of twist xθ  at the midpoint of the clamped beam of 

example 1. 
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   Load case (i)                 (b)    Load case (ii)                  (c) 

 

Fig. 5. Cantilever beam of example 2 (a). Transverse force applied on the right (b) or 

on the left (c) flange. 
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Fig. 6. Time history of the axial displacement u  at the tip of the cantilever beam of 

example 2. 
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Fig. 7. Time history of the displacement v  at the tip of the cantilever beam of example 2.

 
 

 

 

Fig. 8. Time history of the displacement w  at the tip of the cantilever beam of 

example 2. 
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Fig. 9. Time history of the angle of twist xθ  at the tip of the cantilever beam of 

example 2. 
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Fig. 10. L-shaped cross section of unequal legs of Example 3 (a). Applied distributed 

twisting moment (b) or transverse harmonic excitation (c). 
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Fig. 11. Time history of the axial displacement u  at the right end of the simply 

supported beam of example 3. 

 
 

 

 

Fig. 12. Time history of the displacement v  at the midpoint of the simply supported 

beam of example 3. 
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Fig. 13. Time history of the displacement w  at the midpoint of the simply supported 

beam of example 3. 

 

 

 
Fig. 14. Time history of the angle of twist xθ  at the midpoint of the simply supported 

beam of example 3. 
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Fig. 15. Time history of the displacement v  at the midpoint of the hinged-hinged 

beam of example 3 under harmonic excitation. 
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Fig. 16. Time history of the displacement w  at the midpoint of the hinged-hinged 

beam of example 3 under harmonic excitation. 
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Fig. 17. Time history of the angle of twist xθ  at the midpoint of the hinged-hinged 

beam of example 3 under harmonic excitation. 
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Table 1: Geometric constants of the beam of example 1. 

 

3 2A 2,896 10 m−= ×  
7 6

RI 3,94264 10 m−= ×  
5 4

YI 2,15968 10 m−= ×  5 4
tI 2,10844 10 m−= ×  

5 4
ZI 1,00439 10 m−= ×  9 6

sC 3,59634 10 m−= ×  
5 4

SI 3,16407 10 m−= ×   

 
 
 
 
 
Table 2: Maximum values of the displacements ( )v l 2 ,t  ( )m , ( )w l 2 ,t  ( )m  (of the 

first cycle) and angle of rotation ( )x l 2 ,tθ  ( )rad  (of the whole time 
history) of the clamped beam of example 1. 

 

 
Linear analysis Nonlinear analysis 

Present Study 
Sapountzakis & 
Dourakopoulos 

[19] 
Present Study 

Sapountzakis & 
Dourakopoulos 

[19] 

( )maxv l 2  0,1590 0,1588 0,1190 0,1180 

( )maxw l 2  0,1480 0,1476 0,1330 0,1330 

( )maxx l 2θ  0,0000 - 0,0288 - 

 
 

 

Table 3: Geometric constants of the beam of example 2. 
 

4 2A 2,66875 10 m−= ×  9 4
tI 9,10243 10 m−= ×  

8 4
YI 9,39789 10 m−= ×  10 6

sC 1,31047 10 m−= ×  
7 4

ZI 4,50061 10 m−= ×  2
z 6 ,10287 10 mβ −= ×  

7 4
SI 9,06833 10 m−= ×  2

cz 3,687 10 m−= ×  
9 6

RI 4,58807 10 m−= ×   

 
 



 
 
Table 4: Maximum values of the kinematical components ( )u l,t  ( )m , ( )v l,t  ( )m , 

( )w l,t  ( )m  and ( )x l ,tθ  ( )rad  of the cantilever beam of example 2 for load 
cases (i), (ii). 

 

 
Linear 

Analysis 

Nonlinear Analysis 

Load case (i) Load case (ii) 

( )maxu l  0,00000 −0,00085 −0,00119 

( )maxv l  0,03190 0,03091 0,03217 

( )maxw l  0,00000 0,00626 0,01230 

( )maxx lθ  −0,38479 −0,32897 −0,50086 
 
 

Table 5: Geometric constants of the beam of example 3 
 

3 2A 2,5 10 m−= ×  0,430 radθ =   
6 4

YI 7,23593 10 m−= ×  8 4
tI 8,3903 10 m−= ×  

6 4
ZI 1,32198 10 m−= ×  10 6

sC 1,1937 10 m−= ×  
5 4

SI 1,45517 10 m−= ×  2
y 8,19154 10 mβ −= ×  

7 6
RI 1,68733 10 m−= ×  2

z 3,8866 10 mβ −= ×  
2

cy 3,662 10 m−= ×  0,1605ωβ = −  
2

cz 3,190 10 m−= ×   
 
 
 
Table 6: Maximum values of the kinematical components ( )u l,t  ( )m , ( )v l 2 ,t  ( )m , 

( )w l 2 ,t  ( )m  and ( )x l 2 ,tθ  ( )rad  for the simply supported beam of 
example 3. 

 

 Without rotary inertia With rotary inertia 
 Linear 

analysis 
Nonlinear 
analysis Linear analysis Nonlinear 

analysis 

( )maxu l  0,00000 −0,00113 0,00000 −0,00112 

( )maxv l 2  −0,00473 −0.00752 −0,00476 −0,00750 

( )maxw l 2  −0,00101 −0,00296 −0,00105 −0,00293 

( )maxx l 2θ  0,28800 0,24592 0,28512 0,24467 
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o Βeams of arbitrary cross section under general boundary conditions and 

loading 

o Rotary and warping inertia are included in the nonlinear dynamic analysis 

o Wagner’s coefficients and shortening effect are taken into account  

o A BEM approach is employed and high accuracy is achieved 

o Geometrical nonlinearity results in significantly different beam response 

 

 
 




