N

N

Nonlinear Flexural - Torsional Dynamic Analysis of
Beams of Arbitrary Cross Section by BEM
E.J. Sapountzakis, I.C. Dikaros

» To cite this version:

E.J. Sapountzakis, I.C. Dikaros. Nonlinear Flexural - Torsional Dynamic Analysis of Beams
of Arbitrary Cross Section by BEM. International Journal of Non-Linear Mechanics, 2011,
10.1016/j.ijnonlinmec.2011.02.012 . hal-00746221

HAL Id: hal-00746221
https://hal.science/hal-00746221

Submitted on 28 Oct 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00746221
https://hal.archives-ouvertes.fr

Author’s Accepted Manuscript

INTERNATIONAL JOURNAL OF

NON-LINEAR
MECHANICS

Nonlinear Flexural - Torsional Dynamic Analysis of
Beams of Arbitrary Cross Section by BEM

E.J. Sapountzakis, I.C. Dikaros

PIL: S0020-7462(11)00023-0

DOI: doi:10.1016/j.ijnonlinmec.2011.02.012

Reference: NLM 1815

To appear in: International Journal of Non- wwwelsevier.comflocarc/nim
Linear Mechanics

Received date: 1 September 2010
Revised date: 7 December 2010
Accepted date: 27 February 2011

Cite this article as: E.J. Sapountzakis and I.C. Dikaros, Nonlinear Flexural - Torsional
Dynamic Analysis of Beams of Arbitrary Cross Section by BEM, International Journal
of Non-Linear Mechanics, doi:10.1016/j.ijnonlinmec.2011.02.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply
to the journal pertain.


http://www.elsevier.com/locate/nlm
http://dx.doi.org/10.1016/j.ijnonlinmec.2011.02.012

NONLINEAR FLEXURAL - TORSIONAL DYNAMIC
ANALYSIS OF BEAMS OF ARBITRARY CROSS
SECTION BY BEM
by

E.J. SAPOUNTZAKIS! and 1.C. DIKAROS?

cvsapoun@central.ntua.er  dikarosgiannis@gmail.com

Institute of Structural Analysis and Antiseismic Research, School of Civil
Engineering, National Technical University of Athens, Zografou Campus, GR — 157

80 Athens, Greece.

Key words: Flexural-Torsional Analysis; Dynamic analysis; Wagner’s coefficients;

Nonlinear analysis; Shortening Effect; Boundary element method

Abstract

In this paper, a boundary element method is developed for the nonlinear flexural-
torsional dynamic analysis of beams of arbitrary, simply or multiply connected,
constant cross section, undergoing moderately large deflections and twisting rotations
under general boundary conditions, taking into account the effects of rotary and
warping inertia. The beam is subjected to the combined action of arbitrarily

distributed or concentrated transverse loading in both directions as well as to twisting
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and/or axial loading. Four boundary value problems are formulated with respect to the
transverse displacements, to the axial displacement and to the angle of twist and
solved using the Analog Equation Method, a BEM based method. Application of the
boundary element technique leads to a system of nonlinear coupled Differential —
Algebraic Equations (DAE) of motion, which is solved iteratively using the Petzold-
Gear Backward Differentiation Formula (BDF), a linear multistep method for
differential equations coupled to algebraic equations. The geometric, inertia, torsion
and warping constants are evaluated employing the Boundary Element Method. The
proposed model takes into account, both the Wagner’s coefficients and the shortening
effect. Numerical examples are worked out to illustrate the efficiency, wherever
possible the accuracy, the range of applications of the developed method as well as

the influence of the nonlinear effects to the response of the beam.

1. INTRODUCTION

In engineering practice the dynamic analysis of beam-like continuous systems is
frequently encountered. Such structures often undergo arbitrary external loading,
leading to the formulation of the flexural-torsional vibration problem. The complexity
of this problem increases significantly in the case the cross section’s centroid does not
coincide with its shear center (asymmetric beams). Furthermore when arbitrary
torsional boundary conditions are applied either at the edges or at any other interior
point of a beam due to construction requirements, the beam under the action of
general twisting loading is leaded to nonuniform torsion. Moreover, since requirement
of weight saving is a major aspect in the design of structures, thin-walled elements of
arbitrary cross section and low flexural and/or torsional stiffness are extensively used.

Treating displacements and angles of rotation of these elements as being small, leads



in many cases to inadequate prediction of the dynamic response; hence the occurring
nonlinear effects should be taken into account. This can be achieved by retaining the
nonlinear terms in the strain—displacement relations (finite displacement — small strain
theory). When finite displacements are considered, the flexural-torsional dynamic
analysis of bars becomes much more complicated, leading to the formulation of
coupled and nonlinear flexural, torsional and axial equations of motion.

When the displacement components of a member are small, a wide range of
linear analysis tools, such as modal analysis, can be used and some analytical results
are possible. As these components become larger, the induced geometric
nonlinearities result in effects that are not observed in linear systems. In such
situations the possibility of an analytical solution method is significantly reduced and
is restricted to special cases of beam boundary conditions or loading.

During the past few years, the nonlinear dynamic analysis of beams undergoing
large deflections has received a good amount of attention in the literature. More
specifically, Rozmarynowski and Szymczak in [1] studied the nonlinear free torsional
vibrations of axially immovable thin-walled beams with doubly symmetric open cross
section, employing the Finite Element Method. In this research only free vibrations
are examined; the solution is provided only at points of reversal of motion (not in the
time domain), no general axial, torsional or warping boundary conditions (elastic
support case) are studied, while some nonlinear terms related to the finite twisting
rotations as well as the axial inertia term are ignored. Crespo Da Silva in [2-3]
presented the nonlinear flexural-torsional-extensional vibrations of Euler-Bernoulli
doubly symmetric thin-walled closed cross section beams, primarily focusing on
flexural vibrations and neglecting the effect of torsional warping. Pai and Nayfeh in

[4-6] studied also the nonlinear flexural-torsional-extensional vibrations of metallic



and composite slewing or rotating closed cross section beams, primarily focusing to
flexural vibrations and neglecting again the effect of torsional warping. Simo and Vu-
Quoc in [7] presented a FEM solution to a fully nonlinear (small or large strains,
hyperelastic material) three dimensional rod model including the effects of transverse
shear and torsion-warping deformation based on a geometrically exact description of
the kinematics of deformation. Qaisi in [8] obtained nonlinear normal modes of free
vibrating geometrically nonlinear beams of various edge conditions employing the
harmonic balance analytical method. Moreover, Pai and Nayfeh in [9] studied a
geometrically exact nonlinear curved beam model for solid composite rotor blades
using the concept of local engineering stress and strain measures and taking into
account the in-plane and out-of-plane warpings. Di Egidio et al. in [10-11] presented
also a FEM solution to the nonlinear flexural-torsional vibrations of shear
undeformable thin-walled open beams taking into account in-plane and out-of-plane
warpings and neglecting warping inertia. In this paper, the torsional-extensional
coupling is taken into account but the inextensionality assumption leads to the fact
that the axial boundary conditions are not general. Mohri et al. in [12] proposed a
FEM solution to the linear vibration problem of pre- and post- buckled thin-walled
open cross section beams, neglecting warping and axial inertia, considering
geometrical nonlinearity only for the static loading and presenting examples of bars
subjected to free vibrations and special boundary conditions. Machado and Cortinez
in [13] presented also a FEM solution to the linear free vibration analysis of
bisymmetric thin-walled composite beams of open cross section, taking into account
initial stresses and deformations considering geometrical nonlinearity only for the
static loading and presenting examples of bars subjected to special boundary

conditions. Avramov et al. [14-15] studied the free flexural-torsional vibrations of



beams and obtained nonlinear normal modes by expansion of the equations of motion
employing the Galerkin technique and neglecting the cross section warping. Lopes
and Ribeiro [16] studied also the nonlinear flexural-torsional free vibrations of beams
employing a FEM solution and neglecting the longitudinal and rotary inertia as well
as the cross-section warping. Duan [17] presented a FEM formulation for the
nonlinear free vibration problem of thin-walled curved beams of asymmetric cross-
section based on a simplified displacement field. Finally, the boundary element
method has also been used for the nonlinear flexural [18-20] and torsional [21]
dynamic analysis of only doubly symmetric beams. To the authors’ knowledge the
general problem of coupled nonlinear flexural — torsional free or forced vibrations of
asymmetric beams has not yet been presented.

In this paper, a boundary element method is developed for the nonlinear
flexural-torsional dynamic analysis of beams of arbitrary, simply or multiply
connected, constant cross section, undergoing moderately large deflections and
twisting rotations under general boundary conditions, taking into account the effects
of rotary and warping inertia. The beam is subjected to the combined action of
arbitrarily distributed or concentrated transverse loading in both directions as well as
to twisting and/or axial loading. Four boundary value problems are formulated with
respect to the transverse displacements, to the axial displacement and to the angle of
twist and solved using the Analog Equation Method [22], a BEM based method.
Application of the boundary element technique leads to a system of nonlinear coupled
Differential — Algebraic Equations (DAE) of motion, which is solved iteratively using
the Petzold-Gear Backward Differentiation Formula (BDF) [23], a linear multistep
method for differential equations coupled to algebraic equations. The geometric,

inertia, torsion and warping constants are evaluated employing the Boundary Element



Method. The essential features and novel aspects of the present formulation compared

with previous ones are summarized as follows.

L.

ii.

1il.

1v.

vi.

vil.

The cross section is an arbitrarily shaped thin- or thick-walled one. The
formulation does not stand on the assumption of a thin-walled structure and
therefore the cross section’s torsional and warping rigidities are evaluated
“exactly” in a numerical sense.

The beam is subjected to arbitrarily distributed or concentrated transverse
loading in both directions as well as to twisting and axial loading.

The beam is supported by the most general boundary conditions including
elastic support or restraint.

The effects of rotary and warping inertia are taken into account on the
nonlinear flexural-torsional dynamic analysis of asymmetric beams subjected
to arbitrary loading and boundary conditions.

The transverse loading can be applied at any arbitrary point of the beam cross
section. The eccentricity change of the transverse loading during the torsional
beam motion, resulting in additional torsional moment is taken into account.
The proposed model takes into account the coupling effects of bending, axial
and torsional response of the beam as well as the Wagner’s coefficients and
the shortening effect.

The proposed method employs a BEM approach (requiring boundary
discretization for the cross sectional analysis) resulting in line or parabolic
elements instead of area elements of the FEM solutions (requiring the whole
cross section to be discretized into triangular or quadrilateral area elements),

while a small number of line elements are required to achieve high accuracy.



Numerical examples are worked out to illustrate the efficiency, wherever possible the
accuracy, the range of applications of the developed method as well as the influence

of the nonlinear effects to the response of the beam.

2. STATEMENT OF THE PROBLEM

Let us consider a prismatic beam of length / (Fig.1), of constant arbitrary cross
section of area . 4.. The homogeneous isotropic and linearly elastic material of the
beam’s cross section, with modulus of elasticity . E ., shear modulus .. and Poisson’s

ratio .v. occupies the two dimensional multiply connected region . 2. of the y,z

plane and is bounded by the ..7/7;(j=12,.,K ).. boundary curves, which are

piecewise smooth, i.e. they may have a finite number of corners. In Fig. 1 CYZ is the
principal bending coordinate system through the cross section’s centroid C, while
Yc, zc are its coordinates with respect to the Syz shear system of axes through the
cross section’s shear center S, with axes parallel to those of the .. system. The beam
is subjected to the combined action of the arbitrarily distributed or concentrated, time

dependent and conservative axial loading py = py(X,¢) along X direction, twisting

moment .. along x direction and transverse loading p, =p,(x,1), p,=p.(x1)

acting along the y and z directions, applied at distances Yp,» Z and Yp, s

Py Zp.>
with respect to the Syz shear system of axes, respectively (Fig. 1b).
Under the action of the aforementioned loading, the displacement field of an

arbitrary point of the cross section can be derived with respect to those of the shear

center as [12]

'L_t(x,y,z,t) =u(x,t)—(y—yc)6’z (x,t)+(z—zc)9Y (x,t)+9x' (x,t)gog(y,z)' (1a)



V(x,y.zt)=v(x1)- Zsin(ﬁ)C (x,t)) - y[l - cos(@x (xt))} (1b)

w(x,y,z,t)=w(x,t)+ysin(6, (x,t))—z[l—cos(&x (xt))] (lc)
Oy (x,t)= v’(x,t)sin(@x (x,t)) - w’(x,t)cos(@x (x,t)) (1d)
0, (x,1)= v’(x,t)cos(ﬁ)C (x,t)) + w'(x,t)sin(&x (x,t)) (le)

where u, v, w are the axial and transverse beam displacement components with

1
respect to the Syz shear system of axes; u(x,t)zzj' L #(x,y,2,t)d4 denotes the

average axial displacement of the cross section [24] and v = v(x,t) , w= w(x,t) are
the corresponding components of the shear center S; 6y (x,t), 0, (x,t) are the
angles of rotation of the cross section due to bending, with respect to its centroid;
Bx'(x,t) denotes the rate of change of the angle of twist 6, (x,t) regarded as the
torsional curvature and gog is the primary warping function with respect to the shear

center S [25].

Employing the strain-displacement relations of the three-dimensional elasticity

for moderate displacements [26, 27]

oir 1{(55)2 (avjz (awﬂ
E=—+=|| — | +|=— | +| =— (2a)
ox 2|\ ox ox ox

ov Ou (Oudu OvOov Owow

Vo =ttt t (2b)
Ox Oy \ox0ody oOx0Oy Ox oy
ow Ou (Ouodu OvOov Owow

Vp=— F— | ——F——+—— (2¢)
Ox 0z \Ox 0z Ox 0z Ox Oz

Eyy =6, =7, =0 (2d)



the following strain components can be easily obtained

or I (@v]z (awjz
Eg ®—+—=|| — | +| —
ox 2|\ ox Oox

o on (ovov owow
Vg Bt |
ox oy \Ox0dy Ox oy
2,8 (23 o)
Ve X oy Vo v oz ox oz

g}/y:gZZ:}/yZZO

(3a)

(3b)

(3¢)

(3d)

_\2 _
where it has been assumed that for moderate displacements (a%x) < (a%x)’ ,

(a%x)(a%y) < (a%x) * (a%y) . Substitu- (ﬁ%x)(a%z) < (a%x) +(a%z) fing

the displacement components (la-le) to the strain-displacement relations (3), the

strain components can be written as

e =t +(2=2¢) (V' sin6, —w"cos 0, )—(y—yc ) (V' cos 0, + W' sin6,.)

+ Hx”¢§ -6, (ZC (V' cos O, +w' sin 0, )+ yc (V' sin6, —w' cos 6,

+§(v'2 +w'? +(y2 +22)(¢9x')2]

ogl ,
Vxy =26y, = a—;—zJé’x

p.vA X
Oz

P
Ve =26, = %WJ@'

+
)+ (4a)

(4b)

(4¢)



Considering strains to be small and employing the second Piola — Kirchhoff stress

tensor, the non vanishing stress components are defined in terms of the strain ones as

XX E* 0 0 gxx

Ser=l 0 G 0y, (5)
0 0 G

SXZ yXZ

E(1-v)

where E is obtained from Hooke’s stress-strain law as E* = ——
(1+v)(I=2v)

. If the

assumption of plane stress condition is made, the above expression is reduced in

E

1-v

E* =

7 [28], while in beam formulations, E is frequently considered instead of

E' (E*~E) [28, 29]. This last consideration has been followed throughout the

paper, while any other reasonable expression of E" could also be used without any
difficulty. Substituting eqns. (4) into eqns. (5), the non vanishing stress components

are obtained as

S =E[u'+(z—zc)(v"sin9x —w"cos0,)—(y—yc ) (V' cos O, +w"sin6, )+

+0,'05 =0/ (2 (v cos O, + W sinf, )+ yc (V' sinf ~w'cos0,))+  (6a)
1 12 12 2 2 ! ?
+5(v +w +(y +z )(Hx)
P
SxyzG'gxl' %_Z (©)
y
P
sz:G'HxI. _S+y (60)
oz




In order to establish the nonlinear equations of motion, the principle of virtual

work
514/1'}11‘ + 5Wmass = 5%)61‘ (7)
where
Wiy = (S0 + Sy 0y + 207 ) AV (8a)
Wpass = [, p (00T + V5V +Wow)dV (8b)
§szLhw&m+hWm+pﬁWm+mKﬁJﬂ (8¢)

under a Total Lagrangian formulation, is employed. In the above equations, & ()

denotes virtual quantities, () denotes differentiation with respect to time, V' is the

volume of the beam, u, is the axial displacement of the centroid and v, , »
y

are the

transverse displacements of the points where the loads p,, p,, respectively, are

applied. It is worth here noting that the aforementioned expression of the external
work (eqn. (8c)) takes into account the change of the eccentricity of the external
conservative transverse loading, arising from the cross section torsional rotation,
inducing additional (positive or negative) torsional moment. This effect may influence
substantially the torsional response of the beam. Moreover, the stress resultants of the

beam can be defined as

N={[,S.d2 (92)



My =[,5,2dQ (9b)

My =—[,S,YdQ (9¢)
ot opt

Mt :J.Q[Sx)’(?_zj—'_sxz (?4_)} dQ (9d)

M, =—[,S.05dQ (%)

Mp =[S (v +27)de 99)

where M, is the primary twisting moment [25] resulting from the primary shear
Xz 2 w

stress distribution S, S,., M, is the warping moment due to torsional curvature

and My is a higher order stress resultant. Substituting the expressions of the stress

components (6) into equations (9a-9f), the stress resultants are obtained as

X

N=EA u'+l(v'2 +w? +I—S€ ’2)—
2 A

(10a)

-6, (ZC (v' cos O, +w'sin6, ) +yc (V' sin@, —w cos 0, ))}
My =—Ely (w" cos O, —v"sinb, —ﬂzﬁxrz) (10b)
M, =EI, (v" cos 6, +w"sin0, —,BYHXQ) (10c)
M,=Gl0, (10d)

M, =—ECq (0;’ + ﬂwex’z) (10¢)



I
f_ZElzﬁY (V' cos O, +w'sin6,)—2Ely B, (W' cos 0, —V"sin 6, )+

; 12 (10)
+2ECsf3,0," +3E[1R —%Je 2

MR:

X

where the area A4, the polar moment of inertia /g with respect to the shear center S,
the principal moments of inertia Iy, I, with respect to the cross section’s centroid,
the fourth moment of inertia /, with respect to the shear center S, the torsion constant

1, and the warping constant Cg with respect to the shear center S, are given as

A=[,d0 (11a)
I =jQ(y2+zz)dQ (11b)
Iy=[,2°dQ (11c)
I;=],Y’dQ (11d)
Ip =_[_Q(y2+22)2d.0 (1le)
Cs =Ip(ob) a2 (11
It:'fg[y2+22+yaa%§—z% 0 (11g)

while the Wagner’s coefficients f,, Sy and S, are given as

1

b2 =5 lalz=z2e) (" 42" e (122)



1

br =g lalr=ye)y +27 i (12b)
1

ﬁwzﬁjg(y2+22)¢)§d[2 (12¢)

Using the expressions of strain obtained in equations (4), the definitions of the
stress resultants given in equations (9) and applying the principle of virtual work (eqn.

(7)), the equations of motion of the beam can be derived as
—N'+pdii=py (13a)

" 4

(-NF,;) +(My cos0,) +(My sin0,) + pAii - pF, ,6, + pF, ;6 - pF, 6, )

!

~(pF.s6; ) - PR (26,9~ w)] +| pF7 (2600 +V)]| = p, (13b)

(-NF,; )' —(My cos 6, )" +(M sin 6, )" + pAiv— pF, ,0, — pFwﬂf —(pFw4éx )' +

!

+(pF, 507 ) | PP (20,0 +) | +| pF, 7 (3 —2éxv")]' = p, (13¢c)

NF(,,+(NF92)'+(NF93)'+MYF94+MZF95—M/—MW”—(MRQX') _

—p(Fps¥+ Fori)+ pFsl + pFag (¥ + 20,00 ) + pFyp (1 = 26,9') = pFpy 16,° ~

- (pCSéx') =m,+p.y, cosb, —Dyzp, cos 0, —p.z,_sinb, —DyYp, sin@,  (13d)



where the expressions of the stress resultants are given from equations (10) and F),
(i=12..7), F,; (i=12..,7) and Fy, (i=12,..,11) are functions of v, w, 6,

and their derivatives with respect to x, given in the Appendix A. Equations (13) are
coupled and highly complicated. This set of equations can be simplified if the

approximate expressions [12]

2 2

cos 0, zl—e; =]—93 (14a)
3 3

sin&xzex—%zex—% (14b)

are employed. Thus, using the aforementioned approximations, neglecting the term
pAii of equation (13a) denoting the axial inertia of the beam, employing the
expressions of the stress resultants (eqns. (10)) and ignoring the nonlinear terms of the
fourth or greater order [12], the governing partial differential equations of motion for
the beam at hand can be written as

—EA[””+W’W”+v,v”+%0x19x”_Guj}sz (lsa)

EI V"= NG, +(El; —Ely)G,, + EL, ;G 3 + Ely ;G  + p(AV+G,5 =G 5 ) =

\4

=1, ~GyPx (15b)

=p,—Gyprx (15¢)



nn

2
ECs8."" -GI6." —%E[IR —%} 0,%0," —~ NGy, +(El, —Ely )Gy, + EL; By Gys +

+Ely f,Goy + P(Ga5éx —GygV + Goyw+ Gyg — CSéx”) =M +p.y, —PyZ, +

+Gyopy, +Gyrop. —Go1Px (15d)

where G,;, G, Wi

(i=12..7), G, (i=12..7) and Gy (i=12,..,1I) are
functions of v, w, 6, and their derivatives with respect to .x., ¢, given in the

Appendix A, while the expression of the axial stress resultant N is given as

N=EA |:u'+§(v,2 +w'? +17St9x'2j—6’x' (zc (WO, +v')+yc (v, — W'))i| (16)

The above governing differential equations (eqns. (15)) are also subjected to the

initial conditions (x € (0, [ ) )

u(x,0) = up (x) t(x,0) =iy (x) (17a,b)
v(x,0) = () #(x,0) =y (x) (18a,b)
w(x,0) =wp () W(x,0) =iy (x) (19,b)
0 (x,0) = 0,9 () 0, (x.0) =09 (x) (20a,b)

together with the corresponding boundary conditions of the problem at hand, which

are given as



a,u(x,t)+a2N(x,t):a3 (21)

ﬂ]V(x,t)+ﬂ2Vy (X,Z)=ﬂ3 EIHZ (x,t)"rﬁzMZ (x,t):B3 (22a,b)
7/]W(x,t)+72VZ (x,t):7/3 7719)/ (x,t)+772MY (.x,t):?:,’ (23a,b)
810, (x,t)+6,M, (x,t) =63 g}er(x,t)+gzMW(x,t)=é_'3 (24a,b)

at the beam ends x=0,/, where V,,, V. and M, My are the reactions and bending

moments with respectto y, z orto ¥, Z axes, respectively, given by the following

relations (ignoring again the nonlinear terms of the fourth or greater order)

V, = N(v' —z:0, - 00,6, ) +
+EL (wej W, w0, —v"+ 20,8, +25,0.0," ) + (252)

+Ely (w’"@x +w'0, -2v"0.0 —v"0°-p,0° -25,000" )

X7X X

v, = N(w' 08, — 20,0, ) "
L El, (w"'9x2 VO, — w70, + 2w'0.0, +2,0.0, ) - (25b)

—EI, (v"Hx' W02 +v"0, +2w'0.0, —25,0.0.6." - 5,0.7 )
My =El, (w”@x — 0.7 v -0, ) +El, (—w"ex 0.7+ 50,7 ex) (25¢)

My = EI (—w"ej 50,20, V"0, ) L El, ( 6,02 —w' + w07+ v"Hx) (25d)



while M, and M,, are the torsional and warping moments at the boundaries of the

bar, respectively, given as

! 4 ] !
M,=Gl,0, —ECs0," + N(—ZCW’HX + YW —ycv' 0, —zoV' +7So9x j+

2
+Ely fy (—2‘9xrv” -26,'w'6, ) +Ely 3, (—26’x'w" +26.v'0, ) + g E {]R - %] 6"
(26a)
M, ==ECs (6, + 5,0, (26b)

Finally, a, B, Br. V5> 7k» Ok» O (k=1,2,3) are time dependent functions
specified at the boundaries of the bar (x =0,/). The boundary conditions (21)-(24) are
the most general boundary conditions for the problem at hand, including also the
elastic support. It is apparent that all types of the conventional boundary conditions
(clamped, simply supported, free or guided edge) can be derived from these equations
by specifying appropriately these functions (e.g. for a clamped edge it is
a=P=PB=r=7,=8,=8,=1, ay=a;=p=Py=y,=7;=0,=0;=p,

Bs=y>=y;=0,=05;=0).

3. INTEGRAL REPRESENTATIONS-NUMERICAL SOLUTION

3.1 For the axial displacement u(x,), the transverse displacements v(x,?),

w(x,¢) and the angle of twist 6 _(x,?)



According to the precedent analysis, the nonlinear flexural-torsional vibration

problem of a beam reduces in establishing the axial displacement component u(x,t)

having continuous partial derivatives up to the second order and the transverse
displacement components v(x,t) , w(x,t) and the angle of rotation 6, (x,t) having
continuous partial derivatives up to the fourth order with respect to x and up to the
second order with respect to ¢, satisfying the nonlinear initial boundary value problem
described by the coupled governing differential equations of motion (eqns. (15)) along
the beam, the initial conditions (eqns. (17)-(20)) and the boundary conditions (eqns.
(21)-(24)) at the beam ends x=0,/.

Eqns. (15) and (17)-(24) are solved using the Analog Equation Method [22] as it

is developed for hyperbolic differential equations [30]. According to this method, let

u(x,t), v(x,t) , w(x,t) and 6, (x,t) be the sought solutions of the aforementioned
problem. Setting as u;(x,¢)=u(x,t), wuy(x.¢)=v(x1), wuz(x.f)=w(xr) and
uy (x,1) =0, (x,¢) and differentiating with respect to x these functions two and four

times, respectively, yields

0%u 84ul- .
ale =q;(x.1) 6)6_4:‘11'("”)’ (i=2,34) (27a,b)

Eqns. (27) are quasi-static, i.e. the time variable appears as a parameter. They indicate
that the solution of eqns. (15) and (17)-(24) can be established by solving eqns. (27)

under the same boundary conditions (eqns. (21)-(24)), provided that the fictitious load

distributions ¢; (x,¢) (i=1,2,3,4) are first established. These distributions can be

determined using BEM. Following the procedure presented in [30] and employing the



constant element assumption for the load distributions ¢; along the L internal beam

elements (as the numerical implementation becomes very simple and the obtained

results are of high accuracy), the integral representations of the displacement

components u; (i =1,2,3,4 ) and their derivatives with respect to x when applied for
the beam ends (0,/), together with the boundary conditions (21)-(24) are employed to
express the unknown boundary quantities u;(,t), ;. ({.t), w;.(S.2) and
Ujsx ({ ,t) (¢ =0,1) in terms of g;. Thus, the following set of 28 nonlinear algebraic

equations is obtained

0 0
)
Dj 03
0 0
0 0
E 0 o0 0 ](d
(;]E 0 0 dl D3 b
22 2 _
0 0 E o Na.[T1 (710 (28)
33 3 0 0
0 0 0 E,||4,
DY Y
0 0
0 0

where

F, E E
E, = { ] 12 13 } (29a)
0 D,, Dy



E; = (29b)

F,  Ey E; E; 5 E;;
Fy 0 Eg;; Egin  Egps

E;; = (29¢)
Dy Dy;y Dg;; Dgjn Dy
Do Digio Diorr Digrz Dipis
" F; o Es Es Enpr Eppgg
F 0 E E E
E, | ' 1216 Epiz Epgs (29d)
D314 Disis Dizie Diziz Dyszgs
' Digsis Digss Digis Drgyz Diggs
— T _ T — T
B={B; Bs} .v={v; 75} .8={8; 3] (29¢.£,2)

The matrices D,, to D, s, are 2x2 rectangular known matrices including the
values of the functions a;, B;,B;,7;.7;.6;,0; (j=1,2) of eqns. (21)-(24); a3, B3,
33 » Y3, Y3, 03, 33 are 2x [ known column matrices including the boundary values
of the functions a;, B, f;, 73, 73, O3, 03, of eqns. (21)-(24); E;, to E,,,4 are
rectangular 2x 2 known coefficient matrices resulting from the values of kernels at

the bar ends; F,, F;,F,, F, F;, F,;,F,, are 2xL rectangular known matrices

originating from the integration of kernels on the axis of the beam; D’]l isa 2x/and

Df’l (i=2,3,4) are 4xI known column matrices containing the nonlinear terms

included in the expressions of the boundary conditions (eqns. (21)-(24)). Finally



are generalized unknown vectors, where

i, = {u;(0,0) w(L0)} , (i=12.34)

1

T
ﬁpf{au"(()’t) 6ul-(l,t)} (i-12,34)

ox ox

2 2 T
ﬁuwz{éumaﬁ éumkﬂ} (i=2.3.4)

o’ o’

12xxx —
o’ o’

3 3 T
. _{8MAQO 8uALﬂ} (=234

(30a)

(30b)

(31a)

(31b)

(3lc)

(31d)

are vectors including the two unknown time dependent boundary values of the

respective boundary quantities and q; :{q§ qé

including the L unknown time dependent nodal values of the fictitious loads.

qfv}T (i=],2,3,4) are vectors

Discretization of the integral representations of the unknown quantities u;

(i =1,2,3,4 ) inside the beam (x e (0,1 )) and application to the L collocation nodal

points yields

N ; ;
u; =A;q;+Copu; +Cpuy,,

_ Al ~
u,,=Aq;+Couy,,

(32a)

(32b)



U =4 (32¢)

u; = Alq; +Cyti; + Cpti;,, +Col;, 0 +C30, e, (1=2,3,4) (32d)
;= Alq; +Cyly,, +Chli; o +Col; e, (122,3,4) (32¢)
U = A7q; +Coll; oy +Cill; s (1=2,3,4) (32f)
W = AJQ +Coll (i=2,34) (32¢g)
U =4, (122,3,4) (32h)

where Ai,Ai (i=0, I), (j:O, 1, 2, 3), (k=2,3,4) are LxL known matrices;

C,), C;, C), C,, C; are Lx2 known matrices and u;, u;,,, u

i Wioxxs Winxer s Wiy

are time dependent vectors including the values of u; (x,t) and their derivatives at the

L nodal points. Eqns. (32a, b, d, e, f, g) can be assembled more conveniently as

u, =Hd, (33a)
u,, =Hid, (33b)
u, =H/di, (i=2,34) (33¢)
u,, =Hld;, (i=234) (33d)
. =Hid;, (i=234) (33e)

U = Hjd;, (i=2,3,4) (339)



where H), H{ (i=0,1), (j=0,1 2 3), (k=234) are Lx(L+4) and
Lx(L+8) known matrices, respectively arising from Al , Aé, C)., C,, C), C,,
C;.

Applying eqns. (15) to the L collocation points and employing eqns. (33),

4 x L semidiscretized nonlinear equations of motion are formulated as

d; d,

[M] 1 K] H{m = () (34)
d; d;
d, d,

where M, K, f are generalized mass matrix, stiffness matrix and force vector,

/

respectively, while m™ , k" are nonlinear generalized mass vector and stiffness

vector, respectively, containing all the nonlinear terms of the semidiscretized

equations of motion. It is noted that the coefficients of the mass matrix M

corresponding to the generalized vector d, are equal to zero as the axial inertia of the
beam has been neglected. Equations (34) with equations (28) form a system of

4x L+ 28 equations with respect to the generalized unknown vectors d; (i=1,2,3,4)

Eqns. (33a,c) when combined with eqns. (17a)-(20a) yield the following 4x L

linear equations with respect to d;, d,, d;, d, for £=0

HYd, (0)=u, (352)

H%d, (0)=v, (35b)



HYd; (0)=w, (35¢)

HYd, (0)=0,, (35d)

The above equations, together with eqns. (28) written for =0, form a set of

4xL+28 nonlinear algebraic equations which are solved to establish the initial
conditions d,; (0), d, (0), d; (0), d, (0) Similarly, eqns. (33a,c) when combined
with eqns. (17b)-(20b) yield the following 4x L linear equations with respect to d I

dz, d3, d4 fOI‘ t:0

HYd, (0)=1, (36a)
HYd, (0)= v, (36b)
HYd; (0)=w, (36¢)
HYd, (0)=0, (36d)

The above equations, together with the 28 equations resulting after differentiating

eqns. (28) with respect to time and writing them for ¢ =0, form a set of 4xL+28
algebraic equations, from which the initial conditions d, (0), d, (0), d; (0), d, (0)

are established.

The aforementioned initial conditions along with eqns. (28), (34) form an initial
value problem of Differential-Algebraic Equations (DAE), which can be solved using
any efficient solver. In this study, the Petzold-Gear Backward Differentiation Formula
(BDF) [23], which is a linear multistep method for differential equations coupled to

algebraic equations, is employed. For this case, the method is applied after



introducing new variables to reduce the order of the system [31] and after
differentiating eqns. (28) with respect to time, in order to obtain an equivalent system

with a value of system index ind =1 [23].

3.2 For the primary warping function (pg
The numerical solution for the evaluation of the displacement and rotation
components assume that the warping Cg and torsion /, constants given from eqns.

(10e), (10d) are already established. Eqns. (11f), (11g) indicate that the evaluation of

the aforementioned constants presumes that the primary warping function qof; at any

interior point of the domain (2 of the cross section of the beam is known. Once @ is
established, Cg and I, constants are evaluated by converting the domain integrals

into line integrals along the boundary employing the following relations

8(p§ K+1
Cy :_IFBEdS on I'=(/ T, (37a)
j=1

K+1

1 =L~[(yzz_zgofw))ny+(y22+y(p§)nz}ds on "= (/T (37b)
j=1

and using constant boundary elements for the approximation of these line integrals. In

eqns. (37a,b) n,, n, are the direction cosines, while B( y,z) is a fictitious function

y)

defined as the solution of the following Neumann problem

VB =gl in Q (38a)



OB K+1
—=0 on "= (/T (38b)
on j=1

The evaluation of the primary warping function gog and the fictitious function
B( y,z) is accomplished using BEM as this is presented in [25, 32, 33].

Moreover, since the torsion and warping constants of the arbitrary beam cross
section are evaluated employing the boundary element method, using only boundary
integration, the domain integrals for the evaluation of the area, the bending, the fourth
and the polar moments of inertia and the Wagner’s coefficients £,, fy and g,
given from expressions (12) have to be converted to boundary line integrals. This can

be achieved using integration by parts, the Gauss theorem and the Green identity.

Thus, the aforementioned quantities can be written as

A=§IF((y-yc)ny+(Z—Zc)nz)ds (39)

Iy = jrg((z—ch e )ds (39b)

I, = jré((y—ycf ny ) ds (39¢)
1 1

I =.|.rg(y5ny +z5nz)+§(y222)(yny +an)ds (39d)

I =J'F§(y3ny +z3nz)ds (39¢)
1| [=re) | =ve)(z-zc)

b oy + =y (ds |+ (39

21, e



3 4
By = 1 Ir[(y_yc)g(z_zc)ny+(Z_ZC) nZ]ds +zc (392)
Y

21 4
Y;; :LJ- {i(y% +2°n )¢P—i( 4+Z4)(Zn —yn )}ds (39h)
© = ocg |3\ TR TR y o

4. Numerical examples

On the basis of the analytical and numerical procedures presented in the
previous sections, a computer program has been written and representative examples
have been studied to demonstrate the validation, the efficiency, wherever possible the
accuracy and the range of applications of the developed method. The numerical
results have been obtained employing 21 nodal points (longitudinal discretization) and

400 boundary elements (cross section discretization).

Example 1

In the first example, for comparison reasons, the forced vibration of a clamped
beam (Fig. 2a), (E =2,1x10° kN/m®, G=8,0769x10" kN/m*, p=7,85m/m’
[ =4'm) of a hollow rectangular cross section, having geometric constants presented
in Table 1, is examined. The beam is subjected to the suddenly applied uniformly

distributed loading p, (¢)=250kN/m, p,(t)=500kN/m at its centroid, as this is

shown in Fig. 2b. In Figs. 3, 4 the time histories of the midpoint displacements
v(1/2,t), w(l/2,t) and angle of twist 6, (/2,t), respectively and in Table 2 the

maximum values of these kinematical components are presented as compared with

those obtained from a BEM solution [19], noting the accuracy of the proposed



method. As it can be observed from these figures and table, the strong coupling
between flexure and torsion may lead beams of doubly symmetric cross section
undergoing biaxial transverse loading applied at their centroid to develop torsional

rotation, a phenomenon that cannot be predicted from linear analysis.

Example 2
In this example, in order to investigate the response of a monosymmetric beam
and the influence of the loading point upon the cross section, in nonlinear flexural-

torsional  vibrations, the forced vibrations of a cantilever beam (
E=2164x10° kN/m®, G=8,0148x10" kN/m?, p=7,85m/m>, 1=1m) of a
thin-walled open shaped cross section (Fig. 5), under two load cases have been
studied (its geometric constants are given in Table 3). More specifically, the beam is

subjected to a suddenly applied concentrated force A (t) =5 kN either on the right

(load case (i), Fig. 5b) or on the left (load case (ii), Fig. 5c) flange. In Figs. 6-9 the

time histories of the axial displacement u(/,t), the transverse displacements v(/,t),

w(l,t) and the angle of twist 6, (l,t) of the cantilever beam, respectively and in

Table 4 the maximum values of these kinematical components, are presented. From
the aforementioned figures and table, it can easily be observed that geometrical
nonlinearity affects substantially the dynamic response of the beam inducing non
vanishing axial displacement and displacement with respect to z axis, while in linear
analysis these kinematical components vanish. From the obtained results it can also be
verified that the loading position has significant influence on the response, altering
substantially the magnitude of the kinematical components. This discrepancy can be

explained by the fact that in load case (ii), the change of eccentricity of the transverse



load during torsional rotation increases the magnitude of the twisting moment, acting
adversely compared with load case (i), where the applied twisting moment is reduced

during torsional rotation.

Example 3
In order to demonstrate the range of applications of the developed method, in
this final example the forced vibrations of a simply supported (free right end

according to the axial boundary condition) steel L-shaped beam of unequal
(asymmetric cross section) legs (Fig. 10a), (E=2,]><]08 kN/m2 , p=7,85 tn/m3 ,

G=8,0769x10" kN / m? , [ =1m), having the geometric constants presented in Table
5, is studied. The beam is subjected to a suddenly applied uniformly distributed
twisting moment m, (x,t) =8 kNm/m (Fig. 10a,b). Due to lack of symmetry, apart
from the angle of twist, the beam is expected to develop axial (axial displacement
vanishes in linear analysis) and transverse displacements as well. In Figs. 11-14 the

time histories of the axial displacement u (l ,t) , the transverse displacements v(l/ 2 ,t)
, w(l/2,t) and the angle of twist 6, (I/2,t), respectively, are presented, while in

Table 6 the maximum values of these kinematical components, taking into account or
ignoring rotary inertia effect are also shown. From these figures and table, it is
observed that the geometrical nonlinearity leads to the increase of torsional stiffness
decreasing the magnitude of angle of twist, while transverse displacements get
significantly higher values compared with the linear ones. From Table 6 it is also
noted that the influence of rotary inertia proves to be negligible on the magnitude of

kinematical components.



Moreover, the response of a hinged-hinged beam (axially immovable ends),
having the same cross section and length, under harmonic excitation is examined.

More specifically, the beam is subjected to a uniformly distributed harmonic load

ps(x.1)=py (x)-sin(a)f’ll-n -t) , as this is shown in Fig. 10a,c. The frequency @ j;,
is considered as @y ;, =27 f;,, where f;,, =118,200Hz, is the first natural

frequency of the examined beam, performing a linear analysis [34]. In Figs. 15-17 the

time histories of the displacements v(//2,r), w(l/2,t), with respect to the Syz

system of axes and the angle of twist 6, (l/ 2,t) are presented, noting the significant

difference in response between linear and nonlinear analysis. More specifically, it is
observed that only in the linear response deformations continue to increase with time,
while the beating phenomenon observed in the nonlinear one is explained from the
fact that large kinematical components increase the bar’s fundamental natural

frequency @, (by increasing the stiffness of the bar due to the tensile axial force
induced by the axially immovable ends), thereby causing a detuning of @, with the
frequency of the external loading (®y ;;, ). After the kinematical components reach

their maximum values, the amplitude of deformations decreases, leading to the

reversal of the previously mentioned effects.

5. CONCLUDING REMARKS

In this article a boundary element method is developed for the nonlinear
flexural-torsional dynamic analysis of beams of arbitrary cross section, undergoing
moderately large displacements and twisting rotations and small deformations, taking
into account the effect of rotary inertia, warping inertia and change of eccentricity of

transverse loads during torsional rotation. The beam is subjected to arbitrarily



distributed conservative transverse loads, which can be applied on any point of the

cross section, and/or axial loads and twisting moments, while its edges are restrained

by the most general boundary conditions. The main conclusions that can be drawn
from this investigation are:

a. The numerical technique presented in this investigation is well suited for computer
aided analysis of beams of arbitrary simply or multiply connected cross section,
supported by the most general boundary conditions and subjected to the combined
action of arbitrarily distributed or concentrated time dependent loading.

b. Accurate results are obtained using a relatively small number of nodal points along
the beam.

c. The geometrical nonlinearity leads to strong coupling between the axial, torsional
and bending equilibrium equations resulting in a significantly different response of
the beam compared to the one obtained by linear analysis.

d. The strong coupling between flexure and torsion may lead beams of doubly
symmetric cross sections, undergoing biaxial transverse loading applied on their
centroid, to develop torsional rotation.

e. The eccentricity change of the transverse loading during the torsional beam
motion, resulting in additional torsional moment influences the beam response.

f. The influence of rotary inertia, as shown in the treated examples, on the dynamic
response of the beams, proves to be negligible on the magnitude of kinematical
components.

g. The developed procedure retains most of the advantages of a BEM solution over a

FEM approach, although it requires longitudinal domain discretization.
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APPENDIX A

Functions F,; (i=12,.,7), F,; (i=12..7) and Fy (i=12,..,11) of the

wi

differential equations (13), concerning the nonlinear dynamic analysis of beams of

arbitrary cross section are given as:

E, =V -y:0, sin6, — ZCQX' cos 6, (A.1a)
F,y=A(yc sinf, +z¢ cos b, ) (A.1b)
F,3=A(zcsin@, —yc cos b, ) (A.1c)

v

Fyy=(Iy =17 )sinb, cos 0, = (Iy ~ 17 )cos’ 6, ~ Iy |w (A.1d)



F,s =(]Y—]Z)sin9x cos@xw’+[(ly—lz)0032 0, _]Y:|V’

Fv6

(Iy —1;)cos 6, sin0,

F

v

7 :(IY _[Z)COS2 Hx _IY

F

=Wy, cosO. — 200, sin6,
F,,=A(-yccosO, +z¢ sinb,)

F

w.

3=A(zccos O, + ye sinb,)

Fy=(1, —IY)cosexsinﬁxw'v{(IZ —IY)cos2 GX—IZ}V'

w

F,s=(I; —1y)cos0, siné’xv'—[(lz _Iy)COSZ 0, —IZ:|W’

F

Wi

s =(1;—1Iy)cos O, sinb,

F

w

7 :(IZ _Iy)COSZ ex_IZ

Fy =—ycv'0, cosO. —yew, sin@, —zow', cos O, +z.v'0), sin,
Fyy =z¢ (V' cos O, +w'sin6, )

Fys =yc (v sin6,—w cos 6,)

Fyy=(W'sin6, +v" cos6,)

Fys =(w"cos 0, —V"sin 0, )

Fys = A(z¢ cos O, + y¢ sin6,)

Fy; = A(—z¢ sin6, + yc cos 6,.)

Fyg z[(ly —]Z)COSZ 0, +[Z:|V’2 —2(I; —Iy)v'Wsin6 cos 0, + I, +

(A.le)

(A.19)

(A.1g)

(A.2a)

(A.2b)

(A.2¢)

(A.2d)

(A2e)

(A.2f)

(A.2g)

(A.32)

(A.3b)

(A.3¢)

(A.3d)

(A.3e)

(A.30)

(A.3g)



+| (I~ Iy)cos” 0, + Iy |w? (A.3h)
Fyg = [(IZ —Iy)COSZ 0, +IY:|W’+(]Y —1,)sin6, cos O,V (A.31)
Fy10 = [(IZ —IY)cos2 0, —Iz}v'+(]Z —1Iy)sin0, cos O (A.3))
Fy;1=(Iy —1,)sin6, cos O.v'"? +(I, —1Iy)sin6, cosO.w'? +

J{Z(IZ—IY)coszHX—IZ +IY:|V’W’ (A.3k)
Functions G,;, G,; (i=12,..7), G,; (i=1,2,...7) and Gy, (i=12,..,11) of the
governing differential equations (15), concerning the nonlinear dynamic analysis of

beams of arbitrary cross section are given as:

G, =z (9xex’w" 10,0, W0,V + 0"+ ex’zw') n

e (Hxﬁx”v’ 10,0,V -0 W =0, w' +0,? v') (A4)
Gur ==2c0," =vc (0.7 +6,6, )+ (A.5a)
G, =W"0, +2w"0 +w'0" —v"07 —4v"0.0, —2v"0.0," - 2v"0.” (A.5b)
G;=-20/0"-20" (A.5¢)
G,,=20.0"60_+20"0_+50°0 (A.5d)

G,s5 = {(IZ —IY)(Hxv”+<9x'v’)—IZW"—A(ycﬁx +z¢ —ézc@fﬂéx +(Iz=1Iy)-

.[wxex'v" 017 +2(0,0,+0,0, )i/ + 20,057~ 0,3V - 0,57 + v'@xéx'} ¥



1, -[—w'éx’ 200 40 + 2v0.6, — 2¢9'X'W'J

Gv6 = A(yC _Zcex)éf

Gv7 =V'- ycex,gx - Zcex'

Gw] =w'+ yC‘gx” ~Zc (936'2 + exex”)

Gy =V"0.+20"0] +v"0" + w02 +4w"0.0. +2w'0.0." + 2w"0,

"

G,;=-20.0"0_-50%0"-20"0,

G

w

rom "2
,=-200"-26,

(A.5¢)

(A.5f)

(A.5g)

(A.6a)

(A.6b)

(A.60)

(A.6d)

" [ " 1 )

.[wxex’w +073"+ 2 (ex’e'x +0,0, ) W +20.00"+60,V + 0" + W'axéx’} ~1-

-[—v'éx’ + "= 209" —w'02 - 2w'0,0, - zéx’v"}

Gy = A(Zc +J’c‘9x)6"£

Gw7 =w'+ ych’ y ZCexrex

1
. W " " " " "
Gy, —7‘9): +yc(W'=V"6)—zc (V' +w'6,)
G92 =" _vu20x + W"2(9x
Gp3 =20."W'0, +w'0.% +20v"+20"v" +20,w"0),
_ " on "on rm ny '2 ' m
Goy =—20.V"0.+20, W' +20, wW" V"0~ 20 V"0,

G95 :v'zly+W’2IZ +1S

(A.6¢)

(A.61)

(A.6g)

(A.7a)

(A.7b)

(A.7c)

(A.7d)

(A.7e)



Gos = A(Zc + e, —ézcefj

1

G = (12 1y 0, (W5 7)1 (5 20,500y (26,

I, 1.
G99 zzngpy +gexypy —exypy
1 3 1,
Go1o zggxzpz _ngypz -z, 0,

I , , . ' '
Gy =7jg‘9x =YV O, —zeWO, —zcV + yew

(A.7f)

(A.7g)

(A.7h)

(A.7i)

(A7)

(A.7K)
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(a)

8: Center of Twist
C: Center of Gravity

= U’;_=0r

(b)

Fig. 1. Prismatic beam in axial - flexural - torsional loading (a) of an arbitrary

cross-section occupying the two dimensional region 2 (b).
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(a)

0,14 m

0,23m (b)

Fig. 2. Clamped beam of example 1 (a) and applied loading on the centroid of the

cross section (b).
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Fig. 3. Time history of the displacements v and w at the midpoint of the clamped

beam of example 1.
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Fig. 4. Time history of the angle of twist 0, at the midpoint of the clamped beam of

example 1.
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Fig. 5. Cantilever beam of example 2 (a). Transverse force applied on the right (b) or

on the left (c) flange.
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Fig. 6. Time history of the axial displacement u at the tip of the cantilever beam of

example 2.
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Fig. 7. Time history of the displacement v at the tip of the cantilever beam of example 2.
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Fig. 8 Time history of the displacement w at the tip of the cantilever beam of

example 2.
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Fig. 9. Time history of the angle of twist 6. at the tip of the cantilever beam of

example 2.
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Fig. 10. L-shaped cross section of unequal legs of Example 3 (a). Applied distributed

twisting moment (b) or transverse harmonic excitation (c).
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Fig. 11. Time history of the axial displacement u at the right end of the simply

supported beam of example 3.
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Fig. 12. Time history of the displacement v at the midpoint of the simply supported

beam of example 3.
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Fig. 13. Time history of the displacement w at the midpoint of the simply supported

beam of example 3.
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Fig. 14. Time history of the angle of twist 0, at the midpoint of the simply supported

beam of example 3.
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Fig. 15. Time history of the displacement vV at the midpoint of the hinged-hinged

beam of example 3 under harmonic excitation.
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Fig. 16. Time history of the displacement W at the midpoint of the hinged-hinged

beam of example 3 under harmonic excitation.
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Fig. 17. Time history of the angle of twist 0, at the midpoint of the hinged-hinged

beam of example 3 under harmonic excitation.



Table 1: Geometric constants of the beam of example 1.

A=2,896x10"m? I =3,94264%x107 m®
Iy =2,15968x 107> m* 1,=2,10844x107 m*
I, =1,00439x 107 m* C, =3,59634x10""m°

Iy =3,16407x 107 m*

Table 2: Maximum values of the displacements v(l/2,t) (m) W(I/Z,t) (m) (of the

first cycle) and angle of rotation 0, (1/2,1‘) (rad) (of the whole time
history) of the clamped beam of example 1.

Linear analysis Nonlinear analysis

Sapountzakis & Sapountzakis &

Present Study =~ Dourakopoulos Present Study Dourakopoulos
[19] [19]
v(1/2) 0,1590 0,1588 0,1190 0,1180
w(l/2) 0,1480 0,1476 0,1330 0,1330

0.(1/2), .. 0,0000 - 0,0288

Table 3: Geometric constants of the beam of example 2.

A=2,66875x10"* m? 1,=9,10243x107 m?
Iy =9,39789x 1075 m* C, =1,31047 x1071m°
I, =4,50061x10"" m* B.=6,10287x107m

Ig=9,06833x107 m* 2, =3,687x107m

Ip =4,58807 %107 m°




Table 4: Maximum values of the kinematical components u(l,t) (m) v(l,t) (m)
w(l,t) (m) and 6, (Z,t) (rad) of the cantilever beam of example 2 for load

cases (i), (ii).
Linear Nonlinear Analysis
Analysis Load case (i) Load case (ii)
u (l)max 0,00000 —0,00085 —0,00119
V(l)max 0,03190 0,03091 0,03217
W(l)maX 0,00000 0,00626 0,01230
Oc () | —0,38479 -0,32897 ~0,50086

Table 5: Geometric constants of the beam of example 3

0 =0,430rad

A=2,5x10"m?
Iy =7,23593x107° m*
I, =1,32198x10"°m*
Ig=1,45517x107 m*

I,=8,3903x10"m?

C, =1,1937x107""m°

B, =8.19154x107m

B.=3,8866x107 m
B, =-0,1605

1o =1,68733x10"" m®
y.=3,662x10"m
z.=3,190x107 m

Table 6: Maximum values of the kinematical components u(l,t) (m) v(l/Z,t) (m)
w(l/2,t) (m) and 0,(1/2,t) (rad) for the simply supported beam of

example 3.
Without rotary inertia With rotary inertia
Linear Nonlinear . . Nonlinear
. . Linear analysis .

analysis analysis analysis

u(l) 0,00000 ~0,00113 0,00000 ~0,00112
v(1/2) .| —0,00473 ~0.00752 ~0,00476 ~0,00750
w(l/2) | —0,00101 ~0,00296 —0,00105 ~0,00293
0.(1/2) . | 028800 0,24592 0,28512 0,24467
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Beams of arbitrary cross section under general boundary conditions and
loading

Rotary and warping inertia are included in the nonlinear dynamic analysis
Wagner’s coefficients and shortening effect are taken into account

A BEM approach is employed and high accuracy is achieved

Geometrical nonlinearity results in significantly different beam response





