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Weak Averaging of Semilinear Stochastic

Differential Equations with Almost Periodic

Coefficients

Mikhail Kamenskii
∗, Omar Mellah

†and Paul Raynaud de Fitte
‡

Abstract

An averaging result is proved for stochastic evolution equations
with highly oscillating coefficients. This result applies in particular to
equations with almost periodic coefficients. The convergence to the
solution of the averaged equation is obtained in distribution, as in
previous works by Khasminskii and Vrkoč.

Keywords : averaging methods, stochastic evolution equations, almost
periodic solutions

1 Introduction

Since the classical work of N.M. Krylov and N.N. Bogolyubov [13] devoted
to the analysis, by the method of averaging, of the problem of the depen-
dence on a small parameter ε > 0 of almost periodic solutions of ordinary
differential equation containing terms of frequency of order 1

ε , several arti-
cles and books have appeared, which develop this method for different kinds
of differential equations. See the bibliography in the book of V.Sh. Burd [5],
where a list of books related to this problem for deterministic differential
equations is presented. We note here that the authors of these papers are
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greatly influenced by the books of N.N. Bogolyubov and A.Yu. Mitropolskii
[4] and M.A. Krasnosel′skĭı, V.Sh. Burd and Yu.S. Kolesov [12].

The method of averaging has been applied of course to stochastic dif-
ferential equations, but in general it was applied to the initial problem in
a finite interval, see for example [11]. Even in this we can see a great dif-
ference with the deterministic case. To ensure the strong convergence in
a space of stochastic processes, we must assume such convergence of the
stochastic term when ε → 0, which virtually excludes the consideration of
high frequency oscillation of this term. R.Z. Khasminskii [11] has shown, in
a finite dimensional setting, that it is possible to overcome this problem if
one only looks for convergence in distribution to the solution of the averaged
equation. Later Ivo Vrkoč [17] generalized this result in a Hilbert space set-
ting, for which the initial problem was at this time already well developed
(see for example the book of Da Prato and Zabczyck [9]).

During the last 20 years an intensive study of the problem of existence of
almost periodic solutions of stochastic differential equations was performed
by A. Arnold, C. Tudor, G. Da Prato and later by P.H. Bezandry and
T. Diagana [1, 2, 3]. For the first group, an almost periodic solution means
that the stochastic process generates an almost periodic measure on the
paths space. The second group claims the existence of square mean almost
periodic solutions, but square mean almost periodicity seems to be a too
strong property for solutions of SDEs, see counterexamples in [14].

In this paper we propose the averaging principle for solutions to a fam-
ily of semilinear stochastic differential equations in Hilbert space which are
almost periodic in distribution. The second member of these equations con-
tains a high frequency term. Under the Bezandry-Diagana conditions, we
establish the convergence in distribution of the solutions of these equations
to the solution of the averaged equation in the sense of Khasminskii-Vrkoč.

The paper is organized as follows: The next section is devoted to the
notations and preliminaries. We then prove in Section 3 that the solutions
of the equations we consider are almost periodic in distribution, when their
coefficients are almost periodic. In section 4, we prove the fondamental
averaging result of this paper.

2 Notations and Preliminaries

In the sequel, (H1, ‖.‖H1
) and (H2, ‖.‖H2

) denote separable Hilbert spaces
and L(H1,H2) (or L(H1) if H1 = H2) is the space of all bounded linear
operators from H1 to H2, whose norm will be denoted by ‖.‖L(H1,H2). If A ∈
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L(H1) then A
∗ denotes its adjoint operator and if A is a nuclear operator,

|A|N = sup

{
∑

i

| < Aei, fi > |, {ei}, {fi} orthonormal bases of H1

}

is the nuclear norm of A.

2.1 Almost periodic functions

Let (E, d) be a separable metric space, we denote by Cb(E) the Banach space
of continuous and bounded functions f : E → R with ‖ f ‖∞= supx∈E |f(x)|
and by P (E) the set of all probability measures onto σ-Borel field of E. For
f ∈ Cb(E) we define

‖ f ‖L= sup
{f(x)− f(y)

dE(x, y)
: x 6= y

}

‖ f ‖BL= max{‖ f ‖∞, ‖ f ‖L}

and we define
BL(E) =

{
f ∈ Cb(E); ‖ f ‖BL<∞

}
.

For µ, ν ∈ P (E) we define

dBL(µ, ν) = sup
‖f‖BL≤1

∣∣∣
∫

E

fd(µ− ν)
∣∣∣

which is a complete metric on P (E) and generates the narrow (or weak)
topology, i.e. the coarsest topology on P (E) such that the mappings µ 7→
µ(f) are continuous for all bounded continuous f : E → R.

Let (E1, d1) and (E2, d2) be separable and complete metric spaces. Let
f be a continuous mapping from R to E2 (resp. from R × E1 to E2). Let
K be a set of subsets of E1. The function f is said to be almost periodic
(respectively almost periodic uniformly with respect to x in elements of K)
if for every ε > 0 (respectively for every ε > 0 and every subset K ∈ K),
there exists a constant l(ε,K) > 0 such that any interval of length l(ε,K)
contains at least a number τ for which

sup
t∈R

d2(f(t+ τ), f(t)) < ε

(respectively sup
t∈R

sup
x∈K

d2(f(t+ τ, x), f(t, x)) < ε).

A characterization of almost periodicity is given in the following result,
due to Bochner:
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Theorem 2.1 Let f : R → H1 be continuous. Then the following state-
ments are equivalent

• f is almost periodic.

• The set of translated functions {f(t + .)}t∈R is relatively compact in
C(R;E2) with respect to the uniform norm.

• f satisfies Bochner’s double sequence criterion, that is, for every pair
of sequences {α′

n} ⊂ R and {β′

n} ⊂ R, there are subsequences (αn) ⊂
(α′

n) and (βn) ⊂ (β′n) respectively with same indexes such that, for
every t ∈ R, the limits

(1) lim
n→∞

lim
m→∞

f(t+ αn + βm) and lim
n→∞

f(t+ αn + βn),

exist and are equal.

Remark 2.2

(i) A striking property of Bochner’s double sequence criterion is that the
limits in (1) exist in any of the three modes of convergences: pointwise,
uniform on compact intervals and uniform on R (with respect to dE).
This criterion has thus the avantage that it allows to establish uniform
convergence by checking pointwise convergence.

(ii) The previous result holds for the metric spaces (P (E) , dBL)
and (P (C(R,E)) , dBL)

2.2 Almost periodic stochastic processes

Let (Ω,F ,P) be a probability space. Let X : R × Ω → H2 be a stochastic
process. We denote by µ(t) the distribution of the random variable X(t).
Following Tudor’s terminology [16], we say that X has almost periodic one-
dimensional distributions if the mapping t 7→ µ(t) from R to (P (H2) , dBL)
is almost periodic.

If X has continuous trajectories, we say that X is almost periodic in
distribution if the mapping t 7→ law (X(t+ .) from R to P (C(R;H2)) is
almost periodic, where C(R;H2) is endowed with the uniform convergence
on compact intervals and P (C(R;H2)) is endowed with the distance dBL.

Let L2(P,H2) be the space of H2-valued random variables with a finite
quadratic-mean. We say that a stochastic process X : R → L2(P,H2) is
square-mean continuous if, for every s ∈ R,

lim
t→s

E ‖X(t) −X(s)‖2H2
= 0.
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We denote by CUB
(
R, L2(P,H2)

)
the Banach space of square-mean contin-

uous and uniformly bounded stochastic processes, endowed with the norm

‖X‖2∞ = sup
t∈R

(E ‖X(t)‖2H2
).

A square-mean continuous stochastic process X : R → L2(P,H2) is said to
be square-mean almost periodic if, for each ε > 0, there exists l(ε) > 0 such
that any interval of length l(ε) contains at least a number τ for which

sup
t∈R

E ‖X(t+ τ)−X(t)‖2H2
< ε.

The next theorem is interesting in itself, but we shall not use it in the
sequel.

Theorem 2.3 Let F : R × H2 → H2 be an almost periodic function uni-
formly with respect to x in compact subsets of H2 such that

‖F (t, x)‖H2
≤ C1(1 + ‖x‖H2

) and ‖F (t, x)− F (t, y)‖H2
≤ C2‖x− y‖H2

.

Then the function

F̃ : R× L2(P,H2) → L2(P,H2)

(where F̃ (t, Y )(ω) = F (t, Y (ω)) for every ω ∈ Ω) is square-mean almost
periodic uniformly with respect to Y in compact subsets of L2(P,H2).

Proof Let us prove that for each Y ∈ L2(P,H2) the process F̃Y : R →
L2(P,H2), t 7→ F̃ (t, Y ) is almost periodic.

For every δ > 0, there exists a compact subset S of H2 such that

P{Y /∈ S} ≤ δ.

Let ε > 0, then there exist δ > 0 and a compact subset S of H2 such that
P{Y /∈ S} ≤ δ and

∫

{Y /∈S}

(
1 + ‖Y ‖2H2

)
dP <

ε

4C1
.

Since F is almost periodic uniformly with respect to x in the compact subset
S, there exists a constant l(ε, S) > 0 such that any interval of length l(ε, S)
contains at least a number τ for which

sup
t

‖F (t+ τ, x)− F (t, x)‖H2
<

√
ε√
2

for all x ∈ S.
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We have

E(‖F (t+ τ, Y )− F (t, Y )‖2H2
) =

∫

{Y ∈S}
‖F (t+ τ, Y )− F (t, Y )‖2H2

dP

+

∫

{Y /∈S}
‖F (t+ τ, Y )− F (t, Y )‖2H2

dP

<
ε

2
+ 2C1

∫

{Y /∈S}

(
1 + ‖Y ‖2H2

)
dP

<
ε

2
+
ε

2
= ε.

Therefore the process F̃Y is almost periodic. Since F̃ is Lipschitz, it is almost
periodic uniformly with respect to Y in compact subsets of L2(P,H2) (see
[10, Theorem 2.10 page 25]).

Proposition 2.4 ([7, 10]) For any almost periodic function F : R×H2 →
H2, there exists a continuous function F0 : H2 → H2 such that for each
x ∈ H2 the mean value

(2) lim
T→∞

1

T

∫ T

0
F (t, x)dt = F0(x).

Furthermore, if F (t, x) is Lipschitz in x ∈ H2 uniformly with respect to
t ∈ I, the mapping F0 is Lipschitz too.

Let Q ∈ L(H1) be a linear operator. Then Q is a bijection from
range(Q) = Q(H1) to (kerQ)⊥. We denote by Q−1 the pseudo-inverse of
Q (see [15, Appendix C] or [9, Appendix B.2]), that is, the inverse of the
mapping (kerQ)⊥ → range(Q), x 7→ Q(x). Note that range(Q) is a Hilbert
space for the scalar product 〈x, y〉range(Q) = 〈Q−1(x), Q−1(y)〉.

Proposition 2.5 Let G : R ×H2 → L(H1,H2) be an almost periodic func-
tion and let Q ∈ L(H1) be a self-adjoint nonnegative operator. Let H0 =
range(Q1/2), endowed with 〈x, y〉range(Q1/2) = 〈Q−1/2(x), Q−1/2(y)〉. There
exists a continuous function G0 : H2 → L(H0,H2) such that, for every
x ∈ H1,

(3) lim
t→∞

∣∣1
t

∫ t

0
G(s, x)QG∗(s, x)ds −G0(x)QG

∗
0(x)

∣∣
N
= 0,

where G∗(s, x) = (G(s, x))∗ and G∗
0(x) = (G0(x))

∗.
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Proof Observe first that G0(x)QG
∗
0(x) = (G0(x)Q

1/2)(G0(x)Q
1/2)∗, thus

G0(x) does not need to be defined on the whole space H1, it is sufficient
that it be defined on H0.

Since G is almost periodic, the function H(s, x) = G(s, x)QG∗(s, x) is
almost periodic too, with positive self-adjoint nuclear values in L(H2). Thus
there exists a mapping H0 : H2 → L(H2) such that, for every x ∈ H2,

lim
t→∞

1

t

∫ t

0
G(s, x)QG∗(s, x) ds = H0(x).

By e.g. [10, Theorem 3.1], H0 is continuous. Thus the mapping

H
1/2
0 :

{
H2 → L(H2)

x 7→ (H0(x))
1/2

is continuous with positive self-adjoint values.

Let G0(x) = H
1/2
0 (x)Q−1/2 : H0 → H2. We then have, for every x ∈ H2,

H0(x) = G0(x)Q(G0(x))
∗

and G0 is continuous, which proves (3).

3 Solutions almost periodic in distribution

We consider the semilinear stochastic differential equation,

(4) dXt = AX(t)dt + F (t,X(t))dt +G(t,X(t))dW (t), t ∈ R

Where A : Dom(A) ⊂ H2 → H2 is a densely defined closed (possibly un-
bounded) linear operator, F : R × H2 → H2, and G : R × H2 → L(H1,H2)
are continuous functions. In what follows we assume that:

(i) W (t) is an H1-valued Wiener process with nuclear covariance operator
Q (we denote by trQ the trace of Q), defined on a stochastic basis
(Ω,F , (Ft)t∈R,P).

(ii) A : Dom(A) → H2 is the infinitesimal generator of a C0-semigroup
(S(t))t≥0 such that there exists a constant δ > 0 with

‖S(t)‖L(H2) ≤ e−δt, t ≥ 0.
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(iii) There exists a constant K such that the mappings F : R × H2 → H2

and G : R×H2 → L(H1,H2) satisfy

‖F (t, x)‖H2
+ ‖G(t, x)‖L(H1 ,H2) ≤ K(1 + ‖x‖H2

)

(iv) The functions F and G are Lipschitz, more precisely there exists a
constant K such that

‖F (t, x) − F (t, y)‖H2
+ ‖G(t, x) −G(t, y)‖L(H1 ,H2) ≤ K‖x− y‖H2

for all t ∈ R and x, y ∈ H2.

(v) The mappings F and G are almost periodic in t ∈ R uniformly with
respect to x in bounded subsets of H2.

The assumptions in the following theorem are contained in those of Bezandry
and Diagana [1, 2]. The result is similar to [8, Theorem 4.3], with different
hypothesis and a different proof.

Theorem 3.1 Let the assumptions (i) - (v) be fulfiled and the constant

θ =
K2

δ

(
1

2δ
+ trQ

)
< 1. Then there exists a unique mild solution X to

(4) in CUB
(
R, L2(P,H2)

)
. Furthermore, X has a.e. continuous trajectories,

and X(t) can be explicitly expressed as follows, for each t ∈ R:

(5) X(t) =

∫ t

−∞
S(t− s)F

(
s,X(s)

)
ds+

∫ t

−∞
S(t− s)G

(
(s),X(s)

)
dW (s).

If furthermore θ′ =
4K2

δ2

(
1

δ
+ trQ

)
< 1, then X is almost periodic in

distribution.

To prove Theorem 3.1, we will use the following result, which is given in
a more general form in ([8]:

Proposition 3.2 ([8, Proposition 3.1-(c)]) Let τ ∈ R. Let (ξn)0≤n≤∞ be a
sequence of square integrable H2-valued random variables. Let (Fn)0≤n≤∞

and (Gn)0≤n≤∞ be sequences of mappings from R×H2 to H2 and L(H1,H2)
respectively, satisfying (iii) and (iv) (replacing F and G by Fn and Gn re-
spectively, and the constant K being independent of n). For each n, let Xn

denote the solution of

Xn(t) = S(t− τ)ξn

+

∫ t

τ
S(t− s)Fn

(
s,Xn(s)

)
ds+

∫ t

τ
S(t− s)Gn

(
(s),Xn(s)

)
dW (s).
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Assume that, for every (t, x) ∈ R×H2,

lim
n→∞

Fn(t, x) = F∞(t, x), lim
n→∞

Gn(t, x) = G∞(t, x),

lim
n→∞

dBL(law (ξn,W ) , law (ξ∞,W )) = 0,

(the last equality takes place in P (H2 × C(R,H1))). Then we have in C([τ, T ];H2),
for any T > τ ,

lim
n→∞

dBL(law (Xn) , law (X∞)) = 0.

We need also a variant of Gronwall lemma which is taylored for mild
solution. We give a slightly more general version than necessary because it
is interesting in itself.

Lemma 3.3 Let g : R → R be a continuous function such that, for every
t ∈ R,

(6) g(t) ≤ α(t) + β1

∫ t

−∞
e−δ1(t−s)g(s) ds + · · ·+ βn

∫ t

−∞
e−δn(t−s)g(s) ds,

for some function α : R → R, and for some constants β1, . . . , βn ≥ 0, and
some constants δ1, . . . , δn > β, where β :=

∑n
i=1 βi. We assume that the

integrals in the right hand side of (6) are convergent. Let δ = min1≤i≤n δi.
Then, for every γ ≤ δ − β,

(7) g(t) ≤ α(t) + β

∫ t

−∞
e−γ(t−s)α(s) ds.

In particular, if α is constant, we get

(8) g(t) ≤ α
δ

δ − β
.

Proof Let β′i = βi/β, i = 1, . . . , n. We have

d

dt

(
eγt

n∑

i=1

β′i

∫ t

−∞
e−δi(t−s)g(s) ds

)

=
d

dt

(
n∑

i=1

β′ie
(γ−δi)t

∫ t

−∞
eδisg(s) ds

)

=

n∑

i=1

(γ − δi)e
(γ−δi)tβ′i

∫ t

−∞
eδisg(s) ds +

n∑

i=1

e(γ−δi)teδitβ′ig(t)

=eγt

(
g(t) +

n∑

i=1

(γ − δi)β
′
i

∫ t

−∞
e−δi(t−s)g(s) ds

)

≤eγtα(t).
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The last inequality holds because γ − δi ≤ −β. Integrating on ]−∞, t], we
get

eγt
n∑

i=1

β′i

∫ t

−∞
e−δi(t−s)g(s) ds ≤

∫ t

−∞
eγsα(s) ds

i.e.

n∑

i=1

β′i

∫ t

−∞
e−δi(t−s)g(s) ds ≤ e−γt

∫ t

−∞
eγsα(s) ds.(9)

Using (9) in (6) yields

g(t) ≤ α(t) + β
n∑

i=1

β′i

∫ t

−∞
e−δi(t−s)g(s) ds ≤ α(t) + βe−γt

∫ t

−∞
eγsα(s) ds.

Inequality (8) is a direct consequence of (7), with γ = δ − β.

Corollary 3.4 With the notations of Theorem 3.1, if θ′ < 1, and if X ∈
CUB

(
R, L2(P,H2)

)
satisfies (5), then, for every t ∈ R,

E
(
‖X(t)‖2

)
≤ β

δ − β

where β = 4K2

(
1

δ
+ trQ

)
.
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Proof We have

E
(
‖X(t)‖2

)

≤2E

(∥∥∥∥
∫ t

−∞
S(t− s)F

(
s,X(s)

)
ds

∥∥∥∥
2
)

+ 2E

(∥∥∥∥
∫ t

−∞
S(t− s)G

(
(s),X(s)

)
dW (s)

∥∥∥∥
2
)

≤2E

((∫ t

−∞
e−

1

2
δ(t−s)e−

1

2
δ(t−s)

∥∥F
(
s,X(s)

)∥∥ ds
)2
)

+ 2 trQ

∫ t

−∞
e−2δ(t−s) E

∥∥G
(
s,X(s)

)∥∥2
L(H1,H2)

ds

≤2E

(∫ t

−∞
e−δ(t−s) ds

∫ t

−∞
e−δ(t−s)

∥∥F
(
s,X(s)

)∥∥2 ds
)

+ 2 trQ

∫ t

−∞
e−2δ(t−s) E

∥∥G
(
s,X(s)

)∥∥2
L(H1,H2)

ds

≤2

δ

∫ t

−∞
e−δ(t−s) E

∥∥F
(
s,X(s)

)∥∥2 ds

+ 2 trQ

∫ t

−∞
e−2δ(t−s) E

∥∥G
(
s,X(s)

)∥∥2
L(H1,H2)

ds

≤2K2

δ

∫ t

−∞
e−δ(t−s) E(1 + ‖X‖2

H2
) ds

+ 2K2 trQ

∫ t

−∞
e−2δ(t−s) E (1 + ‖X‖2

H2
)ds

≤4K2

δ

∫ t

−∞
e−δ(t−s) ds+ 4K2 trQ

∫ t

−∞
e−2δ(t−s) ds

+
4K2

δ

∫ t

−∞
e−δ(t−s) E ‖X‖2

H2
ds+ 4K2 trQ

∫ t

−∞
e−2δ(t−s) E ‖X‖2

H2
ds

=
4K2

δ

(
1

δ
+ trQ

)

+
4K2

δ

∫ t

−∞
e−δ(t−s) E ‖X‖2

H2
ds+ 4K2 trQ

∫ t

−∞
e−2δ(t−s) E ‖X‖2

H2
ds.

As θ′ < 1, we have δ > β. The result then follows from Lemma 3.3.
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Proof of Theorem 3.1 Note that

X(t) =

∫ t

−∞
S(t− s)F

(
s,X(s)

)
ds+

∫ t

−∞
S(t− s)G

(
s,X(s)

)
dW (s)

satisfies

X(t) = S(t−s)X(s)+

∫ t

s
S(t−s)F

(
s,X(s)

)
ds+

∫ t

s
S(t−s)G

(
s,X(s)

)
dW (s)

for all t ≥ s for each s ∈ R , and hence X is a mild solution to (4).
We introduce an operator L by

LX(t) =

∫ t

−∞
S(t− s)F

(
s,X(s)

)
ds+

∫ t

−∞
S(t− s)G

(
s,X(s)

)
dW (s).

It can be see easily that the operator L maps CUB
(
R, L2(P,H1)

)
into itself.

First step. Let us show that L has a unique fixed point.

‖(LX)(t) − (LY )(t)‖H2

= ‖
∫ t

−∞
S(t− s)[F (s,X(s)) − F (s, Y (s))]ds

+

∫ t

−∞
S(t− s)[G(s,X(s)) −G(s, Y (s))]dW (s)‖H2

≤
∫ t

−∞
e−δ(t−s)‖F (s,X(s)) − F (s, Y (s))‖H2

ds

+ ‖
∫ t

−∞
S(t− s)[G(s,X(s)) −G(s, Y (s))]dW (s)‖H2

.

Using the inequality (a+ b)2 ≤ 2a2 + 2b2 we obtain

E ‖(LX)(t) − (LY )(t)‖2H2

≤2E
(∫ t

−∞
e−δ(t−s)‖F (s,X(s)) − F (s, Y (s))‖H2

ds
)2

+ 2E
(
‖
∫ t

−∞
S(t− s)[G(s,X(s)) −G(s, Y (s))]dW (s)‖H2

)2

=I1 + I2.

12



We have

I1 ≤ 2

∫ t

−∞
e−δ(t−s)ds

∫ t

−∞
e−δ(t−s) E ‖F (s,X(s)) − F (s, Y (s))‖2H2

ds

≤ 2K2

∫ t

−∞
e−δ(t−s)ds

∫ t

−∞
e−δ(t−s) E ‖X(s)) − Y (s))‖2H2

ds

≤ 2K2
(∫ t

−∞
e−δ(t−s)ds

)2
sup
s∈R

E ‖X(s)) − Y (s))‖2H2

≤ K2

2δ2
sup
s∈R

E ‖X(s))− Y (s))‖2H2
.

For I2, using the isometry identity we obtain

I2 ≤ 2 trQ

∫ t

−∞
e−2δ(t−s) E ‖G(s,X(s)) −G(s, Y (s))‖2L(H1,H2)

ds

≤ 2 trQK2

∫ t

−∞
e−2δ(t−s) E ‖X(s) − Y (s)‖2

H2)
ds

≤ 2K2 trQ
(∫ t

−∞
e−2δ(t−s)ds

)
sup
s∈R

E ‖X(s) − Y (s)‖2H2

≤ K2 trQ

δ
sup
s∈R

E ‖X(s)− Y (s)‖2H2
.

Thus

E ‖(LX)(t) − (LY )(t)‖2H2
≤ I1 + I2 ≤ θ sup

s∈R
E ‖X(s) − Y (s)‖2H2

.

Consequently, as θ < 1, we deduce that L is a contraction operator, hence
there exists a unique mild solution to (4) in CUB

(
R, L2(P,H1)

)
.

Furthermore, by [9, Theorem 7.4], almost all trajectories of this solution
are continuous.

Second step. We assume now that θ′ < 1. Let us show that X is almost
periodic in distribution. We use Bochner’s double sequences criterion. Let
(α

′

n) and (β
′

n) be two sequences in R. We show that there are subsequences
(αn) ⊂ (α

′

n) and (βn) ⊂ (β
′

n) with same indexes such that, for every t ∈ R,
the limits

(10) lim
n→∞

lim
m→∞

µ(t+ αn + βm) and lim
n→∞

µ(t+ αn + βn),

exist and are equal, where µ(t) := law (X) (t) is the law or distribution of
X(t).

13



Since F and G are almost periodic, there are subsequences (αn) ⊂ (α
′

n)
and (βn) ⊂ (β

′

n) with same indexes such that

(11) lim
n→∞

lim
m→∞

F (t+ αn + βm, x) = lim
n→∞

F (t+ αn + βn, x) =: F0(t, x)

and

(12) lim
n→∞

lim
m→∞

G(t+ αn + βm, x) = lim
n→∞

G(t+ αn + βn, x) =: G0(t, x).

These limits exist uniformly with respect to t ∈ R and x in bounded subsets
of H2.

Set now (γn) = (αn + βn). For each fixed integer n, we consider

Xn(t) =

∫ t

−∞
S(t−s)F (s+γn,Xn(s))ds+

∫ t

−∞
S(t−s)G(s+γn,Xn(s))dW (s)

the mild solution of

(13) dXn(t) = AXn(t)dt+ F (t+ γn,X
n(t))dt+G(t+ γn,X

n(t))dW (t)

and

X0(t) =

∫ t

−∞
S(t− s)F0(s,X

0(s))ds +

∫ t

−∞
S(t− s)G0(s,X

0(s))dW (s)

the mild solution of

(14) dX0(t) = AX0(t)dt+ F0(t,X
0(t))dt+G0(t,X

0(t))dW (t).

Make the change of variable σ − γn = s, the process

X(t+ γn) =

∫ t+γn

−∞
S(t+ γn − s)F (s,X(s))ds

+

∫ t+γn

−∞
S(t+ γn − s)G(s,X(s))dW (s)

becomes

X(t+ γn) =

∫ t

−∞
S(t− s)F (s+ γn,X(s + γn))ds

+

∫ t

−∞
S(t− s)G(s + γn,X(s + γn))dW̃n(s),
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where W̃n(s) = W (s + γn) −W (γn) is a Brownian motion with the same
distribution as W (s). Thus the process X(t+ γn) has the same distribution
as Xn(t).

Let us show that Xn(t) converges in quadratic mean to X0(t) for each
fixed t ∈ R. Using the inequality (a+ b)2 ≤ 2a2 + 2b2 we obtain

E‖Xn(t)−X0(t)‖2

=E‖
∫ t

−∞
S(t− s)[F (s + γn,X

n(s))− F0(s,X
0(s))]ds

+

∫ t

−∞
S(t− s)[G(s + γn,X

n(s))−G0(s,X
0(s))]dW (s)‖2

≤2E‖
∫ t

−∞
S(t− s)[F (s+ γn,X

n(s))− F0(s,X
0(s))]ds‖2

+ 2E

∫ t

−∞
S(t− s)[G(s+ γn,X

n(s))−G0(s,X
0(s))]dW (s)‖2

≤4E‖
∫ t

−∞
S(t− s)[F (s+ γn,X

n(s))− F (s+ γn,X
0(s))]ds‖2

+ 4E‖
∫ t

−∞
S(t− s)[F (s+ γn,X

0(s))− F0(s,X
0(s))]ds‖2

+ 4E‖
∫ t

−∞
S(t− s)[G(s + γn,X

n(s))−G(s + γn,X
0(s))]dW (s)‖2

+ 4E‖
∫ t

−∞
S(t− s)[G(s + γn,X

0(s))−G0(s,X
0(s))]dW (s)‖2

≤I1 + I2 + I3 + I4.

Now, using (ii), (iv) and the Cauchy-Schwartz inequality, we obtain

I1 = 4E‖
∫ t

−∞
S(t− s)[F (s + γn,X

n(s))− F (s + γn,X
0(s))]ds‖2

≤ 4E
(∫ t

−∞
‖S(t− s)‖‖F (s + γn,X

n(s))− F (s+ γn,X
0(s))‖ds

)2

≤ 4E
(∫ t

−∞
e−δ(t−s)‖F (s + γn,X

n(s))− F (s+ γn,X
0(s))‖ds

)2

≤ 4
(∫ t

−∞
e−δ(t−s)ds

)(∫ t

−∞
e−δ(t−s) E‖F (s + γn,X

n(s))− F (s+ αn,X
0(s))‖2ds

)

≤ 4K2

δ

∫ t

−∞
e−δ(t−s) E‖Xn(s)−X0(s)‖2ds.
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Then we obtain

I2 = 4E‖
∫ t

−∞
S(t− s)[F (s + γn,X

0(s))− F0(s,X
0(s))]ds‖2

≤ 4E
(∫ t

−∞
e−δ(t−s)‖F (s + γn,X

0(s))− F0(s,X
0(s))‖ds

)2

≤ 4E
(∫ t

−∞
e−δ(t−s)ds

)(∫ t

−∞
e−δ(t−s)‖F (s + γn,X

0(s))− F0(s,X
0(s))‖2ds

)

≤ 4
(∫ t

−∞
e−δ(t−s)ds

)2
sup
s

E‖F (s + γn,X
0(s))− F0(s,X

0(s))‖2

≤ 4

δ2
sup
s

E‖F (s + γn,X
0(s))− F0(s,X

0(s))‖2,

which converges to 0 as n → ∞ because supt∈R E‖X0(t)‖2 < ∞ which
implies that {X0(t)}t is tight relatively to bounded sets.

Applying Itô’s isometry, we get

I3 = 4E‖
∫ t

−∞
S(t− s)[G(s + γn,X

n(s))−G(s + γn,X
0(s))]dW (s)‖2

≤ 4 trQE

∫ t

−∞
‖S(t− s)‖2‖G(s + γn,X

n(s))−G(s + γn,X
0(s))‖2ds

≤ 4 trQ

∫ t

−∞
e−2δ(t−s) E‖G(s + γn,X

n(s))−G(s + γn,X
0(s))‖2ds

≤ 4K2 trQ

∫ t

−∞
e−2δ(t−s) E‖Xn(s)−X0(s)‖2ds.

and

I4 = 4E‖
∫ t

−∞
S(t− s)[G(s + γn,X

0(s))−G0(s,X
0(s))]dW (s)‖2

≤ 4 trQE
(∫ t

−∞
‖S(t− s)‖2‖G(s + γn,X

0(s))−G0(s,X
0(s))‖2ds

)

≤ 4 trQ
(∫ t

−∞
e−2δ(t−s)ds

)
sup
s∈R

E‖G(s + γn,X
0(s))−G0(s,X

0(s))‖2

≤ 2 trQ

δ
sup
s∈R

E‖G(s + γn,X
0(s))−G0(s,X

0(s))‖2.

For the same reason as for I2, the right hand term goes to 0 as n→ ∞.
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Note that, as in the proof of Corollary 3.4, and with the same notations,
we have δ > β. Thus, applying Lemma 3.3, we obtain

lim
n→∞

E‖Xn(t)−X0(t)‖2 = 0,

hence Xn(t) converges in distribution to X0(t), but since the distribution of
Xn(t) is the same as that of X(t+ γn) we deduce that X(t+ γn) converges
in distribution to X0(t), i.e.

lim
n→∞

µ(t+ αn + βn) = law
(
X0(t)

)
=: µ0t .

By analogy and using (11), (12) we can easily deduce that

lim
n→∞

lim
m→∞

µ(t+ αn + βm) = µ0t .

We have thus proved that X has almost periodic one-dimensional dis-
tributions. To prove that X is almost periodic in distribution, we apply
Proposition 3.2: for fixed τ ∈ R, let ξn = X(τ +αn), Fn(t, x) = F (t+αn, x),
Gn(t, x) = G(t + αn, x). By the foregoing, (ξn) converges in distribution
to some variable Y (τ). We can choose Y (τ) such that (ξn,W ) converges
in distribution to (Y,W ). Then, for every T ≥ τ , X(. + αn) converges in
distribution on C([τ, T ];H2) to the (unique in distribution) solution to

Y (t) = S(t−τ)Y (τ)+

∫ t

τ
S(t−s)F

(
s, Y (s)

)
ds+

∫ t

τ
S(t−s)G

(
(s), Y (s)

)
dW (s).

Note that Y does not depend on the chosen interval [τ, T ], thus the con-
vergence takes place on C(R;H2). Similarly, Yn := Y (. + βn) converges in
distribution on C(R;H2) to a continuous process Z such that, for t ≥ τ ,

Z(t) = S(t−τ)Z(τ)+
∫ t

τ
S(t−s)F

(
s, Z(s)

)
ds+

∫ t

τ
S(t−s)G

(
(s), Z(s)

)
dW (s).

But, by (11) and (12), X(.+γn) converges in distribution to the same process
Z. Thus X is almost periodic in distribution.

4 Weak averaging

In this section we assume Conditions (i) – (iv) of Section 3, but we replace
Condition (v) by Condition (v’) below, which is weaker thanks to Proposi-
tions 2.4 and 2.5. Let us define the Hilbert space H0 = range(Q1/2) as in
Proposition 2.5, whereQ is the covariance operator of the Wiener processW .
We assume that the mappings F : R×H2 → H2 and G : R×H2 → L(H1,H2)
satisfy
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(v’) There exists continuous functions F0 : H2 → H2 and G0 : H2 →
L(H0,H2) satisfying (2) and (3) for every x ∈ H2.

Theorem 4.1 Let the assumptions (i) – (iv) and (v’) be fulfilled and the

constant θ =
K2

δ2

(1
2
+ trQ

)
< 1. For each fixed ε ∈]0, 1[, let Xε be the mild

solution of the equation

(15) dXε(t) = AXε(t)dt+ F (
t

ε
,Xε(t))dt+G(

t

ε
,Xε(t))dW (t), t ∈ R.

Then (Xε(t)) → (X0(t)) in distribution as ε → 0+ on the space C(R,H2)
endowed with the topology of uniform convergence on compacts subsets of R,
where (X0(t)) is the mild solution to

(16) dX0(t) = A(X0(t))dt + F0(X
0(t))dt+G0(X

0(t))dW (t)

which is a stationary process.

Before we give the proof of this theorem, let us recall some well-known
results.

Proposition 4.2 ([6]) Let (Xn)n≥0 be a sequence of centered Gaussian ran-
dom variable on a separable Hilbert space H with sequence of covariance op-
erators (Qn)n≥0. Then (Xn)n≥0 converges in distribution to X0 in H if and
only if

| Qn −Q0 |N→ 0, n → ∞

Let U,V,H be real separable Hilbert spaces, let W be a U-valued (Ft)-
adapted Wiener process with nuclear covariance operator Q.

Proposition 4.3 ([17, Proposition 2.2]) Let α : H → V be a Lipschitz
mapping and σ : R × H → L(U,V) be a measurable mapping such that
‖σ(r, x)‖L(U,V) ≤ M(1 + ‖x‖H) and ‖σ(r, x) − σ(r, y)‖L(U,V) ≤ M‖x − y‖H
for a constant M and every r ∈ [s, t], x, y ∈ H. Let g ∈ BL(V), we define

ψ(y) = E g
(
α(y) +

∫ t

s
σ(r, y)dW (r)

)
, y ∈ H.

Let u : Ω → H be a (Fs)-measurable random variable with E ‖u‖2
H
< ∞.

Then

E
[
g
(
α(u) +

∫ t

s
σ(r, u)dW (r)

)
|Fs

]
= ψ(u) P -a.s.
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Proof of Theorem 4.1 We denote Fε(s, x) := F
(s
ε
, x
)
, Gε(s, x) :=

G
(s
ε
, x
)
, and for every X ∈ CUB

(
R, L2(P,H2)

)
,

Lε(X)(t) :=

∫ t

−∞
S(t− s)Fε(s,X(s))ds +

∫ t

−∞
S(t− s)Gε(s,X(s))dW (s),

L0(X)(t) :=

∫ t

−∞
S(t− s)F0(X(s))ds +

∫ t

−∞
S(t− s)G0(X(s))dW (s).

First step. Let us show that Lε(X) −→ L0(X) in distribution, as ε → 0,
in the space C(R,H2) endowed with the topology of uniform convergence
on the compact subsets of R. This amounts to prove that, for any τ ∈ R

and any T ∈ R such that τ ≤ T , Lε(X) −→ L0(X) in distribution in
the space C([τ, T ],H2) (see [18, Theorem 5]). Since the previous integral
exists, then for every η > 0, there exists τ such that for each σ < τ , we
have E ‖Y n(σ)‖2

H2
< η, thus for the proof that Y n converges in distribution

to Y 0 on C(R,H2), it suffices to show the convergence in distribution on
C([τ, T ],H2) of

∫ t

−τ
S(t− s)Fε(s,X(s))ds +

∫ t

−τ
S(t− s)Gε(s,X(s))dW (s)

to ∫ t

−τ
S(t− s)F0(X(s))ds +

∫ t

−τ
S(t− s)G0(X(s))dW (s).

Let (εn) be an arbitrary sequence in ]0, 1[ such that εn −→ 0 and X ∈
CUB

(
R, L2(P,H2)

)
. We denote Fn(s, x) := F ( s

εn
, x), Gn(s, x) := G( s

εn
, x),

we simplify the notation Lεn in Ln, and we denote

Y n(t) := Ln(X)(t)

:=

∫ t

−∞
S(t− s)Fn(s,X(s))ds +

∫ t

−∞
S(t− s)Gn(s,X(s))dW (s).

We have supE ‖Xt‖2H2
< ∞, thus the process X satisfies the following con-

dition: for every η > 0, there exist a partition

{τ = to < t1 < · · · < tk = T} of [τ, T ]

and a process
X̃(t) = Σk

i=1X̃(ti−1)1[ti−1,ti[(t)
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such that
supE ‖X(t)− X̃(t)‖2H2

< η.

Using the fact that Lε is Lipschitz, we obtain

supE ‖LεX(t)− LεX̃(t)‖2H2
< η

uniformly with respect to ε.
We set, with a slight abuse of notation:

X̃n(t) = LnX̃(t) =
k∑

i=1

(∫ ti∧t

ti−1∧t
S(t− s)Fn(s, X̃ti−1

)ds

+

∫ ti∧t

ti−1∧t
S(t− s)Gn(s, X̃ti−1

)dW (s)
)

To prove that for each t ∈ [τ, T ], LnX(t) converges in distribution to L0X(t),
it suffices to show that for each l ∈ {0, 1, . . . , k}, X̃n(tl) −→ X̃0(tl) in
distribution as n→ ∞, where

X̃n(tl) =

l∑

i=1

(∫ ti

ti−1

S(tl − s)Fn(s, X̃(ti−1))ds

+

∫ ti

ti−1

S(tl − s)Gn(s, X̃(ti−1))dW (s)
)

=S(tl − tl−1)X̃
n(tl−1) +

∫ tl

tl−1

S(tl − s)Fn(s, X̃(tl−1))ds

+

∫ tl

tl−1

S(tl − s)Gn(s, X̃(tl−1))dW (s).

Indeed, we just use the following two properties: For any γ > 0 there exists
a partition {τ = t0 < · · · < tk = T} of the interval [τ, T ] such that

sup
n

E
(

max
l=1,...,k+1

max
tl−1≤t≤tl

∣∣∣X̃n(t)− X̃n(tl−1)
∣∣∣
)
< γ
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and

dBL

(
law (LnX(t)) , law (L0X(t))

)
≤dBL

(
law (LnX(t)) , law

(
X̃n(t)

))

+ dBL

(
law

(
X̃n(t)

)
, law

(
X̃0(t)

))

+ dBL

(
law

(
X̃0(t)

)
, law (L0X(t))

)

≤E‖LnX(t)− X̃n(t)‖

+ dBL

(
law

(
X̃n(t)

)
, law

(
X̃0(t)

))

+ E‖L0X(t)− X̃0(t)‖.

We define a mapping
γn : Hl

2 −→ L1(Ω,H2)

by

γn(y0, y1, . . . , yl−1) =
l∑

i=1

(∫ ti

ti−1

S(tl − s)Fn(s, yi−1) ds

+

∫ ti

ti−1

S(tl − s)Gn(s, yi−1) dW (s)
)

Obviously,
γn(X̃t0 , X̃t1 , . . . , X̃tl−1

) = X̃n
tl

Let
µt0,t1,...,tl−1

= law
(
X̃t0 , X̃t1 , . . . , X̃tl−1

)
.

Let g ∈ BL(H2), and hn(y) = E[g(γn(y))]; y ∈ H
l
2. From Proposition 4.3,

we have

E[g(X̃n
tl
)] = E[hn(X̃t0 , X̃t1 , . . . , X̃tl−1

)] =

∫

Hl
2

hn(y)dµt0,t1,...,tl−1
(y)

and

|E[g(X̃n
tl
)]− E[g(X̃0

tl
)]| = |

∫

Hl
2

hn(y)− h0(y)dµt0,t1,...,tl−1
(y)|

≤
∫

Hl
2

|hn(y)− h0(y)|dµt0,t1,...,tl−1
(y).
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Let us show that hn(y) −→ h0(y) as n→ ∞ for every y ∈ H
l
2:

γn(y)− γ0(y) =
l∑

i=1

∫ ti

ti−1

S(tl − s)
(
Fn(s, yi−1)− F0(yi−1)

)
ds

+

l∑

i=1

∫ ti

ti−1

S(tl − s)
(
Gn(s, yi−1)−G0(yi−1)

)
dW (s)

=In + Jn.

Assumption (v’) implies that In −→ 0 as n −→ ∞, and since

l∑

i=1

∫ ti

ti−1

S(tl − s)Gn(s, yi−1) dW (s)

is a centered Gaussian random variable in H2, we deduce by Assumption
(v’) and Proposition 4.2 that Jn −→ 0 in distribution as n −→ ∞ hence
γn(y) −→ γ0(y) in distribution as n −→ ∞, consequently

(17) hn(y) −→ h0(y) for any y ∈ H
l
2.

For every η
′
> 0, there exists a compact set K ⊂ H

l
2 such that

µt0,t1,...,tl−1
(Hl

2 \ K) < η
′

.

We have

(18) hn ∈ BL(Hl
2) and sup

n
‖hn‖BL <∞

because, for all y, z ∈ H
l
2, and for some constant K1,

|hn(y)− hn(z)| ≤ ‖g‖BL E ‖γn(y)− γn(z)‖H2
≤ K1‖g‖BL‖y − z‖

Hl
2
.

From (17), (18) and the compactness of K, we deduce that hn converges to
h0 uniformly on K, hence

lim
n→∞

∫

K
|hn(y)− h0(y)|dµt0,t1,...,tl−1

(y) = 0

and, since g is a bounded function,

∫

Hl
2
\K

|hn(y)− h0(y)|dµt0,t1,...,tl−1
(y)

≤ 2 sup
n

sup
y

|hn(y)|η
′

= 2 sup
n

sup
y

|E[g(γn(y))]|η
′

.
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Thus X̃n(tl) −→ X̃0(tl) in distribution as n→ ∞.
Let us now show that (X̃n

t0 , X̃
n
t1 , . . . , X̃

n
tk
) −→ (X̃0

t0 , X̃
0
t1 , . . . , X̃

0
tk
) in dis-

tribution as n −→ ∞. We proceed by induction. By the foregoing, we have
X̃n

t0 −→ X̃0
t0 in distribution. Assume that for 0 ≤ l ≤ k−1, (X̃n

t0 , X̃
n
t1 , . . . , X̃

n
tl
)

converges in distribution in H
l+1
2 . Let us define αn : Hl+1

2 −→ H
l+2
2 by

αn(y0, y1, . . . , yl) =
(
y0, y1, . . . , yl, S(tl+1−tl)yl+

∫ tl+1

tl

S(tl+1−s)Fn(s, yl)ds
)

and βn : Hl+1
2 −→ L1(Ω,Hl+2

2 ) by

βn(y0, y1, . . . , yl) =
(
0, . . . , 0,

∫ tl+1

tl

S(tl+1 − s)Gn(s, yl)dW (s)
)

so that

(αn + βn)(X̃
n
t0 , X̃

n
t1 , . . . , X̃

n
tl
) = (X̃n

t0 , X̃
n
t1 , . . . , X̃

n
tl
, X̃n

tl+1
).

We denote un = (X̃n
t0 , X̃

n
t1 , . . . , X̃

n
tl
) and µn = law (un). Let g ∈ BL(Hl+2

2 ),
and

hn(y) = E g
(
αn(y) + βn(y)

)
, y ∈ H

l+1
2 .

Proposition 4.3 yields

E g(X̃n
t0 , X̃

n
t1 , . . . , X̃

n
tl+1

) = Ehn(un) =

∫

H
l+1
2

hn(y)dµn(y).

It follows that

|E g(X̃n
t0 , X̃

n
t1 , . . . , X̃

n
tl+1

)− E g(X̃0
t0 , X̃

0
t1 , . . . , X̃

0
tl+1

)|

≤
∫

H
l+1
2

|hn(y)− h0(y)|dµn(y) + |
∫

H
l+1
2

h0(y)dµn(y)−
∫

H
l+1
2

h0(y)dµ0(y)|

≤ J1(n) + J2(n).

As in the above reasoning, we can prove that

hn ∈ BL(Hl+1
2 ), sup

n
‖hn‖BL <∞

and
αn(y) + βn(y) −→ α0(y) + β0(y)

in distribution, for every y ∈ H
l+1
2 thus hn(y) −→ h0(y) as n −→ ∞, for

any y ∈ H
l+1
2 . On the other hand, by the induction hypothesis we have
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µn −→ µ0 and since h0 ∈ BL(Hl+1
2 ) we have J2(n) −→ 0 as n −→ 0. The

convergence of µn implies that {µn} is tight, i.e. for each η
′
> 0 there exists

a compact set K ∈ H
l+1
2 such that

(19) sup
n
µn(H

l+1
2 \ K) < η

′

Since for every y ∈ H
l+1
2 , hn(y) −→ h0(y), from (19) and the compactness

of K the function hn converges to h0 uniformly on K, hence

lim
n→∞

∫

K
|hn(y)− h0(y)|dµn(y) = 0

and ∫

Hl
2
\K

|hn(y)− h0(y)|dµn(y) ≤ 2 sup
n

sup
y

|hn(y)|η

So J1(n) −→ 0 as n −→ 0, consequently (X̃n
t0 , X̃

n
t1 , . . . , X̃

n
tl+1

) converges in

distribution in H
l+2
2 , which implies that for every q ∈ N, we have

(20) (Y n
t0 , Y

n
t1 , . . . , Y

n
tq ) → (Y 0

t0 , Y
0
t1 , . . . , Y

0
tq )

in distribution on H
q+1
2 .

It remains to show that for each positive η, ν there exist α, 0 < α < 1
and an integer n0, such that

(21)
1

α
P{ sup

s≤t≤s+α
‖Y n(s)− Y n(t)‖ > ν} < η, n ≥ n0

for every s in [τ, T ]. We have

Y n(t)− Y n(s)

=

∫ t

τ
S(t− σ)Fn(σ,X(σ))dσ −

∫ s

τ
S(s − σ)Fn(σ,X(σ))dσ

+

∫ t

τ
S(t− σ)Gn(σ,X(σ))dW (σ) −

∫ s

τ
S(s− σ)Gn(σ,X(σ))dW (σ)

=

∫ t

s
S(t− σ)Fn(σ,X(σ))dσ +

∫ t

s
S(t− σ)Gn(σ,X(σ))dW (σ).

We have

1

α
P{ sup

s≤t≤s+α
‖Y n(s)− Y n(t)‖ > ν} ≤ 1

αν4
E( sup

s≤t≤s+α
‖Y n(s)− Y n(t)‖4)
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To check Inequality (21) it suffices to show that we can choose α such that

E( sup
s≤t≤s+α

‖Y n(s)− Y n(t)‖4) ≤ αν4η

for every integer n and every s ∈ [τ, T ].
Using the inequality (a+ b)4 ≤ 8a4 + 8b4, we obtain

E( sup
s≤t≤s+α

‖Y n(s)− Y n(t)‖4) ≤8E( sup
s≤t≤s+α

‖
∫ t

s
S(t− σ)Fn(σ,X(σ))dσ‖4)

+ 8E( sup
s≤t≤s+α

‖
∫ t

s
S(t− σ)Gn(σ,X(σ))dW (σ)‖4)

≤I1 + I2.

Applying Cauchy-Schwarz inequality, we get

I1 = 8E( sup
s≤t≤s+α

‖
∫ t

s
S(t− σ)Fn(σ,X(σ))dσ‖4)

≤ 8E
(

sup
s≤t≤s+α

(∫ t

s
‖S(t− σ)Fn(σ,X(σ)‖dσ

)4)

≤ 8E sup
s≤t≤s+α

[(∫ t

s
e−2δ(t−σ)dσ

)2(∫ t

s
‖Fn(σ,X(σ)‖2dσ

)2]

≤ 8K2 sup
s≤t≤s+α

( 1

2δ
(1− e−2δ(t−s))

)2
E
(∫ s+α

s
(1 + ‖X(σ)‖)2dσ

)2

For I2, using the stochastic convolution inequality, we obtain, for some con-
stant Cconv,

I2 = 8E( sup
s≤t≤s+α

‖
∫ t

s
S(t− σ)Gn(σ,X(σ))dW (σ)‖4

)

≤ 8Cconv E
(∫ s+α

s
‖Gn(σ,X(σ))‖2dσ)

)2

≤ 8CconvK
2

∫ s+α

s
(1 + ‖X(σ)‖)2dσ.

Thus, for α small enough,

E
(

sup
s≤t≤s+α

‖Y n(s)− Y n(t)‖2) ≤ η.

Therefore Lε(X) → L0(X) in distribution as ε→ 0+ on the space C([τ, T ],H2)
for all τ, T such that T > τ . Hence Lε(X) → L0(X) in distribution as
ε→ 0+ on the space C(R,H2).
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Second step. Now, let us show that Lε(X
ε) → L0(X

0) in distribution as
ε → 0+ on the space C(R,H2), which means that Xε → X0 in distribution
as ε→ 0+ on the space C(R,H2).

We denote by: µkε(X) := law
(
Lk
ε(X)

)
(k ≥ 1) where Lk

ε = Lε◦Lε◦· · ·◦Lε,
µ(X) := law (X) and µk0(X) := law

(
Lk
0(X)

)
where Lk

0 = L0 ◦ L0 ◦ · · · ◦ L0.
Observe that:

(a) Since, for every k ∈ N, Lk
ε and Lk

0 are contraction operators (see the
proof of Theorem 3.1), we deduce that, for every f ∈ BL(C(R,H2)
such that ‖f‖BL ≤ 1, for each ω ∈ Ω, f ◦ Lk

ε(ω) ∈ BL(C(R,H2) and
‖f ◦ Lk

ε(w)‖BL ≤ 1.

(b) Since Xε and X0 are solutions, we have µkε(X
ε) = µ(Xε) and µk0(X

0) =
µ(X0) for every k ∈ N

∗

(c) Since Lε is θ-Lipschitz,

(
E ‖Lk

ε(X)− Lk
ε(Y )‖

)2
≤ E ‖Lk

ε(X)− Lk
ε(Y )‖2 ≤ θk E ‖X − Y ‖2

Now, using the properties of the metric dBL on the probability space P (C(R,H2))
and (c) we obtain, for X,Y ∈ CUB

(
R, L2(P,H1)

)
,

dBL(µ
k
ε(X), µkε (Y )) = sup

‖f‖BL≤1

∣∣∣
∫

C(R,H2)
fd(µkε(X)− µkε(Y ))

∣∣∣

= sup
‖f‖BL≤1

∣∣∣
∫

Ω
f [Lk

ε(X)] − f [Lk
ε(Y )]dP

∣∣∣

≤
∫

Ω
‖Lk

ε(X)− Lk
ε(Y )‖dP ≤ θk E ‖X − Y ‖2

Furthermore, from (a) we obtain

dBL(µ
k
ε(X), µkε (Y )) = sup

‖f‖BL≤1

∣∣∣
∫

Ω
f [Lk

ε(X)]− f [Lk
ε(Y )]dP

∣∣∣

≤ sup
‖f‖BL≤1

∣∣∣
∫

Ω
f(X)− f(Y )dP

∣∣∣= dBL

(
µ(X), µ(Y )

)
(22)

From above we deduce that there exist k ∈ N
∗ and 0 < θ

′
< 1 such that

(23) dBL(µ
k
ε(X), µkε (Y )) ≤ θ

′

dBL

(
µ(X), µ(Y )

)
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Indeed, assume that Inequality (23) is false, for every 0 < θ
′
< 1 there exist

X,Y ∈ CUB
(
R, L2(P,H1)

)
such that µ(X) 6= µ(Y ) and

θk
(
E ‖X − Y ‖2

) 1

2≥ dBL(µ
k
ε(X), µkε (Y )) > θ

′

dBL

(
µ(X), µ(Y )

)
; ∀k ∈ N

∗

therefore taking k elarge enough, we see that dBL

(
µ(X), µ(Y )

)
= 0, a con-

tradiction with µ(X) 6= µ(Y ).
Now, by using (b), (23), and (22), it is easy to conclude that

dBL

(
µ(Xε), µ(X0)

)
= dBL(µ

k
ε(X

ε), µk0(X
0)

≤ 1

1− θ′ dBL(µ
k
ε(X

0), µk0(X
0)

≤ k − 1

1− θ′ dBL(µ
1
ε(X

0), µ10(X
0).

Indeed, we have

(24) (1− θ
′

)dBL

(
µ(Xε), µ(X0)

)

= dBL

(
µ(Xε), µ(X0)

)
−θ′

dBL

(
µ(Xε), µ(X0)

)

≤ dBL

(
µ(Xε), µ(X0)

)
−dBL(µ

k
ε(X

ε), µkε(X
0))

= dBL

(
µkε(X

ε), µ(X0)
)
−dBL(µ

k
ε(X

ε), µkε(X
0))

≤ dBL(µ
k
ε(X

0), µ(X0)) = dBL(µ
k
ε(X

0), µ10(X
0))

≤ dBL(µ
k
ε(X

0), µk−1
ε (X0)) + dBL(µ

k−1
ε (X0), µ10(X

0)).

We thus have

(1− θ
′

)dBL

(
µ(Xε), µ(X0)

)

≤ dBL(µ
k−1
ε (Lε(X

0)), µk−1
ε (X0)) + dBL(µ

k−1
ε (X0), µ10(X

0))

≤ dBL(µ
1
ε(X

0), µ(X0)) + dBL(µ
k−1
ε (X0), µ10(X

0))

= dBL(µ
1
ε(X

0), µ10(X
0)) + dBL(µ

k−1
ε (X0), µ10(X

0))

≤ (k − 1)dBL(µ
1
ε(X

0), µ10(X
0))

the last inequality being obtained by finite induction, repeating the calcu-
lation of (24). Thus, using the result of the first step,

lim
ε→0

dBL

(
µ(Xε), µ(X0)

)
= 0.

Finally, by [8, Theorem 4.1] we deduce that the mild solution (X0) of
(16) is a stationary process.
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