
HAL Id: hal-00746104
https://hal.science/hal-00746104v1

Submitted on 27 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bias-corrected Pearson estimating functions for Taylor’s
power law applied to benthic macrofauna data

Bent Jørgensen, Clarice G.B. Demétrio, Erik Kristensen, Gary T. Banta, Hans
Christian Petersen, Matthieu Delefosse

To cite this version:
Bent Jørgensen, Clarice G.B. Demétrio, Erik Kristensen, Gary T. Banta, Hans Christian Petersen, et
al.. Bias-corrected Pearson estimating functions for Taylor’s power law applied to benthic macrofauna
data. Statistics and Probability Letters, 2011, �10.1016/j.spl.2011.01.005�. �hal-00746104�

https://hal.science/hal-00746104v1
https://hal.archives-ouvertes.fr


Accepted Manuscript

Bias-corrected Pearson estimating functions for Taylor’s power law
applied to benthic macrofauna data

Bent Jørgensen, Clarice G.B. Demétrio, Erik Kristensen, Gary T.
Banta,
Hans Christian Petersen, Matthieu Delefosse

PII: S0167-7152(11)00012-5
DOI: 10.1016/j.spl.2011.01.005
Reference: STAPRO 5880

To appear in: Statistics and Probability Letters

Please cite this article as: Jørgensen, B., Demétrio, C.G.B., Kristensen, E., Banta, G.T.,
Petersen, H.C., Delefosse, M., Bias-corrected Pearson estimating functions for Taylor’s power
law applied to benthic macrofauna data. Statistics and Probability Letters (2011),
doi:10.1016/j.spl.2011.01.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.spl.2011.01.005


Bias-corrected Pearson estimating functions for

Taylor’s power law applied to benthic macrofauna data

Bent Jørgensena∗, Clarice G.B. Demétrioc, Erik Kristensenb, Gary T. Bantad,

Hans Christian Petersena, Matthieu Delefosseb

aDepartment of Mathematics and Computer Science, bInstitute of Biology,
University of Southern Denmark, Odense, Denmark

cDepartment of Exact Sciences, ESALQ, University of São Paulo, Piracicaba, Brazil
dDepartment of Environmental, Social and Spatial Change, Roskilde University, Denmark

January 5, 2011

Abstract

Estimation of Taylor’s power law for species abundance data may be performed by linear
regression of the log empirical variances on the log means, but this method suffers from a
problem of bias for sparse data. We show that the bias may be reduced by using a bias-
corrected Pearson estimating function. Furthermore, we investigate a more general regression
model allowing for site-specific covariates. This method may be efficiently implemented using
a Newton scoring algorithm, with standard errors calculated from the inverse Godambe
information matrix. The method is applied to a set of biomass data for benthic macrofauna
from two Danish estuaries.

1 Introduction

A common feature of species abundance data is that sites with higher abundances tend to have
higher variability. Let us consider independent abundance data Yij , where i = 1, . . . , k denotes
site and j = 1, . . . , ni denotes replicates within site, and let µi = E(Yij) denote the mean
abundance for site i. The most common mean-variance relationship found in practice is the
power variance function with parameters a > 0 and b,

Var(Yij) = aµ
b
i , (1.1)

which is known as Taylor’s power law (Taylor, 1961). For example Taylor et al. (1983) reported
that the power law had been observed for 444 different species of birds, moths and aphids
sampled over Great Britain. Kendal (2004) summarized a number of applications of the power
law in areas like genomics and epidemiology, and proposed a theoretical explanation for the
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power law based on the so-called Tweedie convergence theorem (Jørgensen et al. , 1994), see
Tweedie (1984) and Jørgensen (1997, Ch. 4). Taylor’s power law has also received attention in
physics (Eisler et al. , 2008; Fronczak & Fronczak, 2010), where the phenomenon is known as
fluctuation scaling.

There is particular interest in the power parameter b of (1.1), because Taylor (1961) suggested
that b is a species-specific index of aggregation related to the social behaviour of the individuals
of the species, an assertion that has generated much controversy (see e.g. Titmus, 1983; Downing,
1986; Kilpatrick & Ives, 2003). It is common in practice to observe values of b between 1 and
2, where the traditional interpretation of b is that the value 1 indicates a random dispersion
pattern, whereas b > 2 indicates an aggregated dispersion pattern (Pedigo & Buntin, 1994,
p. 48). Values of b below 1 are almost never found in practice, whereas values of b above 2 are
possible, but less frequent, although Taylor et al. (1983) reported a large proportion of such
values in their study.

It is hence unfortunate that the traditional estimator for b, obtained by regressing the log
empirical variances on the log empirical means (cf. Section 2), suffers from a problem of bias
(Perry, 1981), especially for sparse data, i.e. when the number of replicates ni are small. In
response to this problem, Perry (1981) proposed two alternative estimators, one based on a
gamma regression method for the empirical variances, and the other using weighted least squares.

Following Park & Cho (2004), we consider a more general model allowing for site-specific
covariates, corresponding to for example a generalized linear model for the data Yij with two
unknown variance parameters a and b, a model that may be fitted by combining a quasi-score
method for the regression parameters with a pseudo-likelihood method for the variance pa-
rameters. This method depends on second-moment assumptions only, but like full maximum
likelihood, the pseudo-likelihood method suffers from bias in the estimation of the variance
parameters.

We shall address this problem in the context of unbiased estimating functions along the
lines of Jørgensen & Knudsen (2004) and Holst & Jørgensen (2010), using a bias-corrected
Pearson estimating function for the parameters a and b (Sections 3—4). In the simple case
without covariates, it turns out that the new method produces the same estimates for a and b as
Perry’s gamma regression method, but with the additional advantage that standard errors for
all parameters, including b, may be calculated from the inverse Godambe information matrix
(Section 5). We apply the method to estimate Taylor’s power law for a set of biomass data for
benthic macrofauna from two Danish estuaries (Section 6).

2 Taylor’s power law and the Tweedie distribution

We now review the basic setup for Taylor’s power law and discuss its possible explanation in
terms of the Tweedie distribution. Let us consider the simple case without site-specific covariates,
which we shall call the Taylor model. In this case, estimation of the power law (1.1) is usually
based on the site-specific summary statistics

Y i =
1

ni

ni∑

j=1

Yij and S
2
i =

1

ni − 1

ni∑

j=1

(
Yij − Y i

)2
, (2.1)
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which are unbiased estimators of the mean µi and variance aµ
b
i , respectively, for each i = 1, . . . , k.

The classical Taylor’s regression estimator is based on the intuitively appealing idea that a
plot of (logY i, logS

2
i ) is approximately linear,

logS2i = log a+ b logµi + ǫi, (2.2)

where the error term ǫi has, approximately, variance inversely proportional to the degrees of
freedom ni − 1. Taylor’s regression estimator is obtained by weighted regression of logS

2
i on

logY i, with weights ni − 1, providing an approximate solution to the linear regression model
(2.2). However, as noted by Perry (1981), the substitution of Y i for µi in (2.2) and the fact
that the error term ǫi has non-zero mean lead to underestimation of the power parameter b for
sparse data, leading to a negative bias. By comparison, Perry’s gamma regression estimator is
based on a generalized linear model with a gamma distribution for S2i , again weighted by the
degrees of freedom ni − 1.

A general problem for the Taylor model is that empty sites and sites with zero variances
have to be excluded from the regression, causing a selection bias. This problem is unavoidable
when no site covariates are available, since there is no way of knowing if an empty site is due to
chance, or to unsustainable living conditions for the species in question. The benthic biomass
data of Section 6, containing no covariates, is typical in this respect. We shall hence consider a
more comprehensive approach based on a regression model of the form µi = fi(β), where fi is
a smooth function depending on an ℓ-vector β of parameters, where for simplicity we suppress
the dependence on the covariates in our notation. The simplest special case is a generalized
linear model involving site-specific covariates via a link function. Such regression models will be
useful in future investigations, where the presence of covariates will allow models to be fitted to
the complete set of data, including empty sites, thereby avoiding the above-mentioned selection
bias of the Taylor model.

We now turn to the Tweedie distribution Twb(µi, a) with mean µi, dispersion parameter
a and power parameter b, a model which is a natural exponential family with power variance
function (1.1) (cf. Jørgensen, 1997, Ch. 4). This model appears as the limiting distribution in
the Tweedie convergence theorem (Jørgensen et al. , 1994), which may explain the frequent
occurrence of Taylor’s power law for ecological data. Estimation of the parameters a, b and β
under the Tweedie model Yij ∼ Twb(µi, a) may be based on maximum likelihood. This method
has been implemented in the tweedie R function of Dunn (2009), which is, however, somewhat
slow due to the use of a profile likelihood for b. The pseudo-likelihood method of Park & Cho
(2004) is computationally lighter, but unfortunately it shares with full maximum likelihood the
problem of bias in the estimators for the variance parameters a and b, when these are estimated
together with β. We show in Section 3 how this bias may be reduced by using a bias-corrected
Pearson estimating function for a and b. The correction of bias is particularly important for
the Taylor model, where a and b are estimated in the presence of the k-dimensional nuisance
parameter β = (µ1, . . . , µk)

⊤, see the discussion at the end of Section 3.
Let us interpret the Tweedie distribution in the most common case b ∈ (1, 2), which is

relevant for the biomass data analyzed in Section 6. In this case a Tweedie random variable Y
follows a compound Poisson distribution (cf. Jørgensen, 1997, Ch. 4), which is given as the sum
of N independent clusters,

Y = X1 + · · ·+XN , (2.3)
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Figure 1: Plot of CV for cluster size as a function of b.

with the convention that Y = 0 forN = 0. HereN is a Poisson variable with mean µ2−b/ (2− b),
independent of the i.i.d. gamma random variables Xm, each with mean (2− b)µb−1 and coeffi-
cient of variation

CV(Xm) =

√
b− 1

2− b
.

We note that CV(Xm) is an increasing function of b (cf. Figure 1), and that both the Poisson
and cluster means are increasing functions of the overall mean µ = E(Y ).

An important property of the compound Poisson distribution is that Y has a positive prob-
ability mass at zero, while being continuous for Y > 0. This agrees well with the behaviour of
a variable such as biomass, which is zero when the species in question is absent, and continuous
for positive values. Figure 2 shows plots of the Tweedie density function in the case b = 1.5,
corresponding to an exponentially distributed cluster size with CV = 100%. We note that the
boundary cases b = 1 and b = 2 correspond to a scaled Poisson and a gamma distribution for
Y , respectively.

The decomposition (2.3) allows us to interpret b as a measure of aggregation or clustering for
the species in question. For b just above 1, the cluster CV is small (cf. Figure 1), corresponding to
isolated and well-defined clusters. As b increases and the cluster CV becomes larger, the clusters
become more dispersed, as illustrated by the case b = 1.5 (cf. Figure 2). As b approaches the value
2, the cluster CV goes to infinity, corresponding to a more and more chaotic cluster structure.
The value b = 2 (the gamma distribution) is a critical point where no cluster structure remains.
The case b > 2 constitutes a different regime for the Tweedie distribution, corresponding to
exponentially tilted positive stable laws (cf. Jørgensen, 1997, Ch. 4). We also note that values of
b between 0 and 1 do not correspond to Tweedie distributions (cf. Jørgensen, 1997, Ch. 4). This
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Figure 2: Plots of some Tweedie density functions for b = 1.5, for three different values of µ
(columns) and three different values of a (rows). The horizontal axis represents biomass. The
probability mass at zero is represented by a vertical bar.

is consistent with the empirical fact that Taylor estimates of b below 1 are rare, and in fact such
values may be spurious, in view of the above-mentioned negative bias of the Taylor estimator.

3 The Pearson estimating function

3.1 General

We shall now introduce the Pearson estimating function and discuss the correction of bias, using
terminology and results from Jørgensen & Knudsen (2004) and Holst & Jørgensen (2010). We
consider data Yij , as defined in connection with (1.1), and the regression model µi = fi(β)

introduced above. From now on we let the symbol
TM
= denote results that hold under the Taylor

model, inserting the estimator Y i for µi.
Let us introduce the parameter λ = log a, which will simplify many calculations in the

following, and let γ = (λ, b)⊤ denote the corresponding vector of variance parameters. The
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quasi-score function for β has the following form,

ψβ(β,γ) =
k∑

i=1

ni∑

j=1

Yij − µi
eλµbi

xi,

where the ℓ-vector xi is the β-derivative of fi. The Godambe information matrix for β is the
variance matrix for ψβ(β,γ),

Jβ =
k∑

i=1

ni

eλµbi
xix

⊤

i
TM
= diag

{
ni

eλY
b

i

}
, (3.1)

whose inverse yields the asymptotic variance of the quasi-likelihood estimator for β.
Let Ci = e

λµbi denote the variance of Yij , and define the weights Wiγ by

Wiγ = C
−2
i

∂Ci
∂γ

= C−1i
∂ logCi
∂γ

, (3.2)

where γ is a component of γ, and where the required derivatives are

∂ logCi
∂λ

= 1 and
∂ logCi
∂b

= logµi.

Following Jørgensen & Knudsen (2004), the Pearson estimating function for the component γ
has the following general form

ψγ(β,γ) =
k∑

i=1

ni∑

j=1

Wiγ

[
(Yij − µi)

2
−Ci

]

=
k∑

i=1

ni∑

j=1

∂ logCi
∂γ

[
(Yij − µi)

2

Ci
− 1

]
. (3.3)

which is an unbiased estimating function for γ based on the squared residuals (Yij − µi)
2 with

mean Ci. This function is the derivative of the pseudo-likelihood function of Park & Cho (2004),
and is equivalent to treating the squared residual (Yij − µi)

2 as a gamma variable, which is hence
close in spirit to Perry’s gamma regression method.

Let
(
β̂, γ̂

)
denote the solution to the system of equations ψβ(β,γ) = 0 and ψγ(β,γ) =

0, where ψγ(β,γ) is obtained by stacking ψλ(β, γ) and ψb(β, γ). We note that the quasi-
score function ψβ(β, γ) is γ-insensitive, in the sense of Jørgensen & Knudsen (2004), meaning
that Eβ,γ

[
∇γψβ(β, γ)

]
= 0, where ∇γ denotes the gradient operator. This implies that the

quasi-likelihood estimator β̂ depends relatively little on the choice of estimating function for γ
(cf. Jørgensen & Knudsen, 2004). In particular, under the Taylor model the quasi-likelihood
estimator for µi is Ȳi, independently of the choice of estimator for γ.

By contrast, the pseudo-likelihood estimator γ̂ may be heavily affected by the substitution
of the fitted values µ̂i = fi(β̂) into (3.3), inducing a nuisance parameter bias for γ̂. Although
the estimating function ψγ(β,γ) is unbiased, this is not the case for the function ψγ(β̂,γ), but
we shall now see how to correct this bias.
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3.2 Bias correction

Following Jørgensen & Knudsen (2004), we now derive the bias-corrected estimating function
ψ̌γ(β,γ) for γ, leading to the corrected estimator

(
β̌, γ̌

)
, which is the solution to the equations

ψβ(β,γ) = 0 and ψ̌γ(β,γ) = 0. (3.4)

The general form of the bias correction was derived by Holst & Jørgensen (2010). We now
develop the bias-corrected estimating function in the special case of estimating γ.

For a given component of γ, the bias-corrected Pearson estimating function is defined by

ψ̌γ(β,γ) = ψγ(β,γ)− tr
[
J
(γ)
β J−1β

]
, (3.5)

where J
(γ)
β denotes the γ-derivative of Jβ. Since J

(λ)
β = −Jβ, the bias-corrected Pearson

estimating function for λ obtained from (3.3) and (3.5) is

ψ̌λ(β, γ) =
k∑

i=1

ni∑

j=1

[
(Yij − µi)

2

eλµbi
− 1

]
+ ℓ

=
k∑

i=1

ni∑

j=1

(Yij − µi)
2

eλµbi
− (n− ℓ) (3.6)

TM
=

k∑

i=1

(ni − 1)S2i

eλY
b

i

− (n− k) , (3.7)

where n =
∑
ni denotes the total sample size. The solution λ̌ yields the conventional Pearson

estimator for a, given by

ǎ = eλ̌ =
1

n− ℓ

k∑

i=1

ni∑

j=1

(Yij − µ̌i)
2

µ̌b̌i

TM
=

1

n− k

k∑

i=1

(ni − 1)S2i

Y
b̌

i

, (3.8)

where µ̌i = fi(β̌) denote the fitted values corresponding to the estimator β̌.
Let us now turn to the estimation of b, with Pearson estimating function (3.3) given by

ψb(β, γ) =
k∑

i=1

ni∑

j=1

[
(Yij − µi)

2

eλµbi
− 1

]
logµi. (3.9)

To derive the bias-corrected estimating function for b, we again combine (3.3) and (3.5). To

derive the correction term, we need the derivative J
(b)
β , which is given by

J
(b)
β = −

k∑

i=1

ni logµi
eλµbi

xix
⊤

i
TM
= −diag

{
ni logY i

eλY
b

i

}
. (3.10)
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Hence, the correction term becomes

tr
[
J
(b)
β J

−1
β

]
= −tr

(
k∑

i=1

ni logµi
eλµbi

xix
⊤

i J
−1
β

)

= −

k∑

i=1

tr

(
ni logµi
eλµbi

x⊤i J
−1
β xi

)

= −

k∑

i=1

ni logµi
eλµbi

x⊤i J
−1
β xi (3.11)

TM
= −

k∑

i=1

logY i.

The bias-corrected Pearson estimating function for b is hence

ψ̌b(β, γ) =
k∑

i=1

ni∑

j=1

[
(Yij − µi)

2

eλµbi
− 1

]
logµi +

k∑

i=1

ni logµi
eλµbi

x⊤i J
−1
β xi

=
k∑

i=1

ni∑

j=1

[
(Yij − µi)

2 + x⊤i J
−1
β xi

eλµbi
− 1

]
logµi (3.12)

TM
=

k∑

i=1

[
(ni − 1)S

2
i

eλY
b
i

− (ni − 1)

]
logY i. (3.13)

The correction term x⊤i J
−1
β xi appearing in (3.12) is of order 1/ni, and positive, which will tend

to make b̌ bigger than b̂, confirming the negative bias of b̂.
Under the Taylor model, the estimating functions (3.7) and (3.13) may be interpreted as

follows. The bias-corrected estimators λ̌ and b̌may be obtained by solving the equations Y i = µi
for i = 1, . . . , k together with the two unbiased estimating equations

k∑

i=1

(ni − 1)
∂ logCi
∂γ

[
S2i
Ci
− 1

]
= 0, (3.14)

where γ is either λ or b. Comparing (3.14) with (3.3), the bias-corrected Pearson estimator
is seen to be identical to Perry’s gamma regression estimator under the Taylor model, based
on treating S2i as gamma distributed with mean Ci and variance proportional to C

2
i / (ni − 1),

but with the additional advantage that the inverse Godambe information matrix yields the
correct standard errors for b̌, cf. Section 5. The unbiasedness of the equations (3.14) implies
the consistency of the estimator b̌ in the large k limit (even for sparse data), as well as for
ni → ∞ for all i (fixed k). The large k limit, where the dimension of the nuisance parameter
β = (µ1, . . . , µk)

⊤ goes to infinity under the Taylor model (cf. Section 2), is an example of
a "Neyman-Scott" problem, see e.g. Li et al. (2003) for a recent discussion. Our solution to
the Neyman-Scott problem involves correcting the bias of the estimating function rather than
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that of the estimator, and hence provides a natural extension of the conventional solution. In
fact, our bias-corrected estimate for a in (3.8) is identical to the conventional Pearson estimator,
which involves a simple degrees-of-freedom correction.

4 The Newton scoring algorithm

We now consider the Newton scoring algorithm for the parameter vector (β, γ), which is a
version of the Newton method applied to the equations (3.4), based on replacing the derivatives
of the estimating functions by their expectations. Jørgensen & Knudsen (2004) showed that by
taking advantage of the γ-insensitivity of the quasi-score function ψβ(β, γ) (as noted above), a
so-called chaser algorithm is obtained. The chaser algorithm oscillates between updating β and
γ as follows:

β∗ = β − J−1β ψβ (4.1)

γ∗ = γ − Š
−1
γ ψ̌γ , (4.2)

where Šγ is the sensitivity matrix (the expected derivative) for ψ̌γ discussed below, see also
Section 5. In each of the two update steps (4.1) and (4.2), the most recent values of β and γ
are used as arguments in the functions on the right-hand side of the equations. The asymmetry
of the γ-insensitivity condition implies that convergence of the γ part is conditional on the β
part having converged first, giving rise to the chaser qualification. A small simplification may
be obtained if we insert the estimator λ̌ from (3.8) into (4.2), which makes ψ̌λ(β, γ) = 0.

We shall now calculate the sensitivity matrix

Šγ = Eβ,γ
[
∇γψ̌γ(β, γ)

]
= Sγ − T γ, (4.3)

say, where the last two terms correspond to the expected derivatives of the corresponding terms
of (3.5). Thus, Sγ denotes the sensitivity of ψγ(β, γ), with entries of the form

Sγ
1
γ
2
= −

k∑

i=1

niC
−2
i

∂Ci
∂γ1

∂Ci
∂γ2

= −
k∑

i=1

ni
∂ logCi
∂γ1

∂ logCi
∂γ2

,

where γ1 and γ2 denote either λ or b, giving

Sγ =

[
−n −

∑k
i=1 ni logµi

−
∑k
i=1 ni logµi −

∑k
i=1 ni log

2 µi

]
.

The fact that Sγ is constant as a function of the variance parameters λ and b shows that
this particular parametrization has the advantage of approximately linearizing the estimating
functions ψλ and ψb, which in turn helps speed up the algorithm. Using the Taylor estimates as
starting values, the algorithm required between 5 and 18 iterations for the benthic macrofauna
data of Section 6.

Three of the four entries of the correction term T γ turn out to be zero, as seen by direct
inspection of the correction term n− ℓ of (3.6). Only the (b, b) entry of T γ is non-zero, and has
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the form tr
[
J
(b)
β J

−1
β J

(b)
β J

−1
β − J

(b,b)
β J−1β

]
(cf. Holst & Jørgensen, 2010), where Jβ and J

(b)
β are

obtained from (3.1) and (3.10), respectively, and

J
(b,b)
β =

k∑

i=1

ni log
2 µi

eλµbi
xix

⊤

i

is the second derivative of Jβ with respect to b. In the case of the Taylor model, the fourth
term is also zero, as seen directly from (3.11).

5 The Godambe information matrix

We shall now calculate the asymptotic variance of the estimators, as obtained from the inverse
Godambe information matrix, whose general form is J−1θ = S−1θ V θS

−⊤

θ for a vector parameter
θ , where −⊤ denotes inverse transpose. Here Sθ = Eθ [∇θψθ(θ)] denotes the sensitivity matrix
for θ, as discussed above, whereas V θ = Varθ [ψθ(θ)] denotes the variability matrix. In the
special case where ψθ is a quasi-score function, the Godambe information matrix reduces to
Jθ = V θ = −Sθ, as we have already seen in connection with (3.1).

In the present case of estimation of the vector parameter θ with components β and γ,
Jørgensen & Knudsen (2004) showed that the γ-insensitivity of ψβ implies that the asymptotic

variance of β̌ is given by J−1β , which is hence unaffected by the presence of the nuisance parameter
γ. We shall now derive the asymptotic variance for the estimator γ̌ using the general results of
Holst & Jørgensen (2010), based on the full Godambe information matrix for θ.

In order to calculate the asymptotic variance for γ̌, we need to calculate the variability
V θ (which is unaffected by the non-stochastic correction term of (3.5)) and the sensitivity
Šθ = Sθ − T θ, say, similar to (4.3). The variability for θ has the form

V θ =

[
V β V βγ

V γβ V γ

]
,

where V β = Jβ , whereas V βγ = V ⊤

γβ and V γ depend on third and fourth moments of Yij,
respectively. In order to avoid this dependence on high-order moments, we propose instead to
use the empirical versions of V γ and V γβ , which are given by

V̌ γ =
k∑

i=1

ni∑

j=1

ψ̌γij(β̌, γ̌)ψ̌
⊤

γij(β̌, γ̌) and V̌ γβ =
k∑

i=1

ni∑

j=1

ψ̌γij(β̌, γ̌)ψ
⊤

βij(β̌, γ̌).

Since we are mainly interested in the asymptotic variance for γ̌, there is no need to explicitly
calculate the full Godambe information matrix for θ. Using the results of Holst & Jørgensen
(2010), we find that the γ block of J−1θ is given by

J
γ
θ = Š

−1
γ

(
V γ + ŠγβJ

−1
β Š

⊤

γβ + ŠγβJ
−1
β V βγ + V γβJ

−1
β Š

⊤

γβ

)
Š
−1
γ , (5.1)

where Šγ was derived above, and where we shall use the empirical version J̌
γ
θ , obtained by

substituting the empirical variabilities V̌ γ and V̌ γβ into (5.1). One additional element of (5.1)
required is the block Šγβ , which we shall now calculate.
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Consider the function ψγ(β, γ) from (3.3), where γ is a component of γ. Using the linearity
of the expectation and derivative operators, we find that the matrix Sγβ has entries defined by

Eθ

[
∇βψγ(β, γ)

]
=

k∑

i=1

ni∑

j=1

∂ logCi
∂γ

1

Ci
Eθ

{
∇β

[
(Yij − µi)

2
−Ci

]}

= −

k∑

i=1

ni
∂ logCi
∂γ

1

Ci
∇βCi

= −

k∑

i=1

ni
∂ logCi
∂γ

b

µi
x⊤i .

It follows that

Sγβ = −
k∑

i=1

nib

µi

[
1

logµi

]
x⊤i .

The correction term T γβ has entries given by

tr
[
J
(γ)
β J−1β J

(β
m
)

β J−1β − J
(γ,β

m
)

β J−1β

]
,

where βm denotes a component of β. The entries corresponding to γ = λ are zero, since

tr
[
J
(λ)
β J−1β J

(β
m
)

β J−1β − J
(λ,β

m
)

β J−1β

]
= tr

[
−JβJ

−1
β J

(β
m
)

β J−1β + J
(β
m
)

β J−1β

]
= 0.

The entry for b is tr
[
J
(b)
β J

−1
β J

(β
m
)

β J−1β − J
(b,β

m
)

β J−1β

]
, where

J
(β
m
)

β = −
k∑

i=1

nibxim

eλµb+1i

xix
⊤

i +
k∑

i=1

ni

eλµbi

[
x
(β
m
)

i x⊤i + xix
(β
m
)⊤

i

]
TM
= −

nmb

eλȲ b+1m

xmx
⊤

m,

and where under the Taylor model xm has 1 at position m and zero elsewhere. Here xim is the

mth component of xi, and x
(β
m
)

i is the βm-derivative of xi. The mixed derivative of Jβ is

J
(b,β

m
)

β = −
k∑

i=1

nixim (1− b logµi)

eλµb+1i

xix
⊤

i −

k∑

i=1

ni logµi
eλµbi

[
x
(β
m
)

i x⊤i + xix
(β
m
)⊤

i

]

TM
= −

nm
(
1− b log Ȳm

)

eλȲ b+1m

xmx
⊤

m.

These results define the entries of the matrices Sγβ and T γβ, from which we may calculate
Šγβ = Sγβ − T γβ.

6 Analysis of the benthic macrofauna data

Benthic macrofauna was collected in 2008 from two Danish estuaries separated by about 100
km, Odense Fjord (OF) and Roskilde Fjord (RF), located on the islands of Fyn and Sjælland,
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Figure 3: Plots of logS2 versus logY for the benthic biomass data.

respectively. Animals were collected from 28 and 24 sites, respectively, well spread out within
each of the two estuaries, and representing the whole depth range of the estuaries (0 to 5 m).
Four replicate sediment cores were taken at each site, separated by a few meters, using a 15 cm in
diameter steel corer to a depth of 30 cm. Sediments were sieved at 1 mm and animals retained
were identified to species, counted and weighed after drying at 60 ◦C overnight. Nine of the
most common species present at both locations were selected for analysis: softshell clams (Mya
arenaria), mud snails (family Hydrobiidae), mud shrimps (Corophium volutator), ragworms
(Nereis diversicolor), and five other species of oligochaetes (Tubificoides benedii) and polychaetes
(Heteromastus filiformis, Marenzelleria viridis, Nereis succinea and Pygospio elegans). The
number of non-empty sites for each combination of species and location (see Table 1 below)
varied between 29% and 93%.

Figure 3 shows plots of logS2 versus logY (base 10 logarithm) for the variable biomass, with
straight lines fitted by Taylor’s method. The plots show good agreement with the hypothesis
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Odense Fjord (OF) Roskilde Fjord (RF)

Species k MLE Tayl Pear SE k MLE Tayl Pear SE

H. filiformis 15 1.41 1.46 1.55 0.13 15 1.32 1.42 1.48 0.21
M. viridis 22 1.33 1.35 1.38 0.14 19 1.46 1.88 1.88 0.29
N. succinea 17 1.61 1.79 1.94 0.19 22 1.49 1.71 1.78 0.17
N. diversicolor 20 1.51 1.61 1.68 0.09 21 1.52 1.70 1.77 0.24
P. elegans 11 1.69 1.72 1.76 0.13 10 1.71 1.94 1.94 0.10
T. benedii 13 1.53 1.72 1.76 0.07 15 1.39 1.64 1.65 0.13
C. volutator 26 1.45 1.54 1.61 0.09 7 1.56 1.67 1.70 0.26
M. arenaria 23 1.76 1.96 1.98 0.09 18 1.68 1.98 1.93 0.14
Hydrobiidae 23 1.53 1.68 1.69 0.09 22 1.68 1.87 1.96 0.15

Table 1: Estimates of the power parameter b for Odense Fjord and Roskilde Fjord (k = number
of non-empty sites, MLE = maximum likelihood estimate, Tayl = Taylor’s regression estimate,
Pear = corrected Pearson estimate, SE = standard error for Pearson estimate).

of linearity in the double logarithmic scale, taking into account the small number of replicates
(ni = 4). Table 1 compares estimates of b based on the maximum likelihood method, Taylor’s
method and the corrected Pearson method. As expected (cf. the remark after Eq. (3.13)),
the corrected Pearson estimates are, with one exception, bigger than the corresponding Taylor
and maximum likelihood estimates, corresponding to a bias of as much as −0.15 for the Taylor
estimator and as much as−0.38 for the maximum likelihood estimator. The estimates of a (Table
2) do not indicate any bias problems for the Taylor estimator, as compared with the corrected
Pearson estimator, whereas the maximum likelihood estimates of a seem to be positively biased.

The corrected Pearson estimates of b in Table 1 range from 1.38 to 1.98, corresponding to
cluster CVs in the range 0.8—7 under the Tweedie cluster model (2.3). The corresponding cluster
structures range from quite variable to very chaotic, which suggests that the species studied here
may vary considerably with respect to the social behaviour of the individuals of each species. A
detailed interpretation of these results is outside the scope of the present paper, and will instead
be published elsewhere.

The corrected Pearson estimates for b show good agreement between the estimates of b for
OF and RF for each species. An overall test for species-wise equality of the values of b was
performed by a χ2 test, treating the estimators as normal with standard deviations known and
equal to the SE values in the table (X2 = 7.35, df = 9, p = 0.6). This test does not indicate any
significant geographical variation of the b values for the nine species analyzed here, in agreement
with the hypothesis that b is a species-specific index of aggregation.

It is clear from these results that accurate estimation of the power parameter b is crucial
for the correct interpretation of the results of fitting Taylor’s power law to ecological data. We
conclude that the bias-corrected Pearson estimator for b introduced here is a good candidate for
an accurate and easily calculated estimator.
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Odense Fjord (OF) Roskilde Fjord (RF)

Species MLE Tayl Pear SE MLE Tayl Pear SE

H. filiformis 27.82 17.63 13.65 0.75 52.19 29.74 26.42 1.29
M. viridis 90.26 65.84 67.04 1.17 80.60 5.06 5.57 1.74
N. succinea 38.31 6.69 3.59 1.28 56.25 8.08 7.53 1.23
N. diversicolor 29.94 10.00 9.24 0.75 76.11 14.66 10.91 1.90
P. elegans 8.07 5.29 5.27 0.79 13.67 2.51 2.84 0.62
T. benedii 9.06 2.64 2.96 0.38 13.55 4.94 5.94 0.59
C. volutator 7.51 4.45 3.78 0.46 8.84 4.76 4.94 0.72
M. arenaria 31.57 2.50 2.99 0.77 39.45 1.68 4.01 1.24
Hydrobiidae 26.27 7.17 7.87 0.72 8.58 1.27 0.91 1.35

Table 2: Estimates of the dispersion parameter a for Odense Fjord and Roskilde Fjord (MLE
= maximum likelihood estimate, Tayl = Taylor’s regression estimate, Pear = bias-corrected
Pearson estimate, SE = standard error for Pearson estimate). See Table 1 for the number of
non-empty sites.
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