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Response Data with Crisis States
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bSchool of Mathematics & Statistics, Newcastle University, UK

cDepartment of Medical Statistics and Bioinformatics, LUMC, Leiden, The Netherlands

Abstract

We adopt a hidden state approach for the analysis of longitudinal data subject to dropout.
Motivated by two applied studies, we assume subjects can move between three states:
stable, crisis, dropout. Dropout is observed but the other two states are not. During a
possibly transient crisis state both the longitudinal response distribution and the probabil-
ity of dropout can differ from the stable state. We adopt a linear mixed effects model with
subject-specific trajectories during stable periods and additional random jumps during
crises. We place the model in the context of Rubin’s taxonomy and develop the associated
likelihood. The methods are illustrated using the two motivating examples.

Keywords: Change points, monotonic missing data, mixed models, random effects, state
space.

1. Introduction

Longitudinal studies often suffer attrition, in that individuals drop out of the study
before the scheduled completion time and thus present incomplete data. A variety of
methods have by now been developed to deal with the possibility that dropout is related
to responses (Hogan et al., 2004; Molenberghs et al., 2004; Philipson et al., 2008; Tsiatis
and Davidian, 2004), though caution in using such methods is always needed (Molenberghs
et al., 2004, 2008).

Recently le Cessie et al. (2009) recognised that longitudinal data analysis can be compli-
cated by the fact that during follow-up subjects can change condition or state, an example
being remission, relapse and death for cancer patients. Both longitudinal responses and
the dropout probability can depend on the current state and this needs to be accounted
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for in analysis. The methods developed by le Cessie et al. (2009) are appropriate when
the underlying state is observed. If a state is defined by level of a response variable but
obscured by measurement error, then the hidden Markov methods of Satten et al. (1996)
or Guihenneuc-Jouyaux et al. (2004) can form a basis for analysis. But, as argued by Li-
estøl and Andersen (2002), there are circumstances where a subject’s state is either hidden
or vaguely defined. For the liver cirrhosis application considered by Liestøl and Ander-
sen (2002) for example, some subjects experienced apparent “crises”, marked by a sudden
change in response values. These crises could be transient or could indicate a terminal
disease stage.

In this work we build on the ideas of le Cessie et al. (2009) and Liestøl and Andersen
(2002) and develop a hidden state modelling approach for longitudinal data subject to
dropout. We assume that during follow-up subjects can experience different states, which
we will think of as stable state, crisis state and dropout. The first two states are transient
and reversible, while the third, dropout, is an absorbing state. The crisis state can be
defined as an intermediate phase where significant changes of the response values can be
observed and where the probability of dropout is increased. We assume the longitudinal
response is associated with underlying state but we assume that states other than dropout
are not directly observed, and perhaps not precisely defined. We exclude situations where
the state is defined by the response, such as AIDS when CD4 T-cell first reaches a given
level, or leukaemia relapse when an residual leukaemic cell count is over a defined threshold
(De Lorenzo et al., 2005).

In Section 2 we provide brief details of two applications which motivated our work.
Our model is introduced and estimation outlined in Section 3, where we also argue the
merits of proper treatment of time ordering when considering missingness mechanisms for
longitudinal data. Section 4 includes summaries of our analyses of the motivating data
sets, and some brief comments in Section 5 conclude the paper.

2. Motivating examples

2.1. Schizophrenia data

We consider data from a trial into treatment of schizophrenia, previously described by
Henderson et al. (2000) and Diggle et al. (2007). There are three treatment groups (stan-
dard, placebo and experimental) and the response of interest is the Positive and Negative
Symptom Scale (PANSS), which is high for subjects with poor condition. Six assessments
were scheduled, at weeks 0,1,2,4,6 and 8, but of the 518 subjects under consideration only
269 completed the trial. Of the remainder, 183 subjects dropped out of the trial because of
“inadequate response”, which was considered to be potentially informative, and 66 dropped
out before the sixth observation for a variety of other reasons, which we treat as censoring
in our analysis, following previous authors. Further information on the dropout reasons is
provided by Diggle (1998). In their analysis of these data, Henderson et al. (2000) suggested
that informative dropout (inadequate response) was associated with poor condition (high
PANSS) or deteriorating condition, which they modelled as a sustained subject-specific
trend. As well as a sustained trend, there is evidence for many subjects of an abrupt
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change in response just before informative dropout. Figure 1 illustrates. The figure shows
mean first difference in responses at assessments 2-6 (baseline being assessment one), for
the group of subjects about to experience informative dropout and for the subjects who
returned for the next assessment. For instance, 40 subjects had informative dropout be-
tween assessments two and three. For these subjects the mean increase in PANSS score
between assessments one and two was over 10 units. This is to be compared with a mean
decrease of almost 10 units over the same period for the 451 subjects who were present
at assessment two and returned for assessment three. A similar difference is seen for the
later assessments. Standard errors are around 2-3 for the informative dropout cohorts and
0.6-0.7 for the larger continuing cohorts.
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Figure 1: Schizophrenia data: mean differences in responses between assessments t − 1 and t. The solid
line is for subjects who have informative dropout between assessments t and t + 1 and the broken line for
subjects who return for assessment t + 1. Baseline assessment is coded t = 1. Numbers in brackets give
the cohort sizes.

2.2. Leiden 85+ data

Our second example is on data from the Leiden 85+ Study, carried out by the Leiden
University Medical Centre (der Wiel et al., 2002; van Vliet et al., 2010). The purpose of
the study is the identification of biomarkers and genetic factors for healthy aging. Be-
tween September 1997 and September 1999, 705 inhabitants of Leiden, The Netherlands,
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reached the age of 85 years, and in the month after their 85th birthday, they were asked to
participate in the study. We consider here the 541 subjects who agreed to participate and
provided complete covariate information. Covariates were gender, educational status (two
levels: primary or higher) and Apolipoprotein E (APOE) genotypes, which is considered
a strong genetic risk factor for dementia as well as human longevity (Christensen et al.,
2006). The Mini Mental Status Examination (MMSE) instrument for cognitive ability was
determined annually until death/dropout or age 90. Of the 541 participants, 240 died
during the study and are considered as possibly informative dropouts, and 35 withdrew or
were withdrawn for non-informative causes.

Figure 2 corresponds, for the Leiden data, to Figure 1 for the schizophrenia data. The
pattern is similar, though reversed because for MMSE low values indicate poor condition.
Standard errors are around 0.5-0.7 for the informative dropout (death) cohorts and 0.12-
0.15 for the continuing cohorts. Note that a selection effect complicates interpretation of
the plot. Even if there is linear (or no) underlying trend, we may not expect the observed
mean differences to be constant given that different risk sets are being compared.
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Figure 2: Leiden 85+ data: mean differences in responses between assessments t − 1 and t. The solid
line is for subjects who have informative dropout between assessments t and t + 1 and the broken line for
subjects who return for assessment t + 1. Baseline assessment is coded t = 1. Numbers in brackets give
the cohort sizes.
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3. Theoretical Development

3.1. Model and assumptions

We will begin with the general situation. We assume a balanced design with common
scheduled assessment times for all n subjects recruited into the study. We label the as-
sessment times t = 1, 2, . . . , T but do not require equal spacing in calendar time. For the
moment we will consider a single generic subject and do not use a subscript to differenti-
ate between individuals. We identify two stochastic processes in t: a partly unobservable
finite state first-order Markov chain, St, and an observable Gaussian response process,
Yt, the latter recorded only if the subject is under observation. We will use m (≤ T )
for the number of recorded observations. Associated with each subject is a p-vector of
covariates x. For notational simplicity we will assume these are time-constant, though
extension to time-varying covariates is automatic. We define S̄t = (S1, S2, . . . , St)

T and
Ȳt = (Y1, Y2, . . . , Yt)

T as the partial state and response vectors up to assessment t. The
distribution of response Yt can depend on the state path S̄t up to and including t.

We assume a partially hidden Markov model in which subjects can move over time
between a finite number of disease states, St, with space state S = {1, 2, . . . , N}, some of
which are not observed. We implicitly assume that all patients start in state 1 at time
t = 1. The Markov chain parameters are then the transition probabilities φjk(t) = Pr(St =
k|St−1 = j), defined as the probabilities of being in state k at time t conditional on being
in state j at time t − 1. We do not require the chain to be homogeneous: transition
probabilities may not be constant over time. In principle, transitions may also depend on
covariates but for simplicity we suppress this in notation.

Turning to our specific model, we assume there are three possible states, with 1= stable,
2=crisis and 3=dropout, so that N=3. The dropout state is observed rather than hidden,
and is absorbing since we allow monotonic dropout only. The transition matrix is

Q(t) =

 (1− η)(1− φ13(t)) η(1− φ13(t)) φ13(t)
φ21(t) 1− φ21(t)− φ23(t) φ23(t)

0 0 1

 .

The probability of dropping out from stable state is thus φ13(t). We will take a logistic
model

φ13(t) =
exp(α0t + α1tYt−1)

1 + exp(α0t + α1tYt−1)
, (1)

in which the most recent observed response can influence dropout. This can be extended
to incorporate the prior response path Ȳt−1 but we specifically exclude any dependence on
Yt or any other as yet unobserved responses. This point will be discussed in a later section.

From Q(t), the conditional probability of moving from stable state to crisis given no
dropout is η. Again this can be time-varying or covariate-dependent but in the applications
to come we will assume it to be constant, so that the chance of moving to crisis state
cannot be anticipated from observation history. The transition probabilities from the crisis
state, φ21(t) and φ23(t), might be allowed to depend on covariates or observed responses
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as required.
Turning to the longitudinal responses, let Ym = Ȳm = (Y1, . . . , Ym)T denote the full

vector of observed longitudinal measurements for the subject, where m is the number of
completed assessments. Conditional on state history S̄t we assume a linear mixed model

Ym = Xmβ + Zmb + c(S̄m)d + ǫm. (2)

Here Xm and β are an appropriate design matrix and parameter vector respectively for
fixed effects, including time trends. The vector b represents unobserved individual specific
sources of heterogeneity common to each measure within the same individual, and Zm is
an associated design matrix. We will assume a standard Laird-Ware slope and intercept
model in which

Zm =


1 t1
1 t2
...

...
1 tm


and b = (b0, b1)

T is zero mean bivariate Gaussian with variance matrix

B =

(
σ2

b0
ρσb0σb1

ρσb0σb1 σ2
b1

)
.

The term c(S̄t)d describes the effect of being in crisis state. We assume that on entry to
crisis state there is a random change d in mean, which persists thereafter so that repeated
entries into crisis have a cumulative effect. To model, we assume d ∼ N(µd, σ

2
d) indepen-

dently of b, and that element t of the m-vector c(S̄t) counts the number of entries to crisis
up to assessment t, (t = 1, 2, . . . , m), namely c(S̄m)t =

∑
j≤t I(Sj = 2). The model is com-

pleted by the error term ǫm, which consists of independent zero-mean Gaussian random
variables with common variance σ2

ǫ .

3.2. Filtrations and longitudinal missing data mechanisms

In dealing with missing data it is common to use (Yobs,Ymiss) to denote the observed
and missing components of the intended response vector. The Rubin missing data taxon-
omy (Rubin, 1976) can then be summarised as the following.

• Missing completely at random (MCAR): conditional on covariates x, the observation
probability is independent of (Yobs,Ymiss).

• Missing at random (MAR): conditional on covariates x and observed responses Yobs,
the observation probability is independent of Ymiss.

• Missing not at random (MNAR): conditional on covariates x and observed responses
Yobs, the observation probability of is not independent of Ymiss.
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The terminology was developed for general missing data problems, and implicitly as-
sumes that Ymiss is extant whether or not it is observed. In dealing with longitudinal data
subject to dropout however, the crucial role of time ordering is not explicitly recognised,
and nor is there recognition that dropout is not simply a missing data indicator, but an
event in subjects’ lives which can materially determine even the existence of further re-
sponses (Diggle et al., 2007). An extreme example is when dropout is because of death, as
in the Leiden 85+ study, and discussed in detail by Dufoil et al. (2004). Interpretation of
MNAR models incorporating Ymiss in dropout mechanisms is at best challenging.

Our preference, following (Diggle et al., 2007), is to recognise the role of time and
exclude any dependence on future observations in a model which attempts to describe the
system of data generation as opposed to empirical relationships between observables. We
think instead of two forms of filtration or history. Let Ft denote the filtration generated by
observables up to and including assessment t. In our case these are {x, Ȳt}. Next, let Gt be
the filtration generated by non-observables to time t: for us these are {b, S̄t, d}. We suggest
that any model that purports to be realistic for the underlying system of data generation
should be MAR with respect to the combined filtration Ht = {Ft,Gt}. In other words,
given everything in the past there is no dependence of dropout on the future. However, the
implicit marginal model generated by Ft alone may be MNAR, as illustrated in Figure 3. It
can seem that there is dependence on the future given the observed past, but this is because
of shared dependence on unobserved past. The full system model described in the previous
subsection is of this type: MAR given Ht because dropout depends only on previous
observations and states, but MNAR given only Ft because future observations provide
information about the missing past states, which are in turn informative for dropout.
Thus we have a MNAR data-model constructed from an underlying MAR system-model,
and the crucial role of time is explicitly recognised.

Ft+1

dropout

Gt+1Gt

Ft

dropout

Ft+1Ft

Figure 3: MAR underlying system model (left) and marginal MNAR empirical model (right)

3.3. Estimation and Inference

We assume between-subject independence and introduce subscript i to differentiate be-
tween individuals. Conditional upon the state paths S̄im, the responses Yim are condition-
ally independent Gaussian vectors. Since we have a linear mixed model it is straightforward

7
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to integrate out the random effects bi and di to obtain a multivariate Gaussian distribution
with mean Xiβ + c(S̄im)µd and variance matrix Vi = ZiBZT

i + σ2
dJ(S̄im) + σ2

ǫ Im, where
Im is the m-dimensional identity matrix and J(S̄im) = c(S̄im)cT (S̄im). We will write
f(Yim|S̄im; θ) for the corresponding density, where θ is the combined vector of unknown
parameters.

Let Sim denote the set of state paths which are consistent with the dropout time for
subject i, and recall that states 1,2 and 3 denote stable, crisis and dropout, that dropout
is absorbing, and that we assume all subjects start in stable state. Then Sim will have
2m−1 elements for subjects who drop out for informative reasons after m assessments. For
example if m = 2 then Sim = {(1, 1, 3), (1, 2, 3)}. If dropout is for non-informative reasons
(censoring) then in principle there are 2T − 1 state paths which are consistent with the
observed data. However, under our independent censoring assumption the later states are
ignorable and for these subjects we consider only states up to the number m of observed
assessments, such as Si2 = {(1, 1), (1, 2)} if m = 2.

The marginal likelihood of the observed data can now be derived from the Markov state
space property and missingness assumptions as

L(θ;Yim) =
n∏

i=1

∑
s̄im∈Sim

[
f(Yi1; θ)

m∏
t=2

{f(Yit|Yi,t−1, s̄it; θ) Pr(sit|Yi,t−1, si,t−1; θ)}
]

=
n∏

i=1

∑
s̄im∈Sim

[
f(Yim|̄sim; θ)

m∏
t=2

Pr(sit|Yi,t−1, si,t−1; θ)

]
.

There are closed form expressions for all terms in the square brackets, meaning that
the likelihood can be evaluated very quickly provided T is not too large. A numerical
search to find the maximum likelihood estimate is feasible as is a Markov chain Monte
Carlo approach if Bayesian inference is preferred.

4. Applications

4.1. Schizophrenia data

For the fixed effects component we assume separate quadratic time trends within each
of the three treatment groups. We take the logistic model (1) for the probability φ13(t) of
a direct transition from stable state to dropout, but we assume the coefficient of previous
response is time-constant, ie α1t = α1. We assume transitions out of crisis state are time-
homogeneous: φ21(t) = φ21 and φ23(t) = φ23.

We performed three analyses of these data: standard maximum likelihood, Bayes using
MCMC and flat priors, and Bayes/MCMC with informative priors. The maximum likeli-
hood estimates were almost identical to the posterior means when we used MCMC with
flat priors, and all posterior distributions appeared close to Gaussian. Table 1 summarises
results for the parameters which distinguish our model from a standard Laird-Ware model
with MAR dropout. These are the conditional probability η of moving from stable to crisis
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state given not dropping out; the probabilities φ21 and φ23 of leaving crisis state for stable
or by dropout respectively, and the parameters µd and σ2

d for the random change d on entry
to crisis state.

Our a priori assumption was that entry into crisis state would be relatively rare, but
that once in crisis state dropout would be likely. Hence the informative prior chosen for η
was a beta distribution with parameters 2 and 8, and for (φ21, φ23) a Dirichlet distribution
with parameters (2,12,1). We selected more vague Gaussian and inverse gamma priors
for µd and σ2

d respectively. Prior means and standard deviations are shown in Table 1
alongside the associated posterior summaries from an MCMC run of 50,000 iterations,
following 10,000 iterations of burn-in. Movement into crisis state was relatively rare and
there seemed to be a lower dropout probability from that state than expected a priori. The
variance of the random change d on entry to crisis was high, leading to the low precision
mean and standard deviation shown in Table 1. The mean and standard deviation for σd

directly were 24.03 and 2.00 respectively from the posterior using informative priors.
Broadly similar results were obtained when flat priors were used throughout, and, as

stated, in that case posterior means were very close to the maximum likelihood estimates.
The overall maximised partial log likelihood for the responses Y was -10502.41. This is
partial as the full log likelihood also includes a component for the dropout events. The
partial form can be compared with -10587.7 from the corresponding single-state model
(constraining η = µd = σd = 0). Note that we cannot compare the models using a standard
likelihood ratio test, since the problem is non-regular (Davies, 1977, 1987). Nonetheless
there is very strong evidence that of the two models under consideration, the state-space
model should be preferred to the standard. Of course we should make the proviso that as
always untestable dropout assumptions have had to be made. We cannot claim that our
model is correct in any sense: we simply claim that it fits the observed data better than
the standard MAR model without crisis state.

Informative Prior Posterior Summaries
Informative prior Flat prior

Parameter Mean SD Mean SD Mean SD
η 0.2000 0.1206 0.1001 0.0176 0.1391 0.0221
φ21 0.1333 0.0085 0.3560 0.0594 0.6462 0.0633
φ23 0.8000 0.1000 0.4577 0.0613 0.2724 0.0540
µd 0 25 1.1617 0.9581 4.4549 2.3675
1/σ2

d 500 500 0.0017 0.0003 0.0020 0.0003

Table 1: Schizophrenia data: selection of results from Bayesian analyses with flat or informative priors.

Figure 4 shows as solid lines how the observed mean responses declined during the
course of the study, with each point in the plot based on all available data. The decline
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Figure 4: Schizophrenia data. Observed (solid lines) and estimated dropout-free (broken lines) mean
response profiles for placebo (p), standard (s) and experimental (e) treatment groups

may be real, as subjects improve over time, or could reflect a selection effect as subjects in
poor condition and hence with high responses tended to drop out, leaving a lower mean for
continuing subjects. Given our model, we can estimate profiles in a hypothetical dropout-
free situation (Diggle et al., 2007). These are the dotted lines in Figure 4, which indicate
a substantial improvement would still occur in the experimental treatment group, a slight
improvement in the standard treatment group, and, reassuringly, no change over time in
the placebo group, assuming no change in other conditions or treatments. Diggle et al.
(2007) discuss analysis objectives when longitudinal trials are subject to dropout: in this
case the targeting of a conceptual hypothetical dropout-free population is appropriate.

Figure 5 provides further illustration, concentrating on subjects with at least four ob-
servations. The left column shows the response of the ten subjects most likely to be in
crisis state at the fourth observation time, which is week four. For clarity the traces have
been split over two plots, with the five most-likely subjects in the top plot. The right
plot shows traces for ten people chosen randomly from the remainder of the subjects still
at risk, again split into two groups of five, this time in no particular order. In the plot
we use a broken line from time t to t + 1 whenever the probability of dropping out for
informative reasons, given observed history Ft, is higher than an arbitrary threshold of
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Figure 5: Example profiles of schizophrenia data. The two left plots show profiles of the ten people most
likely to be in crisis state at week four, and the right plots show the profiles of ten people randomly selected
from the remainder of the risk set at week four. See text for further information.

0.3. The symbol “c” indicates that the conditional probability of being in crisis state at
time t given observation history Ft to t is above another arbitrary threshold of 0.3. In the
left column the actual probability of being in crisis state at time four exceeds 0.7 for all
ten subjects. In the right column all corresponding probabilities are below 0.1. Nine of the
ten subjects with high probability of being in crisis state at time four show an increase in
response leading to that time, and one has a decrease. This is the pattern which motivated
our analysis. Six of the ten had informative dropout before the next observation time. The
traces in the right column of people not likely to be in crisis are more stable. One of these
subjects also had informative dropout before the next observation time.

11
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4.2. Leiden 85+ data

Crisis-state modelling was also applied to the Leiden 85+ data. The aim was to assess
the effects of the crisis state and the covariates on the response variable and to compare
results from fitting our crisis state model with those from a more standard Laird-Ware
MAR approach. Table 2 shows the parameter estimates and the corresponding standard
errors for MAR and MNAR (crisis state) analyses. For this analysis we used likelihood
methods only, since this is the method used for the Laird-Ware model in the standard
R software we used. Standard errors were obtained from 100 bootstrap resamples. We
considered the following covariates: gender (female=0), educational status classified into
two levels (primary=0 or higher levels), and apolipoprotein E (APO-E) clustered into four
genotypes (33=0,22-23,24,34-44). We see that male subjects with at most primary school
level were generally more cognitively impaired than subjects with higher educational level,
and age and the APOE (34-44) genotypes negatively influenced cognitive function. The
transition probability estimates from the crisis state to dropout and from the crisis state
to stable state are similar. The transition probability from the stable state to dropout
decreases with increasing values of MMSE at time t − 1. No differential intercept terms
(time varying) are significant. The age effect is much stronger under the MAR model than
under the crisis state model and subjects that enter the crisis state tend to have a decrease
in level of MMSE. That is, the crisis state effect absorbs part of the age effect. The same
holds in less extend to carriers of the APOE 2 alleles: in the MAR model APOE2 show a
non significant protective effect on MMSE while in the new model the estimate is almost
zero. The maximized partial log likelihood under the MNAR crisis state model was -6741.7,
whereas under MAR it was -6963.58, providing strong evidence that our model should be
preferred.

As a final comment for this section we point out that a plot equivalent to Figure 4
could be produced for the Leiden data, to compare observed and dropout-free profiles. We
have not considered such a plot as the concept of dropout-free responses when dropout
corresponds to death makes no real sense.

5. Discussion

We have proposed an approach to modelling longitudinal data subject to dropout which
might be useful when there are indications that subjects can have high risk or crisis periods
during which the response variable can change dramatically and the probability of dropout
be affected. Our model is MAR given complete data filtrations but MNAR given only
observed data filtrations. We do not claim that our approach will always be appropriate,
but we do consider it potentially useful. In both the schizophrenia and Leiden applications
our model provided a better fit to the observed data than a standard MAR approach based
on combination of a Laird-Ware longitudinal component and a logistic dropout component.
This is not to say that all MAR models would be inferior: to the contrary, as pointed out
by Molenberghs et al. (2008), for every MNAR model there is a MAR equivalent which
provides an equally good fit to the observed data. Although such models would not usually
include standard parametric components, it would be interesting to examine what features

12
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Model
MNAR (Crisis) MAR
Coeff. St.Err. Coeff. St.Err.

α01 -0.41 0.55 -0.50 0.80
α02 -0.29 0.63 -0.19 0.81
α03 -0.59 0.73 -0.32 0.78
α04 -0.29 0.77 -0.13 0.78
α05 -0.53 0.89 -0.28 0.77
α1 -0.08 0.02 -0.08 0.03
η 0.11 0.05 - -
φ21 0.38 0.13 - -
φ23 0.34 0.17 - -
constant 23.24 0.81 23.11 0.73
age -0.38 0.06 -0.92 0.04
gender 0.98 0.27 1.27 0.17
educational 3.53 0.26 3.59 0.17
apoe22,23 -0.01 0.25 0.10 0.19
apoe24 -0.85 0.60 -0.41 0.64
apoe34,44 -3.07 0.28 -2.77 0.21
µd -4.04 1.87 - -
σ2

d 3.93 2.24 - -
σ2

ǫ 1.51 0.21 1.95 0.07
σ2

b0 5.38 0.45 5.37 0.42
σ2

b1 0.39 0.36 1.08 0.16
ρb0b1 0.33 0.20 0.33 0.16
Partial log-likelihood -6741.7 -6963.58

Table 2: Leiden 85+ data: maximum likelihood estimates and standard errors of the transition probability
and explanatory variable effects for the MAR and MNAR models

are required of a MAR model which matches our crisis state model in terms of observed
data fit. This is an area for future research. Many extensions are possible and might be
explored in further work. For example, in our work we assume that entry into crisis state
is accompanied by a step change d in response, with d being a time-fixed Gaussian random
effect. We might allow the step changes to vary over time, or we might constrain d to
lie on only one of the positive or negative half lines rather than both. In that way we
might associate an entry into crisis with a deterioration in health: a positive step for the
schizophrenia data or a negative step for the Leiden 85+data.

13



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Acknowledgements

We gratefully acknowledge Dr Ton de Craen and Dr Rudi Westendorp of the Leiden Uni-
versity Medical Centre, for kindly providing the analyzed data. We thank the guest editor
and an anonymous reviewer for helpful comments on an earlier version of the manuscript.

References

le Cessie, S., de Vries, E.G.E., Buijs, C., Post, W.J., 2009. Analyzing longitudinal data with
patients in different disease states during follow-up and death as final state. Statistics in
Medicine 28, 3829-3843.

Christensen K., Johnson T.E., Vaupel J.W., 2006. The quest for genetic determinants of
human longevity: challenges and insights. Nature Reviews Genetics 7, 436-448.

Davies, R.B., 1977. Hypothesis testing when a nuisance parameter is present only under
the alternative. Biometrika 64, 247-254.

Davies, R.B., 1987. Hypothesis testing when a nuisance parameter is present only under
the alternative. Biometrika 74, 33-43.

De Lorenzo, P., Henderson, R. and Valsecchi, M.G., 2005. Analysis of interval-censored
longitudinal data with application to onco-haematology. Statistics in Medicine 24, 3945-
3957.

Diggle, P.J., 1998. Dealing with missing values in longitudinal studies. Recent Advances
in the Statistical Analysis of Medical Data editors Everitt and Dunn, London: Arnold,
203-228.

Diggle, P.J., Farewell, D. and Henderson, R., 2007. Analysis of longitudinal data with
drop-out: objectives, assumptions and a proposal (with discussion). Applied Statistics
56, 499-550.

Dufoil, C., Brayne, D. and Clayton, D., 2004. Analysis of longitudinal studies with death
and drop-out: a case study. Statistics in Medicine 23, 2215-2226.

Guihenneuc-Jouyaux, C., Richardson, S. and Longini, I.M., 2000. Modeling markers of
disease progression by a hidden Markov process: application to characterizing CD4 cell
decline. Biometrics 56, 733-741.

Henderson, R., Diggle, P.J. and Dobson, A., 2000. Joint modelling of longitudinal mea-
surements and event time data. Biostatistics 1, 465-480.

Hogan, J.W., Roy, J. and Korkontzelou, C., 2004. Tutorial in biostatistics - handling drop-
out in longitudinal studies. Statistics in Medicine 23, 1455-1497.

14



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Liestøl, K. and Andersen, P.K., 2002. Updating of covariates and choice of time origin in
survival analysis: problems with vaguely defined disease states. Statistics in Medicine
21, 3701-3714.

Molenberghs, G., Thijs, H., Jansen, I., Beunckens, C., Kenward, M.G., Mallinckrodt, C.
and Carroll, R., 2004. Analysing incomplete longitudinal clinical trial data. Biostatistics
5, 445-464.

Molenberghs, G., Beunckens, C., Sotto, C. and Kenward, M. G., 2008. Every missing not
at random model has got a missing at random counterpart with equal fit. Journal of the
Royal Statistical Society, Series B 70, 371-388.

Philipson, P.M., Ho, W.K. and Henderson, R., 2008. Comparative review of methods for
handling drop-out in longitudinal studies. Statistics in Medicine 27, 6276-6298.

Rubin, D.B., 1976. Inference and missing data. Biometrika 63, 581-592.

Satten, G.A. and Longini, I.M., 1996. Markov chains with measurement error: estimating
the true course of a marker of the progression of human immunodeficiency virus disease
(with discussion). Applied Statistics 45(3): 275-309.

Tsiatis, A.A. and Davidian, M.A., 2004. Joint modelling of longitudinal and time-to-event
data: an overview. Statistica Sinica 14, 809-834.

van Vliet, P., Westendorp, R.G., van Heemst, D., de Craen, A.J.and Oleksik, A.M., 2010.
Cognitive decline precedes late-life longitudinal changes in vascular risk factors. J Neurol
Neurosurg Psychiatry 81(9), 1028-1032.

der Wiel, A.B., van Exel, E., de Craen, A.J., Gussekloo, J., Lagaay,A.M., Knook, D.L.
and Westendorp, R.G.J., 2002. A high response is not essential to prevent selection bias:
Results from the Leiden 85-plus study. Journal of Clinical Epidemiology 55, 1119-1125.

15



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Figure 1: Schizophrenia data: mean differences in responses between assessments t− 1
and t. The solid line is for subjects who have informative dropout between assessments
t and t + 1 and the broken line for subjects who return for assessment t + 1. Baseline
assessment is coded t = 1. Numbers in brackets give the cohort sizes

Figure 2: Leiden 85+ data: mean differences in responses between assessments t − 1
and t. The solid line is for subjects who have informative dropout between assessments
t and t + 1 and the broken line for subjects who return for assessment t + 1. Baseline
assessment is coded t = 1. Numbers in brackets give the cohort sizes

Figure 3: MAR underlying system model (left) and marginal MNAR empirical model
(right)

Figure 4: Schizophrenia data. Observed (solid lines) and estimated dropout-free (bro-
ken lines) mean response profiles for placebo (p), standard (s) and experimental (e) treat-
ment groups

Figure 5: Example profiles of schizophrenia data. The two left plots show profiles of
the ten people most likely to be in crisis state at week four, and the right plot shows the
profiles of ten people randomly selected from the remainder of risk set at week four. See
text for further information
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