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Abstract

One major goal in clinical applications of multi-state models is the es-
timation of transition probabilities. In a recent paper, Meira-Machado, de
Uña-Álvarez and Cadarso-Suárez (2006) introduce a substitute for the Aalen-
Johansen estimator in the case of a non-Markov illness-death model. The idea
behind their estimator is to weight the data by the Kaplan-Meier weights per-
taining to the distribution of the total survival time of the process. In this
paper we propose a modification of Meira-Machado et al (2006) estimator
based on presmoothing. Consistency is established. We investigate the finite
sample performance of the new estimator through simulations. Data from a
study on colon cancer are used for illustration purposes.

Keywords: Kaplan-Meier, Markov condition, Multi-state models,
semiparametric censorship

1. Introduction

Multi-state models (Andersen et al. 1993; Meira-Machado et al. 2009)
are the most common models used for the description of longitudinal survival
data. A multi-state model is a model for a stochastic process, which is
characterized by a set of states and the possible transitions among them.
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The states represent different situations of the individual (healthy, diseased,
etc) along a follow-up. Special multi-state models that have been widely
used in biomedical applications are the three-state progressive model, the
illness-death model, or the bivariate model (Hougaard, 2000).

Let X(t) represent the state occupied by the process at time t ≥ 0. For
two states i,j and s < t, introduce the transition probability

pij(s, t) = P (X(t) = j|X(s) = i) .

There has been much interest in the estimation of pij(s, t) since it allows for
long-term predictions of the process. Aalen and Johansen (1978) introduced
a nonparametric estimator of pij(s, t) for Markov models. The Markov as-
sumption states that the future evolution of the process is independent of
the previously visited states and the times of transition amongst them given
the present state of the process. This simplifying assumption allows for the
construction of simple estimators, since individuals with different past his-
tories become comparable. However, it has been quoted that the Markov
assumption is violated in some applications (e.g. Andersen et al., 2000).
This is a relevant remark, since Aalen-Johansen estimator may be inconsis-
tent if the process is non-Markov. Estimators of pij(s, t) which are consistent
in non-Markov situations are hardly found in literature.

Meira-Machado et al (2006) introduced a substitute for the Aalen-Johansen
estimator in the case of a non-Markov illness-death model. They showed that
when the Markov assumption does not hold, the new estimator may behave
much better than the Aalen-Johansen which may be systematically biased.
However, by removing the Markov condition, the proposed substitute for the
Aalen-Johansen estimator provides undesirable large standard errors. This
problem becomes worse when there is a large proportion of censored data.
In order to overcome this issue, we propose here a modification of Meira-
Machado et al (2006)’s estimator based on presmoothing, which allows for a
variance reduction in the presence of censoring.

The idea of presmoothing goes back at least to Dikta (1998), see also
Dikta (2000, 2001) and Dikta et al. (2005). By ’presmoothing’ it is meant
that each censoring indicator is replaced by a smooth fit of a binary regres-
sion of the indicator on observables. This replacement results in estima-
tors with improved variance. Presmoothing has been successfully applied
in different problems, including nonparametric curve estimation (Cao and
Jácome, 2004; Cao et al., 2005) and regression analysis (de Uña-Álvarez and
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Rodŕıguez-Campos, 2004; Yuan, 2005; Iglesias-Pérez and de Uña-Álvarez,
2008). Recently, an application of presmoothing to the estimation of the
bivariate distribution of censored gap times has been provided too (de Uña-
Álvarez and Amorim, 2011). In this paper we will propose presmoothed
estimators of the transition probabilities pij(s, t) in the scope of the illness-
death model.

In order to illustrate our estimators using real data, we consider data
from one of the first successful trials of adjuvant chemotherapy for colon
cancer, which is freely available from the R survival package. In this study,
929 patients affected by colon cancer underwent a potential curative surgery.
Unfortunately, some of these patients had residual cancer, which lead to the
recurrence of disease and death (in some cases). Therefore, we may consider
the recurrence as an associated state of risk, and use the so-called illness-
death model with states ”alive and disease-free”, ”alive with recurrence”
(local-regional or metastases) and ”dead”. See Section 2 for a more formal
definition of the model.

The organization of the paper is as follows. Section 2 introduces the nota-
tion, the new estimators and the main results. The finite sample performance
of the proposed estimator is investigated via simulations in Section 3. In Sec-
tion 4 we analyze the colon cancer data with the proposed methods. Main
conclusions are reported in Section 5. Further illustration, complete simula-
tion results and technical proofs are deferred to the web-only Appendix.

2. The estimator: main result

In this paper we consider the illness-death model depicted in Figure 1.
In this model, all the subjects are in State 1 (’healthy’) at time t = 0.
At some future time, they will arrive at State 3 (’dead’), which is absorb-
ing. In the meanwhile they may visit State 2 (’diseased’) at some time
point; or not, passing directly to State 3 without visiting State 2. Note
that this multi-state model is progressive (Hougaard, 2000), in the sense
that past states can not be revisited. For this model the set of states is
S = {1, 2, 3}, and the transitions allowed are 1 → 2, 1 → 3, and 2 → 3.
Given two time points s < t, there are in essence three different tran-
sition probabilities to estimate: p11(s, t), p13(s, t), and p23(s, t). The two
other transition probabilities (p12(s, t) and p22(s, t)) are easily obtained from
p12(s, t) = 1− p11(s, t)− p13(s, t) and p22(s, t) = 1− p23(s, t).
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1. Healthy 2. Diseased

3. Dead

1. Healthy 2. Diseased
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Figure 2: Illness-death model. 

 More examples of multi-state models can be found in books by Andersen et al. 

(1993) and Hougaard (2000), or in papers by Putter et al. (2007) and Andersen and 

Perme (2008).   

 Despite its potential, multi-state modeling is not used by practitioners as 

frequently as other survival analysis techniques. It is our belief that lack of knowledge 

of available software and non-implementation of the new methodologies in user-

friendly software are probably responsible for this neglect. One important contribution 

to this issue was given by the R/S-PLUS survival package. Thanks to this package, 

survival analysis is no longer limited to Kaplan-Meier curves and simple Cox models. 

Indeed, this package enables users to implement the methods introduced by Therneau 

and Grambsch (2000) for modeling multi-state survival data. In R (R Development Core 

Team 2008), multi-state regression can also be performed using the msm package 

(continuous-time Markov and hidden Markov multi-state models), the changeLOS 

package (Wrangler et al. 2006) implements the Aalen–Johansen estimator for general 

multi-state models, and the etm package has recently enabled the transition matrix to be 

computed, along with a covariance estimator.   

 This paper describes the R-based p3state.msm package's capabilities for 

analyzing survival data from an illness-death model. It extends existing semi-parametric 

regression capabilities included in many statistical software programs, such as R, S-

PLUS, SAS, etc. Moreover, p3state.msm enables several quantities of interest to be 

estimated, such as transition probabilities, bivariate distribution function, etc. In 

Figure 1: Illness-death model: the three states (boxes) and the possible transition among
them (arrows).

Let Tij be the potential transition time from state i to state j. This
means that a subject not visiting state 2 will reach the ’dead’ state at time
T13, while this time will be T12 + T23 if he/she passes through state 2 before.
We denote by ρ = I(T12 ≤ T13) the indicator of visiting state 2 at some time.
Let Z = T12∧T13 be the sojourn time in state 1, and let T = Z+ρT23 be the
total survival time of the process (up to reaching the absorbing state). We
denote the censoring variable by C which is assumed to be independent of the
process; finally, we put Z̃ = Z∧C and T̃ = T ∧C for the censored versions of
Z and T , and ∆1 = I(Z ≤ C) and ∆ = I(T ≤ C) for the respective censoring
indicators. With this notation, the transition probabilities are written as

p11(s, t) =
P (Z > t)

P (Z > s)
, p13(s, t) =

P (s < Z, T ≤ t)

P (Z > s)
,

p23(s, t) =
P (Z ≤ s, s < T ≤ t)

P (Z ≤ s < T )
.

All these quantities involve expectations of particular transformations of
the pair (Z, T ), S (ϕ) = E [ϕ (Z, T )] say. Thus we now discuss how these
expectations can be empirically approximated from the data{(

Z̃i, T̃i,∆1i,∆i,∆1iρi

)
, 1 ≤ i ≤ n

}
,

which are assumed to form a random sample of the vector
(
Z̃, T̃ ,∆1,∆,∆1ρ

)
.

Note that p11(s, t) and the denominator of p13(s, t) only involve the Z vari-
able, and that they can be estimated by the ordinary Kaplan-Meier estimator
of the sojourn time distribution in state 1. However, the remaining quantities
cannot be estimated so simply.

Let T̃1:n ≤ · · · ≤ T̃n:n denote the ordered T̃i’s, and let Wi be the Kaplan-
Meier weight attached to T̃i:n when estimating the marginal distribution of
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T from (T̃i,∆i)’s. That is,

Wi =
∆[i:n]

n− i+ 1

i−1∏
j=1

[
1− ∆[j:n]

n− j + 1

]
where ∆[i:n] is the ith concomitant of T̃i:n. Here, ties within the censored
or within the uncensored times are ordered arbitrarily, and ties among the
uncensored and censored times are treated as if the former precede the later.

In the uncensored case we have Wi = n−1 for each i. In Meira-Machado
et al (2006) the following estimator of S (ϕ) was proposed:

Sn (ϕ) =
n∑
i=1

Wiϕ(Z̃[i:n], T̃i:n).

where Z̃[i:n] is the concomitant of T̃i:n. Consider now the presmoothed version
of Sn (ϕ) given by

Sn (ϕ;mn) =
n∑
i=1

Wi(mn)ϕ(Z̃[i:n], T̃i:n)

where

Wi(mn) =
mn

(
Z̃[i:n], T̃i:n

)
n− i+ 1

i−1∏
j=1

1−
mn

(
Z̃[j:n], T̃j:n

)
n− j + 1


and where mn(z, t) stands for an estimator of the binary regression function

m(z, t) = P
(

∆ = 1|Z̃ = z, T̃ = t
)
.

Since
(
Z̃, T̃ ,∆

)
are observable, the function m(z, t) can be estimated by

standard methods. However, the naive construction of a smooth estimator for
m(z, t) will generally fail. This is because the function m(z, t) will typically
be discontinuous along the line t = z, that is, for those covariate values(
Z̃, T̃

)
corresponding to individuals who are censored while being in state 1

or who suffer a direct transition 1→ 3 to the absorbing state.
In order to see this, note that for z < t we have

m(z, t) = P
(

∆ = 1|Z̃ = z, T̃ = t,∆1ρ = 1
)
≡ m1(z, t),

5
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that is, m1

(
Z̃, T̃

)
is the conditional probability of censoring on T given(

Z̃, T̃
)

and given that transition 1 → 2 is observed (∆1ρ = 1). However,

when z = t we get

m(t, t) = P
(

∆1 = 1|Z̃ = t,∆1ρ = 0
)
≡ m2(t),

which is the conditional probability of observing 1 → 3 given Z̃ = t (or

T̃ = t) and given that transition 1 → 2 is never observed. We implicitly

assume that the events
{
Z̃ = T̃

}
and ∆1ρ = 0 are the same. This is reason-

able unless there is a significative proportion of individuals with zero sojourn
time in state 2. These formulae show that the functions m1 and m2 repre-
sent different binary regression problems and that they are based on disjoint
subpopulations (according to the value of ∆1ρ). Furthermore, the limit of
m1(z, t) as z approaches to t does not coincide with m2(t) in reality. Figure
2 displays these functions for the colon cancer data, when estimated sep-
arately by two logistic models. The noise around m1(z, t) comes from the
fact that the variable z is omitted from the plot while it is present in the
model (although without reaching statistical significance, p-value=0.285).
Both functions are clearly separated.

In summary, in order to construct mn(z, t) we propose that one estimate
the functions m1(z, t) and m2(t) independently by fitting some smooth mod-
els, m1n(z, t) and m2n(t) say, so we finally have

mn(z, t) = m1n (z, t) I(z < t) +m2n(t)I(z = t),

or

mn

(
Z̃i, T̃i

)
= m1n

(
Z̃i, T̃i

)
I(Z̃i < T̃i) +m2n(Z̃i)I(Z̃i = T̃i)

= m1n

(
Z̃i, T̃i

)
∆1iρi +m2n(Z̃i)(1−∆1iρi).

The estimator m1n(z, t) is based on the subsample {i : ∆1iρi = 1}, while
m2n(t) is computed from {i : ∆1iρi = 0}. The only condition we assume
on these two functions is that they should approximate well their targets in
a uniform sense; more specifically, set

U1 : sup
z,t
|m1n(z, t)−m1(z, t)| → 0 w. p. 1,

6
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Figure 2: Presmoothing functions m1 and m2 estimated by logistic models vs. T̃ (variable
Z̃ not shown). Colon cancer data.

and
U2 : sup

t
|m2n(t)−m2(t)| → 0 w. p. 1.

Since m(z, t) = m1 (z, t) I(z < t) +m2(t)I(z = t), under U1 and U2 we have

U : sup
z,t
|mn(z, t)−m(z, t)| → 0 w. p. 1.

and hence Theorem 2.1 in de Uña-Álvarez and Rodŕıguez-Campos (2004)
can be applied with some adaptation to the present context (see the Ap-
pendix). Conditions under which U1 and U2 hold are investigated in a num-
ber of papers, including Devroye (1978a, 1978b), Mack and Silverman (1982),
and Härdle and Luckhaus (1984). Now we state our main result and the

corresponding corollaries. Let H be the distribution function of T̃ and let
τH = inf {t : H(t) = 1}.

Theorem 1. Assume that H is continuous, that U1 and U2 hold, and
that

E

[ |ϕ (Z, T )| I (T ≤ τH)

m(Z, T )(1−H(T ))ρ

]
<∞

7
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is satisfied for some ρ > 0. Then, Sn (ϕ;mn) → Sτ (ϕ) with probability 1,
where Sτ (ϕ) = E [ϕ(Z, T )I(T ≤ τH)].

Theorem 1 is a proper adaptation of the Strong Law in Dikta (2000)
to our scenario. We note that the result is not restricted to parametric
presmoothing; the only thing one should have in mind is that condition U
must be verified by the chosen estimator mn(z, t). Note also that, in general,
one can not ensure that Sτ (ϕ) and S (ϕ) will coincide; indeed, as always
with censored data, one should not expect consistency beyond the upper
bound of the censoring distribution, because there is no sampling information
regarding the lifetime there. As a particular case, we have Sτ (ϕ) = S (ϕ) if
the support of T is contained in that of C.

The proof to Theorem 1 is similar to that of Theorem 2.1 in de Uña-
Álvarez and Rodŕıguez-Campos (2004); here, the role of their covariate vec-
tor is played by the sojourn time in State 1 (Z), while the total time T
up to reaching the absorbing State 3 is taken as the ’response’. However,
since Z is also subject to right-censoring, the results in the referred paper
(see also Stute, 1993, and Stute and Wang, 1993) do not directly apply here.
Note that, since C is assumed to be independent of (Z, T ), the identifiabil-
ity conditions H1 and H2 in de Uña-Álvarez and Rodŕıguez-Campos (2004)
automatically hold. In our setup, these conditions read

H1. T and C are independent
H2. P (T ≤ C|Z, T ) = P (T ≤ C|T )

which clearly follow from the independence between the censoring time and
the process. See the web-appendix for details.

Now, we come back to our initial goal of estimating the transition prob-
abilities pij(s, t). Recall that p11(s, t) can be estimated by the ordinary

Kaplan-Meier based on the
(
Z̃i,∆1i

)
’s. In order to introduce some pres-

moothing, we recommend to replace the ∆1i’s by some smooth fit to the

binary regression function P
(

∆1 = 1|Z̃ = z
)

(see e.g. Dikta, 1998). Now,

we focus on the estimation of p13(s, t) and p23(s, t). Write

p13(s, t) =
P (s < Z, T ≤ t)

P (s < Z)
=
E [ϕs,t (Z, T )]

P (s < Z)
,

8
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where ϕs,t (u, v) = I (u > s, v ≤ t). Introduce the presmoothed estimator

p̂13(s, t) =
Sn (ϕs,t;mn)

P̂ (s < Z)

where P̂ (s < Z) stands for a consistent estimator (e.g. Kaplan-Meier) of
P (s < Z).

Similarly, we have

p23(s, t) =
P (Z ≤ s, s < T ≤ t)

P (Z ≤ s < T )
=
E [ϕ̃s,t(Z, T )]

E [ϕs(Z, T )]

where ϕ̃s,t(u, v) = I (u ≤ s, s < v ≤ t) and ϕs(u, v) = I (u ≤ s < v). There-
fore, in this case, we estimate the transition probability through

p̂23(s, t) =
Sn (ϕ̃s,t;mn)

Sn (ϕs;mn)
.

We have the following Corollary.

Corollary 1. Assume that the conditions in Theorem 1 hold for the
special ϕ-functions ϕs,t, ϕ̃s,t and ϕs. Then, for any consistent estimator

P̂ (Z > s) of P (Z > s) we have with probability 1 p̂13(s, t) → pτ13(s, t)
and p̂23(s, t) → pτ23(s, t), where pτ13(s, t) = P (T ≤ t, T ≤ τH / Z > s) and
pτ23(s, t) = P (T ≤ t / Z ≤ s < T, T ≤ τH). �

Corollary 1 is an immediate consequence of Theorem 1. As for the Theo-
rem, consistency can not be ensured in general. However, when the support
of C contains that of T we have pτ13(s, t) = p13(s, t) and pτ23(s, t) = p23(s, t).
In particular this may happens whenever τH =∞.

Remark In practice, when n is small, it may happen p̂13(s, t) > 1
and/or p̂11(s, t) + p̂13(s, t) > 1. When any of these inequalities occurs, we
propose the modification p̂13(s, t) = 1− p̂11(s, t), which ensures p̂13(s, t) ≤ 1
and p̂11(s, t) + p̂13(s, t) ≤ 1. With this remark in mind, we always have
p̂12(s, t) = 1 − p̂11(s, t) − p̂13(s, t) ≥ 0. For moderate or large sample sizes
this problem disappears.

9
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3. Simulation study

In this Section we investigate the performance of the proposed estima-
tors p̂ij (s, t) through simulations. More specifically, the estimators p̂11 (s, t),
p̂13 (s, t) and p̂23 (s, t) introduced in Section 2 are considered.

To simulate the data in the illness-death model, we separately consider
the subjects passing through State 2 at some time (that is, those cases with
ρ = 1), and those who directly go to the absorbing State 3 (ρ = 0). For the
first subgroup of individuals (ρ = 1), the successive gap times (Z, T − Z) are
simulated according to the bivariate distribution

F12(x, y) = F1(x)F2(y) [1 + θ {1− F1(x)} {1− F2(y)}]

where the marginal distribution functions F1 and F2 are exponential with rate
parameter 1. This corresponds to the so-called Farlie-Gumbel-Morgenstern
copula, where the single parameter θ controls for the amount of dependency
between the gap times. The parameter θ was set to 0 for simulating inde-
pendent gap times, and also to 1, corresponding to 0.25 correlation between
Z and T −Z. This simulated scenario is the same as that described in Lin et
al. (1999) and de Uña-Álvarez and Meira-Machado (2008). For the second
subgroup of individuals (ρ = 0), the value of Z is simulated according to an
exponential with rate parameter 1. In summary, the simulation procedure is
as follows:

Step 1. Draw ρ ∼ Ber(p) where p is the proportion of subjects passing
through State 2.

Step 2. If ρ = 1 then:
(2.1) V1 ∼ U (0, 1) , V2 ∼ U (0, 1) are independently generated;
(2.2) U1 = V1, A = θ (2U1 − 1)−1, B = (1− θ (2U1 − 1))2+4θV2 (2U1 − 1)

(2.3) U2 = 2V2/
(√

B − A
)

(2.4) Z = ln (1/ (1− U1)) , T = ln (1/ (1− U2)) + Z
If ρ = 0 then Z = ln (1/ (1− U(0, 1))).

Situations with p = 1 corresponds to the three-state progressive model, in
which a direct transition 1→ 3 is not allowed. In our simulation we consider
p = 0.7. An independent uniform censoring time C is generated, according
to models U [0, 4] and U [0, 3]. The first model results in 24% of censoring on
the first gap time Z, and in 47% of censoring on the second gap time T −Z,

10
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for those individuals with ρ = 1. The second model increases these censoring
levels to 32% and about 57%, respectively.

After some algebra, it is seen that the function

m1(z, t) = P
(

∆ = 1|Z̃ = z, T̃ = t,∆1ρ = 1
)

is written as

m1(z, t) =
1

1 + η1(z, t)
, where η1(z, t) =

λG(t)

λ1
T |Z=z(t|z)

and where λG(.) and λ1
T |Z=z(.|z) stand respectively for the hazard rate of the

censoring variable and the hazard rate of T given Z = z under restriction
ρ = 1. Note that λG(t) = 1/(τG− t) when C ∼ U [0, τG] and that λ1

T |Z=z(t|z)
is given by

λ1
T |Z=z(t|z) =

2 + 4 exp(−t)− 2 exp(−z)− 2 exp(−t+ z)

2 + 2 exp(−t)− 2 exp(−z)− exp(−t+ z)
if θ = 1,

being 1 when θ = 0. The function m1(z, t) belongs to the logistic family with
some preliminary transformation of the conditioning variables. To be more
specific we have (for β0 = 0 and β1 = 1)

m1(z, t; β) =
1

1 + exp(β0 + β1 ln(η1(z, t)))
.

This is the parametric model we fit to m1(z, t) in the simulations. The β
parameter in model m1(.; β) is estimated via maximization of the conditional

likelihood of the ∆i’s given the (Z̃i, T̃i)’s, for those subjects with ∆1ρ = 1
(see e.g. Dikta, 1998, 2000). The same estimation criterium is used for
the other presmoothing functions (m0 and m2) in this section. For m2(t) =

P
(

∆1 = 1|Z̃ = t,∆1ρ = 0
)

, we have

m2(t) =
1

1 + η2(t)
, where η2(t) =

λG(t)

λ0
Z(t)

and where λ0
Z(t) stands for the sub-hazard function of Z restricted to ρ = 0,

namely
λ0
Z(t) = P (Z = t, ρ = 0|Z ≥ t) = 1− p.

11
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Similarly as above, we fit the logistic model

m2(t; γ) =
1

1 + exp(γ0 + γ1 ln(η2(t)))

to estimate the function m2(t) in the simulations. As before, this logistic
model has the true presmoothing function m2 as a special case (γ0 = 0,γ1 =
1).

The aim of this simulation study is to compare the estimator by Meira-
Machado et al (2006) and the new estimator based on presmoothing ideas.
In order to measure the estimates’ relative performance, we computed the
integrated absolute bias, integrated variance and the integrated Mean Square
Error (MSE) of the estimates. For each simulated setting we derived the
analytic expression of p11(s, t), p13(s, t) and p23(s, t) so that the bias and the
MSE of the estimator could be examined. Sample sizes 50, 100 and 200 were
considered. In each simulation, K = 1000 samples were generated.

Let p̂kij(s, t) denote the estimated transition probability based on the kth
generated data set. For each fixed (s, t) we obtained the mean for all gener-
ated data sets, p̂ij(s, t) = 1

K

∑K
k=1 p̂

k
ij(s, t). We then computed the pointwise

estimates of the bias, variance and MSE as:

b̂ias(s, t) = pij(s, t)− p̂ij(s, t)

v̂ar(p̂ij(s, t)) =
1

K − 1

K∑
k=1

[p̂kij(s, t)− p̂ij(s, t)]2

M̂SE(p̂ij(s, t)) =
1

K

K∑
k=1

[p̂kij(s, t)− pij(s, t)]2

To summarize the results we also calculated the integrated absolute bias,
integrated variance and the integrated MSE, defined in Table 1. We fixed
the values of s using the quantiles 0.25, 0.5 and 0.75 of the exponential
distribution with rate 1. The results obtained in Table 2 and 3 were obtained
by numerical integration on the interval [s, t1] with t1 = 3, taking a grid of
step δ = 0.05.

In Tables 2 and 3 we report the results for the integrated absolute bias,
integrated variance and the integrated MSE attained by the proposed es-
timators for p23(s, t) when based on several presmoothing functions, in the

12
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Statistic Definition Estimator

Integrated absolute bias
∫ t1
s
|bias(s, t)|dt ∑t1

t=s |b̂ias(s, t)|δ
Integrated variance

∫ t1
s
var(p̂ij(s, t))dt

∑t1
t=s v̂ar(p̂ij(s, t))δ

Integrated MSE
∫ t1
s
MSE(p̂ij(s, t))dt

∑t1
t=s M̂SE(p̂ij(s, t))δ

Table 1: Summary statistics measuring bias, variance and mean square error.

scenario with θ = 1 (dependent transition times). The row labeled m cor-
responds to presmoothing with the true function m(z, t) = P (∆ = 1|Z̃ =
z, T̃ = t), which is unrealistic because this function will generally be un-
known. However, this row represents a ’gold standard’ the other methods
can be compared to. The row labeled with m(.; β, γ) corresponds to a semi-
parametric estimator which is obtained using a presmoothing based on a
parametric family which contains the true m. Specifically, we consider a
logistic model with the preliminary transformation of the conditioning vari-
ables Z̃ = z, T̃ = t shown before. Results for p̂11(s, t) and p̂13(s, t) are
shown in the web-appendix. Similarly, for p11(s, t) and for the denom-
inator of p13(s, t) we also perform logistic presmoothing for the function

m0(z) = P
(

∆1 = 1|Z̃ = z
)

, with the variable Z̃ transformed by − ln(τG−Z̃)

(so the parametric family contains the true m0(z)).
In order to investigate the robustness of the proposed estimator with re-

spect to miss-specifications of the binary regression family, we considered also
presmoothing via standard logistic models, without any preliminary trans-
formation of the transition times. This is labeled with m(., ξ) in Tables 2
and 3. Note that the true m and the true m0 do not belong to this para-
metric family. Finally, we also report the results pertaining to the estimator
in Meira-Machado et al (2006), which corresponds to the situation with no
presmoothing at all. This is labeled in the Tables as KM.

Some expected features are clearly seen in Tables 2 and 3. For exam-
ple, we see that the (integrated) MSE, bias and variance of p̂23(s, t) decrease
with an increasing sample size, while they increase with the censoring degree.
The best performance is attained by the estimator which makes use of the
true m, which was expected. However, in practice one must estimate the
function m. The lowest errors among the realistic versions of the estimators
correspond to the estimator based on the correctly specified parametric fam-
ily, m(.; β, γ). Finally, we see that the presmoothed estimator based on the
wrong parametric model m(.; ξ) is still (much) better than KM; the practical

13
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message is that it is worthwhile doing some presmoothing even when we are
not completely sure about the parametric family.

Compared to the estimator without any presmoothing (KM), it is proven
that the relative efficiency of the estimators based on presmoothing is al-
ways above 1. In special cases, the relative deficiency of the Kaplan-Meier
estimator is below 50%; this occurs for larger values of s, where the censor-
ing effects are stronger. This supports the belief that the relative benefits
of presmoothing will be seen more clearly in the presence of large censoring
degrees.

Although we restrict the integrated bias, variance and mean square error
(MSE) to the interval [s, 3], we verified that, in both settings, the enlarge-
ment of this interval favors the estimator based on presmoothing (results
not shown). This happens because higher levels of censoring are expected
in the right tail of the distribution. We also run simulations for mutually
independent transition times Tij. The results (shown in the web-appendix)
also revealed advantages on the use of presmoothing.

4. Colon cancer study

For illustration, we apply the proposed methods of Section 2 to data from
a large clinical trial on Duke’s stage III patients, affected by colon cancer,
that underwent a curative surgery for colo-rectal cancer (Moertel et al. 1990).
In this study, from the total of 929 patients, 468 developed recurrence and
among these 414 died. 38 patients died without recurrence. The rest of the
patients (423) remained alive and disease-free up to the end of the follow-
up. As mentioned in the Introduction recurrence can be expressed as an
intermediate event which can be modeled using an illness-death model.

Using the Cox proportional hazards model, we verified that the transition
rate from state 2 to state 3 is affected by the time spent in the previous
state. This allowed us to conclude that the Markov assumption may be
unsatisfactory for the colon cancer data set. In this section we will present
estimated transition probabilities calculated using the new approach, based
on presmoothed Kaplan-Meier weights and the estimators of Meira-Machado
et al (2006). Neither one of the approaches assume the process as being
Markovian.

In Figure 3 we illustrate differences between the estimated transition
probabilities pij(s, t), 1 ≤ i ≤ j ≤ 3 based on presmoothing the Kaplan-
Meier weights and the estimator corresponding to no presmoothing (KM;
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Meira-Machado et al 2006). The presmoothed estimator was obtained by
standard logistic regression for both m1 and m2. The value s was chosen to
be the 75th percentile of the sojourn time in state 1 (s = 1549 days). From
this figure we conclude that the new estimator have more jump points (corre-
sponding to patients with censored values of the total time) but with smaller
steps. The number of jump points and the size of the steps are related to
the censoring degree and to the sample size. We can also verify that both
methods provide similar point estimates for small time values. Departures
between both estimated curves can be more appreciated for larger time val-
ues where the censoring effects are stronger. In summary, the new approach
provides more reliable curves with less variability, specially at the right tail
of the lifetime distribution. Other values of s reported similar results.

5. Conclusions and final remarks

In this paper we have introduced new estimators for the transition proba-
bilities of a censored illness-death model. The new estimators are based on a
preliminary estimation (presmoothing) of the probability of censoring for the
total time, given the available information. This idea has been used before in
univariate survival analysis, but its application to multi-state survival data
is complicated since new problems arise. More explicitly, the illness-death
model involves presmoothing functions which are discontinuous, so a naive
estimation approach fails.

We have derived the consistency of the proposed estimators. The consis-
tency result is not restricted to parametric presmoothing, but it also includes
the possibility of using some nonparametric estimators to this end. The finite
sample performance of the introduced estimators was investigated through
simulations. The main conclusion is that presmoothing leads to improved es-
timators, even when there is some miss-specication in the parametric family
assumed for the presmoothing function. The relative benefits of presmooth-
ing are more clearly seen in the heavily censored case. The new method has
been illustrated using data from a colon cancer study.

The new estimators for the transition probabilities are consistent regard-
less the Markov condition. This is interesting because real problems are of-
ten far from markovianity and therefore the consistency of the time-honored
Aalen-Johansen estimator can not be ensured. To this regard, one may think
about the methods introduced here as a remarkable improvement (in the
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Figure 3: Estimated transition probabilities for pij(s, t) with s = 1549 based on the
Kaplan-Meier weights (dashed line) and based on presmoothed Kaplan-Meier weights
(solid line). Colon cancer data.

sense of having less variance) of previous non-Markovian estimators (Meira-
Machado et al. 2006).
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