
HAL Id: hal-00746098
https://hal.science/hal-00746098

Submitted on 27 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the use of double cross-validation for the
combination of proteomic mass spectral data for

enhanced diagnosis and prediction
B.J.A. Mertens, Y.E.M. van Der Burgt, B. Velstra, W.E. Mesker, R.A.E.M.

Tollenaar, A.M. Deelder

To cite this version:
B.J.A. Mertens, Y.E.M. van Der Burgt, B. Velstra, W.E. Mesker, R.A.E.M. Tollenaar, et al.. On the
use of double cross-validation for the combination of proteomic mass spectral data for enhanced diagno-
sis and prediction. Statistics and Probability Letters, 2011, 81 (7), pp.759. �10.1016/j.spl.2011.02.037�.
�hal-00746098�

https://hal.science/hal-00746098
https://hal.archives-ouvertes.fr


Accepted Manuscript

On the use of double cross-validation for the combination of proteomic
mass spectral data for enhanced diagnosis and prediction

B.J.A. Mertens, Y.E.M. van der Burgt, B. Velstra, W.E. Mesker,
R.A.E.M. Tollenaar,
A.M. Deelder

PII: S0167-7152(11)00083-6
DOI: 10.1016/j.spl.2011.02.037
Reference: STAPRO 5935

To appear in: Statistics and Probability Letters

Please cite this article as: Mertens, B.J.A., van der Burgt, Y.E.M., Velstra, B., Mesker, W.E.,
Tollenaar, R.A.E.M., Deelder, A.M., On the use of double cross-validation for the combination
of proteomic mass spectral data for enhanced diagnosis and prediction. Statistics and
Probability Letters (2011), doi:10.1016/j.spl.2011.02.037

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.spl.2011.02.037


On the use of double cross-validation for the

combination of proteomic mass spectral data for

enhanced diagnosis and prediction.

Mertens, B. J. A.1∗, Burgt, Y.E.M. van der3,Velstra, B.2, Mesker, W.E.2,
Tollenaar, R.A.E.M.2 and Deelder, A.M.3.

February 24, 2011

Departments of Medical Statistics1, Surgery2 and Biomolecular Mass Spectrometry3,
Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Nether-
lands

Keywords: Clinical proteomics, mass spectrometry, predictive data fusion, di-
agnosis, double cross-validation, classification, model combination.

Abstract

We consider a proteomic mass spectrometry case-control study for the
calibration of a diagnostic rule for the detection of early-stage breast can-
cer. For each patient, a pair of two distinct mass spectra is recorded,
each of which derived from a different prior fractionation procedure on
the available patient serum. We propose a procedure to combine the dis-
tinct spectral expressions from patients for the calibration of a diagnostic
discriminant rule. This is achieved by first calibrating two distinct pre-
diction rules separately, each of which on only one of the two available
spectral data sources. A double cross-validatory approach is used to sum-
marize the available spectral data using the two classifiers to posterior
class probabilities, on which a combined predictor can be calibrated.

1 Introduction

The need for novel tools for early diagnosis in cancer is widely acknowledged.
Clinical proteomics has emerged as powerful strategy to develop such tools. This
applies particularly for body fluid protein profiling based on mass spectrometry
(MS), which holds great promise for personalized medicine (Aebersold et al.
2003). The problem of calibrating such an early diagnosis tool based on MS-
prowling data obtained from patient serum samples has been considered by de
Noo et al. (2006) and Mertens et al. (2006, 2008), in an application to breast
cancer. These studies describe what is now a standard MS-based proteomics
case-control protocol which collects both patient and healthy control samples
that are pre-processed to obtain a sub-class of proteins prior to the spectral
measurement. This strategy of sub-sampling is often referred to as fractionation
or sample clean-up. Such a prior reduction to a protein sub-class is necessary
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to obtain good quality spectrometry data. The exact approach for fractionation
depends on the type of mass analysis further used, in this case matrix-assisted
laser desorption ionization time-of-flight (MALDI-TOF) MS (Bruker Daltonics).

For the data presented in this paper, fractionation is performed by mixing
prepared serum samples with magnetic beads which have specific physicochem-
ical binding properties. First the proteins attach to the beads, then the mixture
is washed and finally the proteins are eluted to yield a subset of proteins suitable
for MALDI-TOF MS. For this purpose, the eluate is spotted onto plates after
mixing with matrix solution. The original above mentioned papers discussed
MS-based protein profiling using hydrophobic WCX (Weak Cation Exchange)
beads for pre-processing and provide more detail on the procedures and proto-
cols (de Noo 2006 and Mertens et al. (2006, 2008).

One way to address the problem of sub-sampling is to obtain repeated (spec-
tral) measurements for each patient, each time changing the fractionation step
prior to measurement so that a larger fraction of the proteome is covered by
the joint set of measurements. The objective of the analysis is then to com-
bine the distinct spectra from individuals in such a manner that allows for
improved predictions or diagnostic classifications - should such be achievable -
and subsequently verify the extent of improvement over using individual single-
fractionation spectra only.

In this paper, we will again consider spectra generated from the WCX
beads and augment the data with one additional spectrum for each individual
which is generated from a distinct fractionation step using C18 beads. Details
on the C18 bead fractionation have been reported previously (Villanueva et
al. 2004)(Nicolardi et al. 2010). A case-control sample of 307 individuals was
obtained consisting of 105 breast cancer cases and 202 healthy controls from
each of which a serum sample was obtained. Fractionation was achieved in
the above described manner using the two distinct beads, each time processing
part of the serum with each bead type separately, resulting in two processed
serum samples from each of which a MALDI-TOF spectrum is obtained. For
the purpose of this paper, we restrict attention to spectra reduced to a list of
identified peaks, each of which is summarized to its integrated value under the
peak curve. This reduction is however not fundamental to the methodology
described further on. This gives for each ith patient, i = 1, ..., n a paired sets
of spectral measurements X1 and X2 consisting of the spectral data generated
from the first (WCX) and second (C18) bead processing respectively such that

X1 =




x1
1

.

.

.
x1

n


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where x1
i = (x1

i1, ..., x
1
il) and x2

i = (x2
i1, ..., x

2
im) with n = 307 and l = 48 and

m = 42 represent the dimensionality of the peak list for the WCX and C18 based
spectra respectively. To complete the observed information on individuals, we
have the binary case-control outcome Y which equals 1 for cases or 0 for controls.

The structure of the paper is as follows. In the first instance we repeat the
double cross-validatory analyses proposed by Mertens et al. (2006) for both
the WCX and C18 spectra separately. We then explain how these ‘within-bead’
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double cross-validatory results may also be used to allow predictive combination
and evaluation of the distinct spectra. Next we present a comparative analysis
between the single-bead analyses and the double cross-validation combination
and demonstrate how predictive performance improves for the combination. For
consistency with existing results and research, we focus on analysis and com-
bination of linear discrimination results as presented in the original papers of
Mertens et al. (2006) in the first instance and then also introduce an alterna-
tive analysis via Random Forests for comparison. Finally, we show that näıve
combinations of the two spectral data sets do not improve on single-spectrum
based approaches for these data.

2 Single-spectrum based analysis

Mertens et al. (2008) and de Noo et al. (2006) describe a double cross-validatory
implementation of linear discriminant analysis for the calibration of a diagnostic
rule based on a single spectrum per patient (and for a single fractionation).
The key idea in double cross-validation is to embed a (leave-one-out) ‘inner’
cross-validatory loop within a secondary ‘outer’ cross-validatory loop, where
the inner loop is used to identify an optimal tuning parameter (in some sense)
for calibration of diagnostic performance of some chosen classifier rule and the
outer loop is used to obtain an unbiased estimate of the predictive performance
of the approach across all observations by applying the chosen optimized rules
from the inner layer to the left-out datum. The final calibration of the prediction
rule may then be obtained from one last application of a single leave-one-out
cross-validation to the chosen classifier scheme - or alternatively - investigating
the chosen tuning parameters for each individual left-out datum within the outer
loop, as chosen based on cross-validated assessment within the inner loop. Yet
another alternative for the prediction of new observations is to use the full set
of n predictors calibrated in the inner loop for new observations. Mertens et
al. (2006) describe the procedures and application for spectrometry in detail,
which goes back to suggestions in Stone’s seminal paper on cross-validation
(1974, pages 126-7) whose ideas were further developed by Wolpert (1992) and
subsequently applied by Breiman to the regression context (Breiman 1996).

For consistency with the original papers, we will focus on simple linear dis-
crimination based on prior principal component dimension reduction, such that
the only tuning parameter is the number of components to keep from the first
component onwards. We note however that this choice is not crucial and any
classifier could be used, such as a ridge shrinkage based calibration, a Random
Forest or any other method. The presented approach has been thoroughly vali-
dated on past spectral data and experiments (see above and related papers such
as Alagaratnam et al. 2008) and proved effective in the International Competi-
tion on Proteomic Diagnosis (Mertens 2008). We also refer the interested reader
to Hand (2006), for discussion on the relative merit of simple linear classifiers,
which arguments apply generally and certainly for relatively small sample sizes
as in this experiment.

Table 1 shows classification results from separate double cross-validatory
analyses for both the WCX and C18 based data using the linear discriminant
approach (second and fourth column LIN). Shown are the error rate, Brier score
(B), deviance and area under the ROC curve (AUC), all of which are based on
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the double cross-validated predicted class probabilities. Our definitions for Brier
score, deviance and AUC are as below.

B =
1
n

∑

i

[1− p(c(i) | xi)]2,

deviance = −2
∑

i

log(p(c(i) | xi))

where p(c(i) | xi) is the double cross-validated predicted a-posteriori class prob-
ability for the correct class c(i) for each ith sample and n is the total sample
size.

AUC =
1

n1n2

∑

i∈G1

∑

j∈G2

[I(p(1 | xi) > p(1 | xj)) + 0.5 ∗ I(p(1 | xi) = p(1 | xj))],

where G1 and G2 refer to the sample index labels for the cases and controls
group respectively. For class assignments, we use a threshold of 0.5 here and
throughout the remainder of the paper, which is arbitrary but sufficient for
evaluation and comparison of diagnostic potential. It can be seen that both
WCX and C18 have comparable classification performance, though the deviance
for the C18 data is slightly larger.

Table 1: Double cross-validatory classification performance measures.
WCX C18 WCX and C18
LIN RF LIN RF MIX RF LG

error 0.15 0.20 (0.20) 0.14 0.26 (0.33) 0.091 0.091 (0.091) 0.098
Brier 0.11 0.15 (0.15) 0.11 0.18 (0.18) 0.084 0.088 (0.088) 0.080

deviance 242.4 288.5 (287.7) 266.8 333.9 (335.7) 186.9 221.1 (220.9) 175.9
AUC 0.91 0.85 (0.85) 0.89 0.78 (0.77) 0.94 0.92 (0.92) 0.93

For comparison, we also calculated Random Forest classifiers (Breiman 2001)
for both the WCX and C18 data, using standard calibration settings, sampling
5000 trees per Forest, each calibrated from bootstrap samples of size 307 drawn
with replacement and using a random input selection of 6 measurements for
splitting at each node (the default value - floor of

√
42 and

√
48). Optimal

splits were selected based on the Gini index (Hand 1997). Within each Forest,
trees were grown till node purity was obtained for all final nodes and without
further pruning. Calculations were carried out in Matlab (Matlab 2010) using
a MEX wrapper file which interfaces to Andy Liaw’s C code which is used in
the R package randomForest (Cran 2010).

Rather than reporting the out-of-bag classification results in the first in-
stance, we embedded the Random Forest calibrations in a single leave-one-out
outer loop, such that for each left-out datum the entire Random Forest cali-
bration was repeated and then applied to the left out datum, for consistency
and in analogy with the doubly cross-validated linear discriminant approach.
Results are presented in columns three and five of table 1 (RF) and show the
performance to be consistently worse than achieved with the linear approach.
The results from a single Random Forest calibration using the out-of-bag pre-
dictions are shown in brackets for comparison. The median out-of-bag error
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rates for this single classifier were 0.20 and 0.27 for WCX and C18 respectively.
Clearly, the RF-based calibrations are not competitive with those from the lin-
ear approach and hence the remainder of the paper will be based on the double
cross-validation linear discriminant class probabilities.

3 Double cross-validatory combining of spectra
for prediction and classification

Double cross-validation is not restricted to the joint calibration and assessment
of predictive rules. An alternative view of double cross-validation relevant to
predictive data combination or fusion is that it replaces the original sets of
predictors X1 and X2 with the sets of double cross-validated predicted proba-
bilities p1 = (p1

1, ..., p
1
n)T and p2 = (p2

1, ..., p
2
n)T . These may be used as joint new

input variables for the construction of a combined classifier, as has already been
recognized by Wolpert (1992) and Breiman ( 1996) for example. Nevertheless,
the focus of these authors was primarily on the combination of distinct models
(or different re-calibrations of the same basic model or classification method) on
the same data. In principle however, there is no restriction within the basic idea
to prevent application to the combination of the same basic model calibrated
from distinct datasets, which will be the focus and approach for the remainder
of this paper. For this reason, we will in the following on occasion loosely refer
to ‘model’ and ‘dataset’ interchangeably, as we are effectively combining the
data through the combination of the distinct models calibrated on them. Model
combination methods have seen many applications and publications since these
seminal papers, the paper by Datta and Datta (2010) being a recent addition
for example.

3.1 Linear mixture combination

One of the simplest ways to combine the prediction p1 and p2 is to consider
mixed versions of the separate prediction probabilities

p = wp1 + (1− w)p2

with p = (p1, ..., pn)T the newly calibrated class probabilities vector and w some
number in the interval [0, 1]. Each choice of w provides a combined classifier
and thus we may seek to optimize the final prediction rule by estimating the
parameter w in some sense. Viewed this way, the parameter w expresses the
optimal balance between the WCX and C18-based predictions, with the two
extreme choices with w either 0 or 1 excluding the WCX or C18 set completely.
The latter could also give rise to a testing problem on the relative merit of the
WCX or C18 measurements (see further).

To start the analysis, we will take an even simpler view of the problem by
focusing solely on the predictive aspect, by taking w = 0.5 and thus enforcing
equal weight on both the WCX and C18 sets. This latter choice may be defended
by the a priori expectation that both the WCX and C18 sets must likely have
some complementary predictive power - or at least predictive ability in their
own right - and hence combination should allow for the derivation of improved
classifiers, as well as the flat maximum effect (Hand 1997) which says that the
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predictive ability of classifiers tends to be relatively insensitive to the precise
choice of relative weights about some optimal value, hence the choice of equal
weights here. The first assumption could be supported by the simple fact that
the two sets were measured at all, implying the expectation.

The advantage of this approach is that no further optimization of any kind is
required and - most importantly - that the double cross-validatory nature of the
predicted probabilities is preserved entirely, which allows us to directly obtain
the unbiased evaluation of predictive performance. These are presented in the
sixth column of table 1 (MIX). It is clear that the combination improves upon
both the WCX and C18-only based results, and this both in terms of error rate
and accuracy, as evident from both the Brier and deviance scores.

Figure 1 shows a scatterplot representation of both the WCX and C18 data
for cases and controls separately to give an insight in how the combination
allows for improved predictions. Vertical axes are case probabilities based on
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Figure 1: Separate scatter plots for cases and controls versus the double cross-
validatory posterior class probabilities calculated from the WCX spectral data
only (on the y-axis, p1) and from the C18 spectral data only (x-axis, p2). Sym-
bols are plotted blue when correctly classified by the linear mixture combination
and red otherwise.

the WCX data (p1) and the corresponding case probabilities based on the C18
data are on the horizontal axis (p2). Plotting symbols are shown as blue if
correctly classified based on the mixture combination and red otherwise. The
figure shows that large discrepancies can occur between the WCX and C18 based
assignments, which are found in the first and fourth quadrant. The picture
shows how the combination works, as data above the first diagonal within these
quadrants is assigned to the correct class for the cases data and likewise for
observations below the first diagonal for control data. There are 57 observations
in the first and fourth quadrants in total, 29 of which are cases of which 21 are
classified correct as yet by the combination and 28 are controls, of which 24 are
recovered by the combination. Data within second and third quadrant will be
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classified correctly always by the combination for the cases and control groups
respectively, as both methods agree in these quadrants. There are 234 such
observations, of which 67 in the cases group and 167 in the control group. All
observations must be misclassified by the combination within the third and
second quadrant for cases and controls respectively, as both methods jointly
calibrate incorrect assignments here, which can not be recovered by the linear
mixture combination. There are 16 such observations of which 9 cases and
7 controls. The classification improvement is thus mainly due to 45 (21+24)
out of 57 observations in the first and fourth quadrant shifting to the correct
assignment (here implicitly counting any incorrect assignment by either - but
not necessarily both - the WCX or C18 single-spectrum based methods as a
‘false’ try) as well as improvement in precision of the calibrated posterior class
probabilities.

3.2 Random Forest combination

Calibration
The above linear mixture restriction may be overly restrictive as it enforces the
first diagonal as the decision surface. To evaluate this, we ran a Random Forest
classifier on the set of double cross-validation predictions {p1,p2}. Because
the Random Forest classifier involves additional data-based estimation and to
maintain the double cross-validatory estimation of classification performance, we
must again embed the Random Forest calibrations within an additional single
leave-one-out cross-validatory loop as explained before for the single-spectrum
based RF analysis, this time leaving out each double cross-validated pair (p1

i , p
2
i )

in turn and calculate the Forest on the remainder. We used identical settings
as given for the single-spectrum analysis, except that the number of randomly
selected input measurements for splitting at each node was set to 1, such that
either the WCX-based or C18-based probabilities were used for splitting any
node. The seventh column of table 1 shows the results (RF), which indicate that
although the RF result comes very close to the mixture-based results no further
improvement is obtained in a predictive sense above those already given by
the simple mixture-based analysis. The double cross-validated deviance grows
larger indicating some loss of accuracy. The classification results from a single
Random Forest calibration using the out-of-bag based predictions are shown
in brackets for comparison. The median out-of-bag error rate for this single
classifier was 0.091.

Figure 2 shows two graphical representations of the obtained data combi-
nation. Two graphs are shown with the axes defined as in figure 1. The left
figure shows the fitted decision surface, plotting light blue for regions assigned
to control and light red for the assigned cases region. The actual observations
are superimposed with blue plotting symbol for controls and red for cases. The
right plot shows the contours of the fitted class probability surface.

Model importance measures
Model importance measures may be derived based on a single Random Forest
calibration by randomly permuting the (in this case two, one for the C18 data,
and the other for the WCX data) input variables separately after the model fit
and running the new permuted input matrices down the Forest for each such
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Figure 2: Random Forest decision surface (left plot) and posterior probability
surface (right plot) versus single-spectrum double cross-validated posterior class
probabilities as in figure 1. Light red indicates assignment to the cases class
and blue for the control group.

permutation, each time monitoring changes in predictive performance. Since
we are using the double cross-validatory calibrated probabilities {p1,p2}, these
importance measures are not affected by correlations between peaks within the
spectra (see Barrett et al. 2009 for discussion on Random Forest model impor-
tance in the presence of extreme correlation in proteomic mass spectrometry
application). Table 2 shows importance measures (imp) defined as the mean
percentage reduction in classification accuracy for cases and controls separately
as well as for total accuracy. Associated standard deviations and t-values are
also shown. Results suggest that mean classification performance reductions are
about equal for both WCX and C18 using this measure and much larger than
the associated standard errors. The total mean reduction in Gini index was 74.2
and 78.7 for the C18 and WCX data respectively. An alternative comparison is

Table 2: Importance measures based on a single Random Forest calibration.
cases controls total

bead imp (s.e.) t imp (s.e.) t imp (s.e.) t
C18 0.18 (0.0093) 19.7 0.14 (0.0093) 14.6 0.15 (0.012) 12.3

WCX 0.17 (0.0091) 18.8 0.13 (0.0088) 14.8 0.14 (0.012) 12.3

between the median out-of-bag error rates of a single Random Forest on the joint
WCX and C18 data (0.091, Sens=0.84, Spec=0.95) and those from a RF cal-
culated on the WCX-based probabilities p1 only (0.22, Sens=0.69, Spec=0.83)
and likewise, when only using the C18-based probabilities p2 (0.19, Sens=0.73,
Spec=0.84). This leads to somewhat smaller but still substantive differences as
compared to the importance measures calculation.
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It is of interest to use the Random Forest to obtain a measure of proximity
between observations, defined as the number of times any pair is classified into
the same end-node, which provides a symmetric matrix of proximity measures
(Breiman 2004). Unfortunately, multi-dimensional scaling representations of
this matrix have been found to be of less use in practical data analyses as the
graphs tend to have similar ‘star-like’ configurations across distinct datasets.
We therefore derived an alternative summary by calculating for all case-to-case
pairs the percentage of available pairs having a proximity value at least as great
as λ ∈ [0, 1] and monitoring the reduction in the fraction as λ increases. This cal-
culation is then repeated for the set of all control-to-control pairs and likewise
for the set of cases-to-control pairs. The resulting summary is automatically
adjusted for the size differences in the available pairs sets. Figure 3 shows the
graph which shows the decreasing percentages of pairs being similar when the
desired proximity level is increased. Controls seem to have higher similarity lev-
els as compared to the cases group, which may correspond to heterogeneity due
to distinct cancer subtype classifications within this group. Cases-to-controls
have greatest dissimilarity at any level of proximity, as would be expected in
a classification problem where discriminant information is available to (partly)
distinguish cases from controls.
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Figure 3: Fractions of pairs sharing a specified level of proximity (or higher)
for the case-to-case, control-to-controls and cases-to-controls sets of pairs.

3.3 Logistic regression calibration combination

Calibration
An alternative to linear mixture combination or a non-parametric approach such
as Random Forest is to calibrate the final class probabilities through a (semi)
parametric model such as logistic regression, based on the set {p1,p2}. As
double cross-validation reduces the predictor data to a low-dimensional space,
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there is no need to use special optimization tools such as shrinkage regression
and simple maximum likelihood fitting can be used - as long as we embed
the calibration within a single leave-one-out cross-validatory layer as for the RF
calibration. Strictly speaking, a more apt description of such an approach would
be as logistic regression calibration, since the double cross-validatory summaries
are not only combined (as in the linear mixture method) but also recalibrated, as
suggested by Cox (1958). The last column of table 1 shows the cross-validation
based performance results in the last column (LG), which are comparable with
those from the linear mixture and Random Forest except for a further reduction
in deviance.

Model importance measures
Table 3 shows the maximum likelihood estimates from a fit of the logistic model

log
pi

1− pi
= α+ β1p

1
i + β2p

2
i

on the full data. The cross-validated deviance of this full model equals 175.9

Table 3: Logistic regression maximum likelihood estimates.
coef s.e. t

Intercept (alpha) -3.62 0.38 -9.47
WCX (β1) 3.85 0.57 6.76

C18 (β2) 3.48 0.57 6.06

(error rate=0.098, B=0.080, AUC=0.93), which increases to 226.60 on removing
the WCX data (difference of 50.7 and error rate=0.14, B=0.11, AUC=0.86)
and to 216.2 on removing the C18 data (difference of 40.3 and error rate=0.14,
B=0.11, AUC=0.90). It can be seen how both the C18 and WCX estimated
regression effects are of comparable magnitude and highly significant, judging
from both the deviance changes as well as from the sizes of estimated regression
effects in comparison to standard errors. An alternative comparison is directly
via the calibrated class assignments of the models themselves by comparing the
error rates between the cross-validated predictions from a recalibration of the
logistic model using the WCX data only (p1) and the cross-validation predictions
based on the combination logistic model (using a threshold of 0.5). We score
the cross-validation classifications as either correctly or incorrectly identified (0
or 1) and then compare these scores with a McNemar test, which gives highly
significant test outcome (P=0.024), indicating difference between the error rates
when leaving out the WCX data. Repeating this procedure for a comparison
using classifications based on C18 data only (p2) and the logistic model-based
combination approach gave a similarly significant result (P=0.024).

The observed difference between estimated regression coefficients is 0.37 with
a 95% confidence interval estimate of (-1.31, 2.04). We next refit the logistic
model with the additional restriction that both regression coefficients are equal
β1 = β2 = β such that

log
pi

1− pi
= α+ βp1

i + βp2
i = α+ β(p1

i + p2
i )
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such that we restrict the decision surface to be parallel to the first diagonal
(see figure 1). The fitted regression coefficients are -3.59 and 3.66 for inter-
cept and regression term respectively with a cross-validated model deviance of
174.2 (difference of 1.6 relative to the full model and error rate=0.097, B=0.078,
AUC=0.93). Class assignments are identical between both models for all obser-
vations except two (using the McNemar test procedure on cross-validated scores
as explained above gives P≈ 1).

These results provide some confirmation on the validity of the linear mix-
ture assumption using equal weights between both WCX and C18 spectral data.
They are however also in line with the Random Forest ‘model importance’ mea-
sures which suggest similar strength predictive contributions from both the
WCX and C18 data and that the combination of data sources improves on
using a single-source spectrum only.

4 Discussion

While this paper is concerned with predictive combination of multiple proteomic
spectra, it could form a general template for the problem of predictive calibra-
tion when distinct ‘omics’ data sources must be combined. Such combinations
are difficult because they are easily affected by systematic differences in ei-
ther scaling or batch effects from set to set, which causes problems for most
standard shrinkage methods, such as ridge, lasso or dimension reduction based
approaches. To illustrate this problem, we carried out a simple double cross-
validatory linear discriminant analysis on the combined original WCX and C18
data matrix X = [X1X2]. This gave a total error rate of 0.16 (Sens=0.76,
Spec=0.88), B=0.12, deviance=250.8 and AUC=0.90 which is close to but nev-
ertheless slightly worse than the WCX or C18-only based results reported in
table 1. Since Random Forests are based on variable selection, the calibration
should be insensitive to scaling and hence we estimated leave-one-out posterior
class probabilities using RF on the joined dataset. The cross-validated per-
formance measures were 0.18 for the total error rate (Sens=0.63, Spec=0.92),
B=0.15, deviance=291.2 and Auc=0.84. Hence, a näıve data combination ap-
proach based on simply combining the measures data does not seem to work for
this data, at least for classical linear discriminant methods or an off-the-shelf
classifier such as RF.

One of the advantages of the double cross-validatory combination approach
is that it automatically adjusts for such effects as differences in scaling between
sets, simply because it replaces the original data with the calibrated posterior
class probabilities within each set separately prior to the combination. The prior
calculation of the double cross-validatory summaries is computationally highly
intensive. However, significant gains in computing can be achieved through
application of some rank downdating matrix algebra as explained by Mertens
(1998, 2001). Once these cross-validatory summaries have been obtained, the
predictive combination is almost for free (mixture with fixed weights) or requires
an additional single leave-one-out loop at most as explained for the RF or logistic
regression model combinations.

A second advantage is that standard variable importance measures or model
comparison techniques can be used to judge the relative strength of the contribu-
tions to the combined predictor, as we have shown for both the RF and logistic
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regression combination. Furthermore, these combinations can be executed with
any standard statistical software package (such as SPSS e.g.) - once the dou-
ble cross-validatory summaries have been obtained or provided - which in turn
implies that any standard statistical classification approach could in principle
be used to combine the summary predictors {p1,p2}, besides the methods used
in this paper. This can be important in practical medical sciences consultation
settings where such data must be routinely combined, as such work could in
principle be done by clinicians or biomedical researchers after some basic train-
ing and with supervision in statistical analysis, after the double cross-validatory
summaries have been provided.

This paper has focused on the methodological problem of predictive com-
bination solely. Application and publication of the results in a clinical setting
would however require further work in identifying the underlying peaks which
drive the classification (see also comments by Breiman 2001 on this aspect). In
principle however, no novel methodology is required for this as this could be
easily achieved through repetition of the analyses described in Mertens et al.
(2008) and then simply repeating some of the analyses presented in this pa-
per, which is a common approach to the problem in many clinical applications
papers. As this is beyond the purpose of this publication, we leave this work
for presentation in a follow-up paper which will go into more depth on these
aspects.
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