
HAL Id: hal-00746055
https://hal.science/hal-00746055

Submitted on 9 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-driven execution of service-based applications
Diana Moreno, Elmehdi Damou

To cite this version:
Diana Moreno, Elmehdi Damou. Model-driven execution of service-based applications. IDM 2011 -
Journées sur l’Ingénierie Dirigée par les Modèles, Jun 2011, Lille, France. pp.51-56. �hal-00746055�

https://hal.science/hal-00746055
https://hal.archives-ouvertes.fr

Model-driven execution of service-based
applications

Diana Moreno-Garcia — Elmehdi Damou

Grenoble Informatics Laboratory - LIG

220, rue de la Chimie

Domaine Universitaire, BP53

38041 Grenoble Cedex 9

{diana-guadalupe.moreno-garcia, elmehdi.damou}@imag.fr

ABSTRACT. The design, development and execution of dynamic applications is challenging

since their execution context is unknown at design-time. In this paper we present a model-

driven approach where a service-based application (its goal and properties) is defined at

design-time by several models. At runtime, these models are used by our execution platform,

the APplication Abstract Machine (APAM), in order to control the application’s execution.

The APAM delegates the resolution of services to specific managers, in order to

ensure/enforce the fulfillment of the application’s goal.

RÉSUMÉ. Etant donné que le contexte d'exécution d’une application dynamique n'est pas

connu à l’avance, la conception, le développement et la gestion de l’exécution de ce type

d’applications représentent un véritable défi. Dans cet article, nous présentons une approche

dirigée par les modèles dans laquelle une application à services (son but et ses propriétés) est

définie à la conception à travers divers modèles. A l'exécution, ces modèles sont utilisés par

notre plate-forme d’exécution APAM (APplication Abstract Machine) pour guider l’exécution

de l’application. APAM délègue les choix de services à des gestionnaires spécifiques, afin

d’assurer/imposer l’accomplissement de l'objectif de l'application.

KEYWORDS: service-based applications, MDE, dynamic systems, service execution platforms,

evolution, models@runtime.

MOTS-CLÉS : applications à services, IDM, systèmes dynamiques, plates-formes d’exécution,

évolution, modèles à l’exécution.

1. Introduction

The Service-Oriented Computing (SOC) approach proposes an interaction

protocol in which a client discovers available services from a registry through the

service description, and selects and uses the “most appropriate” one (Papazoglou et

al., 2007). This approach emphasizes that many implementations and instances of a

service may be available, and that the selection of the implementations or instances

can be done at any time during the software life-cycle, from design to runtime. Thus,

SOC is especially well-suited to build new application types, such as ubiquitous

applications where services represent the functionalities provided by devices.

These new types of applications need to use the available services in

opportunistic and dynamic ways, and to evolve at runtime. Opportunism means

using the services available at runtime, instead of installing and instantiating those

planned before execution. Dynamism considers that services can appear and

disappear during execution. Evolution considers that new functionalities or

requirements can be added at runtime to adapt the application to new execution

environments. Controlling the execution and evolution of an application can require

re-evaluating decisions taken during design-time. Thus, building service-based

applications requires (i) an application description allowing specifying opportunism,

dynamism, and adaptation properties, leaving flexibility at runtime, and (ii) a

runtime platform that manages the application execution in order to ensure/enforce

the fulfillment of its definition (i.e. the goal) despite the environment variations.

Our goal is to extend the usage of software models produced in model-driven

engineering (MDE) to runtime environments. Then, we use design models to

manage the application execution enabling to perform adaptations, and ultimately to

fix design errors or to include new design decisions into the running system.

This paper shows the general principles of our approach. We propose a concept

of composite addressing the needs of describing opportunistic, dynamic and

adaptive service-based applications. Component selection and adaptation can be

performed all along the application life-cycle, ensuring the fulfillment of the

application description. We also propose environments and platforms supporting

these concepts and mechanisms in the different phases of the application life-cycle,

from design to runtime. The paper is structured as follows. Section 2 presents our

application model definition. Section 3 shows how an application model is executed

by our execution platform for service-based applications. Section 4 presents how the

models defining different application properties (concerns) are controlled by specific

managers. Finally, section 5 presents the conclusions of our work.

2. Application Model

We consider a software project as a succession of phases whose purposes are to

gradually develop and select the application’s components. These phases are

performed by humans before execution and by machines at execution. In order to

automate component selection at all phases and to control the application execution

and evolution, at least its goal and properties must be explicit. Nevertheless, it is

difficult to define explicitly at design-time, what a dynamic and opportunist

application is. It is due, among other things, to the unpredictable availability of its

components (e.g. mobile devices, services launched by third parties). Therefore, the

composition (i.e. the exact assembly of components) of such an application, at a

given point in execution, cannot be fully anticipated at design-time.

Our approach relies on a composite concept which can describe an application in

abstract terms through the goal, properties and constraints that must be satisfied, but

also in terms of services and connections. A composite can be seen as the intentional

description of the application. We call this description the application model. It can

be refined, completed and adapted at any point in the application’s life-cycle. This

enables a flexible and iterative approach in which some parts of the application are

statically selected at design-time, while others are left open for opportunist and

dynamic selection at runtime. Execution is seen in our approach as the last iteration,

in which selections and adaptations are performed when needed. We argue then that

there is a continuum from design-time to runtime, where each point is represented

by a composite. All phases share the same service metamodel (Simon et al., 2010),

which is abstract enough and independent from specific platforms and technologies.

Its main concepts are service Specification, Implementation and Instance. This

metamodel was extended (Estublier et al., 2009) to introduce the concept of

composite, defined like a constrained service implementation that contains services.

We use SELECTA (Estublier et al., 2009), a constraint language which allows

specifying the required characteristics of the composite to build (see figure 1a for a

home application example), and an interpreter which analyses the application model

and selects components satisfying the constraints to constitute the application. With

our approach, properties like opportunism, dynamism, etc., can be specified into

specific independent models (see figure 1b for an opportunist model example) for

the application component services. Thus, our approach allows mixing different

modes of execution (e.g. opportunist and dynamic) for the application components.

Composite HomeApp {

 Provides Home;

 Select Thermometer[*](accuracy>90);

 Select Electricity;

 Delay Specification;

}

OpportunistModel HomeApp {

 Thermometer,WaterProbe,ElecProbe;

}

Figure 1a. Application Model Figure 1b. Opportunistic Model

At runtime, these models are controlled by the APplication Abstract Machine

(APAM) which is our execution platform for service-based applications. Concern-

driven managers are in charge of resolving and controlling the application services

according to a specific concern (e.g. opportunism, dynamism, distribution, etc.).

3. Application execution

The APAM interprets different application models in order to manage the

application execution. It is in charge of selecting the components that are best suited

for the application in the current context, and to binding between themselves. The

APAM manages two major models (see figure 2): the Service State Model (SSM)

and the Application State Model (ASM). The SSM (Simon et al., 2010) describes

the “real world”; it represents homogeneously all the services provided by several

execution platforms disregarding the technology (OSGi, iPOJO, Web services, etc.).

The ASM extends the SSM to manage the concept of composite; it represents the

state of an application at a given point in time. Like in (Blair et al., 2009), our

APAM model is a model@runtime that provides exact information about the

managed application; and the model is causally connected to the real service

platforms, allowing application adaptations to be performed at model level.

Executing a composite on the APAM consists in instantiating the different

components of the application by resolving the invoked specifications. When

resolving a specification, the corresponding implementation and instance objects are

created into the ASM. Due to their causal connection, the APAM translates these

actions into the “same” actions in the SSM, which has as consequence to deploy,

install and start the selected services on the underlying service platforms. The

APAM offers the possibility to extend the ASM by adding new concepts and

concerns. These new models will be interpreted by specific-concern managers,

which will manage the application services involved with a specific concern.

OSGi iPOJO UPnP

APAM

Opp. Manager

App. Manager

Service platforms

Dyn. Manager

 Repo

Dynamic Model

Opportunist Model

Application Model

Service State Model

Application State Model

Opportunist State Model

Dynamic State Model

Figure 2. APAM – General architecture

4. Application management

 The models defined by SELECTA are interpreted by specific managers. The

managers are in charge of enforcing the definition of the application for a specific

concern. A manager therefore knows and manages its “own” concepts, and

maintains a model representing the current state of the involved services. We have

identified different concerns – opportunism, dynamism, deployment, distribution,

and so on – and we have defined a manager for each one of them. In the following,

we present briefly three of these managers.

– The Application manager knows and manages the application model. Its goal

is to interpret the model and ensure/enforce that the execution conforms to its goal.

This manager is unaware of concepts like dynamism, deployment and distribution.

– The Opportunist manager knows the specified opportunist services, and uses

the SSM to select services, when required, from the execution platform.

– The Dynamic manager knows the concept of dynamic service. It listens to the

events from the SSM in order to be aware of the availability of the dynamic

components and act on the ASM to bind/unbind services appropriately.

Our managers control and adapt the application to the execution context based

on the concern-specific models. This approach based on models at runtime is, for us,

an important contribution into the domain attempting to blur the gap between

application’s design-time and execution (Baresi et al., 2010).

5. Conclusions

Our work focuses on service-based applications, in which the services making up

an application can be legacy, heterogeneous, dynamic and potentially shared with

other applications. We require application architectures to be extensible in different

ways, from supporting different platforms, to adding and managing new concerns.

The work presented here shows our approach to describe and execute an

opportunistic and dynamic service-based application. We have shown that such an

application definition can be split in independent models, interpreted by independent

managers; each manager being much focused and based on a very limited number of

concepts, making models compact and simple. We believe that the capability of the

system to model the behavior in simple and abstract models is a major contribution.

6. Bibliography

Papazoglou M.P., Traverso P., Dustdar S., and Leymann F., “Service-Oriented Computing:

State of the Art and Research Challenges”, IEEE Computer, vol. 40, 2007, pp. 64-71.

Simon E., Estublier J., and Moreno-Garcia D., “Extensible and General Service-Oriented

Platform. Experience with the Service Abstract Machine”, In IEEE Int. Conf. on Service

Computing (SCC), 2010, Miami, Florida, USA.

Estublier J., Dieng I.A., Simon E., and Vega G., “Flexible Composites and Automatic

Component Selection for Service-Based Applications”, 4th Int. Conf. on Evaluation of

Novel Approaches to Software Engineering (ENASE), 2009, Milan, Italy, pp. 6-10.

Blair G., Bencomo N., and France R.B., “Models@run.time”, Computer, 42(10):22–27, 2009.

Baresi L., and Ghezzi C., “The Disappearing Boundary Between Development-time and Run-

time”, In Proceedings of the FSE/SDP workshop on Future of software engineering

research (FoSER), 2010, Santa Fe, New Mexico, USA.

http://www-adele.imag.fr/members/Diana.Moreno.html
http://www-adele.imag.fr/publications/428
http://www-adele.imag.fr/publications/428

