
HAL Id: hal-00746043
https://hal.science/hal-00746043

Submitted on 26 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building FCA-Based Decision Trees for the Selection of
Heterogeneous Services

Stéphanie Chollet, Vincent Lestideau, Philippe Lalanda, Yoann Maurel,
Pierre Colomb, Olivier Raynaud

To cite this version:
Stéphanie Chollet, Vincent Lestideau, Philippe Lalanda, Yoann Maurel, Pierre Colomb, et al.. Build-
ing FCA-Based Decision Trees for the Selection of Heterogeneous Services. SCC 2011 - 8th Inter-
national Conference on Services Computing, Jul 2011, Washington DC, United States. pp.616-623,
�10.1109/SCC.2011.35�. �hal-00746043�

https://hal.science/hal-00746043
https://hal.archives-ouvertes.fr

Building FCA-based Decision Trees for the Selection of Heterogeneous Services

Stéphanie Chollet, Vincent Lestideau,

Philippe Lalanda, Yoann Maurel

Laboratoire d’Informatique de Grenoble

F-38041 Grenoble cedex 9, France

{stephanie.chollet, vincent.lestideau,

philippe.lalanda, yoann.maurel}@imag.fr

Pierre Colomb, Olivier Raynaud

Laboratoire d’Informatique, de Modélisation

et d’Optimisation des Systèmes

F-63173 Aubière cedex, France

{pierre.colomb, olivier.raynaud}@univ-bpclermont.fr

Abstract—Late-binding and substitutability offered by the
service-oriented approach improve adaptability but increase
the need for fast and efficient algorithms to select services. In
this paper, we proposed to use the Formal Concept Analysis
(FCA) approach as a classification tool to select services at run
time, according to user specifications. We propose to classify
existing services and generate a decision tree to help user select
the most appropriate service(s). One of advantages of using
FCA is the ability to select without additional cost an equivalent
service in the case of a service must be replaced at runtime. Our
approach have been implemented and validated on pervasive
use cases within a European collaborative project.

Keywords-Service selection, Service classification, Functional
and non-functional properties, Formal Concept Analysis.

I. INTRODUCTION

The emergence of service-oriented computing has facili-

tated the development and deployment of pervasive applica-

tions, providing assistance to people in their living environ-

ments. Most applications and devices are today exposed as

services and can be used in accordance with the service

pattern. In the plant floor, for instance, more and more

UPnP or DPWS devices are manufactured by major actors in

automation and control. Even embedded applications, used

in building or plants, are new exposed as Web services.

Obviously, service orientation comes with software qual-

ities of major importance. As with any planned reuse

approach, it supports rapid, high quality development of

software applications. Weak coupling between consumers

and providers reduces dependencies among composition

units, letting each element evolve separately. Late binding

and substitutability improve adaptability: a service chosen

or replaced at runtime, based on its current availability

and properties, is likely to better fulfill the consumer ex-

pectations. That being said, it is complex to conceive and

implement an application made of dynamic, heterogeneous

services and required to meet non functional requirements

like security.

A key issue in such context lies in the runtime selection of

relevant services in environments stuffed with devices and

application. Services selection has become a challenge be-

cause of the increase of the number of devices, often provid-

ing close functionalities but with different technologies and

different descriptions. No surprisingly, there is no common

format for description and no shared registry capabilities.

To solve this problem of heterogeneous descriptions, some

approaches have focused on classification of (web) services.

Azmeh et al. propose a tool named WSPAB [1] that aims

to define a complete solution for facilitating the task of

finding the most relevant Web Service. They use formal

concept analysis approach to classify Web Services and it is

based on the assumption that two operations are equivalent

if they have the same signature. However this criterion is

not always relevant because service functionalities cannot

always be described explicitly by signatures. Bianchini et

al. [2] provides ontology to organize services in the form of

e-services and to improve the service discovery.

Regarding selection many algorithms have been proposed

to select services trying to find the best service. Since the

concept of best service is rather subjective, most of these

works have introduced non-functional characteristics and

more particularly Quality of Service (QoS) criteria such as

response time, throughput, availability and reliability. These

quality-driven algorithms ensure that the selected services

meet the functionalities and the QoS requirements. Some

of these algorithms are based on brute-force approach of

seeking all possible solutions [3]. However these solutions

have a high cost in time and resources, which is a drawback

in a pervasive environment. To reduce the search time

other approaches have proposed heuristic-based solutions.

Mabrouk et al. [4] present an algorithm taking into account

the concept of dynamic binding allowing composition with

on-the fly services. Canfora et al. [5] propose to extend QoS-

based solutions to take into account the functional and non-

functional characteristics. These heuristic-based algorithms

make the selection more suitable for pervasive environments

but they focus mainly on web service technology and non-

functional criteria related to QoS.

Composing dynamic, heterogeneous services is however

not an academic fantasy! Applications frequently need to in-

tegrate UPnP-based and DPWS-based field devices and Web

Services for remote applications. Most services are dynamic:

smart devices join and leave the network at unpredictable

times; back office applications are regularly updated. In

addition, security has to be considered when building a

service-oriented application. In this paper, we will build on a

use case developed with Thales inc. in the European SODA1

project. It describes an alarm management system. The

system collects physical measures from the real environment

like temperature and humidity. Data are gathered, analyzed,

and then recorded. Finally, based on the analysis, actions

(storage, notification, and action on a machine) can be

triggered by the system. This alarm management system can

be implemented as a service orchestration as it is illustrated

by Figure 1.

Figure 1. Specification of an alarm system example.

The paper is organized as follows. First, theoretical foun-

dations of the Formal Concept Analysis (FCA) are given.

Section III deals with our FCA-based approach to select

appropriate services. Section IV details the different kinds

of classification and selection according to user request.

Section V presents the implementation of our approach.

Before the conclusion, we discuss the avantages of our work.

II. THEORETICAL FOUNDATIONS

We propose to use the Formal Concept Analysis method

to classify services at runtime as a function of user specifi-

cation. The goal of this classification is to provide flexibility

and efficiency in service selection.

Formal Concept Analysis (FCA) [6] is a mathematical

classification tool. It is used in many practical cases in many

domains including software engineering [7], data-mining

[8], and linguistics [9]... The purpose of this method is to

build a partially ordered structure, called concept lattice,

from a formal context. We propose to use this method to

classify available services of service registry according to

user specification.

Definition 1: A formal context K is a set of relations

between objects and attributes. It is denoted by K =
(O,A,R) where O and A are respectively sets of Objects

and Attributes, and R is a Relation between O and A. As an

example, Table I is an illustration of a formal context with

1SODA is a European project partly funded by French Ministry of
industry bringing together, among others, Schneider Electric, Thales and
Grenoble University.

O = {1, 2, 3, 4, 5, 6, 7} and A = {a, b, c, d, e}. A mark in

the array means that an attribute is provided by an object.

a b c d e

1 X X X
2 X X X
3 X X X
4 X X
5 X X
6 X
7 X

Table I
EXAMPLE OF FORMAL CONTEXT.

Definition 2: A formal concept C is a pair (E, I) where

E is a set of objects called Extent, I is a set of attributes

called Intent, and all the objects in E are in relation R with

all the attributes in I . Thus, the Extent of a concept is the

set of all objects sharing a set of common attributes, and the

Intent is the set of all attributes shared by the objects of the

Extent. Formally:

• E = {o ∈ O, ∀i ∈ I, (o, i) ∈ R},

• I = {a ∈ A, ∀e ∈ E, (e, a) ∈ R}.

Consequently, a formal concept C = (E, I) is made

of the objects in E which are exactly the set of objects

sharing the attributes in I . In the previous example (Table I),

({1, 2}; {b, c}) is a formal concept. Indeed, objects 1 and 2
share the attributes b and c. Contrarily, ({1, 2, 3}; {c, d}) and

({1, 2}; {c}) are not formal concepts.

By noting X a set of attributes, we define the function

ClosureK(X) which associates to X the concept made of

the set of objects sharing X and the other attributes shared

by this set of objects. Note that the computation of a formal

concept from a set of attributes X of size n has a complexity

of O(n×m) where m is the number of objects.

The set C(K) of all concepts induced by a context

can be ordered using the following partial order relation:

(E1, I1) <C (E2, I2) if E2 ⊂ E1 and I1 ⊂ I2.

Definition 3: A concept lattice is defined as the pair

(C(K), ≤C). It can be represented by a particular graph

called Hasse Diagram (Figure 2). Note that the computation

of a concept lattice from a formal context has a complexity

of O((n + m) × m × |C(K)|) where n is the number of

attributes and m is the number of objects ([10]). Most of

the time we have n << m and the complexity becomes

O(m2 × |C(K)|).
Definition 4: We call top (resp. bottom) the concept

whose the intent is equal to the set of all attributes (resp. of

all objects). Note that, most of the time, the extent of the

top (resp. the intent of the bottom) is the empty set. The top

(resp. bottom) is denoted by ⊤ (resp. ⊥)

Definition 5: Let two concepts (E1, I1) and (E2, I2) we

say that (E2, I2) is a successor of (E1, I1) if (E1, I1) <C

(E2, I2). Given I1 a subset of A, we note by successors(I1)

the set of successors of the concept (E1, I1).

Figure 2. Hasse Diagram of the formal context given in table I.

III. PROPOSITION

A. Principle

Our objective is to help user select services at runtime

among the currently available ones. Our approach is illus-

trated by the Figure 3. First, the user formulates a request for

service(s). As a function of the current runtime conditions,

a decision tree made of services meeting the request is

provided. The user then selects a service in the tree. This

approach provides more complete answers to user requests.

Instead of getting a single service, the user has a number

of possible services related in such a way that they can be

easily searched. Also, as we will see in more details, the tree

can be used to recover very rapidly from the disappearance

of the selected service.

Figure 3. Global approach.

A service request is made of mandatory features and

optional features. Mandatory features generally include the

services functionalities and a number of important char-

acteristics like security properties. Optional features can

include, for instance, a prefered technology or a prefered

device manufacturer. Of course, the scope of the mandatory

and optional features is very application-specific. Finally,

let us note here that, in this study, we work in well-defined

domains. In particular, our industrial partners perfectly know

the service interfaces they expect to use. They simply do not

know their dynamicity.

The two following sections detail the service registry and

the computation of the aforementionned decision tree.

B. Service Registry

The aim of the service registry is to maintain a global view

of the available services at runtime. Our service registry is

divided into two parts: an integration platform named ROSE

[11] and a context model.

The ROSE integration platform is an OSGi-based open

source middleware2. It monitors the runtime environment in

such a way that it traces services availability and provides

information about them. In pervasive environment, these ca-

pabilities are essential because services related to device are

very volatile. In fact, devices connections and disconnections

can be caused by many factors as diverse as users moves,

battery problems, users demands, updates [12].

Since ROSE detects all the services being in the envi-

ronment, we have defined a filter to compute application-

specific context models. The filter allows to specify the

services of interest at diverse levels of abstraction. In fact,

only the services of the interest for the application are se-

lected. For instance, a multimedia entertainment application

requires multimedia services such as movies library, TV...

We then propose to use the FCA approach, as defined in

section II, to organize the filtered services. More precisely,

as illustrated by Table II, the context model is a relation

between the filtered services (s1, ..., sn) and the possible

service features in the domain. We categorize the service

features into three groups :

• t: The service technologies (WS, UPnP, DPWS...),

• f : The service functionalities,

• nf : The non-functional properties required and/or pro-

vided by the service.

t1 ... ti f1 ... fj nf1 ... nfk
s1
...
sn

Table II
CONTEXT MODEL AS A FORMAL CONTEXT.

C. Decision Tree

From the context model expressed as a formal context, a

concept lattice can be computed. The lattice is composed of

a set of concepts that can be classified into two exclusive

groups, as illustrated by Figure 4:

• concepts with no real meaning. These concepts con-

tain in their intent a set of properties which is not

2http://wiki.chameleon.ow2.org/xwiki/bin/view/Main/Rose

usable. For example, all the concepts with an intent

composed of only non-functional properties do not

make sense. The bottom and the top of the lattice are

also meaningless. The bottom contains in its intent all

the attributes, i.e. all the functional and non-functional

properties, and the extent is empty because no service

can provide all the properties. Similarly, the top con-

tains in its extent all the services and the intent is empty

because it is not possible to have a common property

for all the services. For example, the type of service is

an exclusive property.

• concepts with sense. Contrarily to the previous group,

the intent of the concepts makes sense, i.e. the intent

contains coherent information. For example, at least one

functionality is in the intent.

This classification into concepts with or without applica-

tive meaning is key to our approach. According to concept

semantics, we can compute only the interesting concepts

and not the entire lattice. The computation of a lattice has

a complexity in O(m2 × |C(K)|). The space complexity is

in O(2n) since the number of concepts is potentially 2n.

Another limit of the entire lattice use is that we are in a

pervasive environment, i.e. services appear and disappear.

The algorithm for building lattices given in [10] is incre-

mental and allows to insert new elements in the lattice of

concepts without rebuilding the entire lattice. Unfortunately,

deleting an object in the context often implies to compute a

new lattice. For this reason it remains difficult to maintain

the lattice taking into account the arrival and departure of

services over long periods of time.

Figure 4. Example of concept classification.

We propose to compute only the interesting concepts

meeting a user request (Figure 5). The interesting concepts

are a subset of meaningful concepts extracted from the

lattice. The subset is a tree where the root element is a

formal concept and the nodes are the successors of the

formal concept. The successors are ordered as explain in

section II.

Figure 5. Example of decision tree.

The tree can be viewed as a decision tree which allows

to classify and select service according to the user request.

In the next section, we present how to compute the root

element and how to use the decision tree. Note that the

complexity to compute a concept and its successors is

O(m2 × |successors()|).

IV. CLASSIFICATION AND SELECTION

In this section, we present the computation and the use

of the decision tree for the different user requests. First, we

detail classification and selection for the activities of the

workflow defined in the introduction. Then, we explain the

impact of the annotations on the dataflow for selection.

In the following, a user request (denoted in bold) is

defined by a set of mandatory features (denoted by MF).

The result is a set of formal concepts which the extent

(denoted S) contains all services sharing a set of common

features, the mandatory features and possibly a new set of

found features (denoted FF).

A. From abstract services to concrete services

The classification and the selection of services are detailed

according to different criteria described in the user request.

The theoretical solution is illustrated by an example. We

propose to apply the computation on the extract of context

model defined in Table III.

W
S

U
P

n
P

D
P

W
S

T
em

p
er

at
u
re

(T
)

H
u
m

id
it

y
(H

)

A
u
th

en
ti

ca
ti

o
n

(A
)

C
o
n
fi

d
en

ti
al

it
y

(C
)

In
te

g
ri

ty
(I

)

S1 X X X

S2 X X X X

S3 X X X X

S4 X X X X

S5 X X X X

S6 X X X

S7 X X

S8 X X X

Table III
EXTRACT OF CONTEXT MODEL.

For clarification purposes, the extract of context model

contains only the functional attributes Temperature and

Humidity and only the services providing the Temperature

functionality. Three kinds of selection can be envisaged:

Selection only based on mandatory features. In Fig-

ure 1, Temperature activity is an example of such selection.

All the services providing the temperature functionality must

be selected. The solution is to compute the formal concept

which the intent contains the mandatory features (MF)

defined in the user request. The mandatory features can be

technical, functional and/or non-functional:

(S;MF ∪ FF)

The sets S and FF can be empty. If the extent S is

empty, there is no service available providing the mandatory

features. In our example, from the formal context (Table III),

the selection result for Temperature activity is the formal

concept ({S1, S2, S3, S5, S6, S7, S8}; {Temperature}).

Selection based on mandatory and optional features.

This selection is an extension of the previous case. To take

into account the optional features, we propose to compute

the successors of the concept (S;MF ∪ FF). The compu-

tation of the successors is an extract of the concept lattice

that can be viewed as the decision tree:

(S;MF ∪ FF) ∪ successors(MF ∪ FF)

According to the optional features (user preference),

the branches can be pruned. The selection is guided

by the decision tree. For example, the classification of

the Temperature services is computed from the concept

({S1, S2, S3, S5, S6, S7, S8}; {Temperature}) previously

obtained. The successors of this concept constitutes the

decision tree illustrated by Figure 6.

Figure 6. Example of extract lattice for Temperature activity.

At the bottom of the figure, we find the con-

cept ({S1, S2, S3, S5, S6, S7, S8}; {Temperature}). Ser-

vices are classified according to their characteristics. An

optional criterion for the user request can be the services

implemented in the UPnP technology. Then, the right side

of the tree can be pruned. Services S1, S2, S5, S6 and

S7 provide the functionality Temperature with an UPnP

implementation.

In another example, let us consider that the user wants at

least two Temperature services with, if possible, confiden-

tiality and integrity properties for the data exchange. Only

service S2 provides the confidentiality (C) and integrity (I)

properties and it is also implemented with UPnP technology

({S2}; {T, UPnP,C, I}). However, thanks to the decision

tree, the user can relax the constraints. Services S1 and

S5 have the same features than S2 but the confidentiality

property ({S1, S2, S5}; {T, UPnP, I}).
To conclude, the user can choose a service according to

the optional features guided by the decision tree, the user

decides which services are more appropriated to his/her

requirements.

Selection of services meeting the mandatory features

with a minimum of additional properties. The aim of this

selection, somehow, is to minimize the side effects. First,

as previously, the concept (S;MF∪FF) is computed with

the mandatory features as input. To minimize the features

of the selected services, we exclude from the set of services

S all the services that appear in the extent of the successors

of the concept (S;MF ∪ FF):

S′ = S \ {
⋃

(Si,X)∈successor(MF∪FF) Si}

For example, the selection of services providing the

functionality Temperature implemented with UPnP gives

the concept ({S1, S2, S5, S6, S7}; {T, UPnP}). The

successors of this concept are ({S6}; {T, UPnP,A}),
({S1, S2, S5}; {T, UPnP, I}), ({S2}; {T, UPnP,C, I}),
({S5}; {T,H,UPnP, I}) and the top (left side of the

Figure 6). Consequently, only the service S7 provides the

given properties.

B. Impact of annotation on data flow

In this section, we detail the impact of annotations on data

flow. In fact, the annotations impact the output and the input

of the selected services (Figure 7). We note A1 the abstract

service in input of the dataflow and A2 the abstract service

in output. In our work, we focus on the security constraints

[13].

Figure 7. Annotation on data flow.

In this section, we present two selection mechanisms

taking annotations into account. We illustrate our results

with an example based on the formal context defined in

Table IV. To simplify, the extract of context model contains

only the interesting functionalities (Analysis and Storage)

and the possible encryption algorithms3 (Triple DES, AES

128 and AES 256) ensuring confidentiality. Confidentiality is

actually a general security concept that can be otained with

encryption algorithms. Let us note here that annotations can

be precise or generic depending on the level of detail they

specify (that is encrypted or, more generally, confidential).

Confidentiality

W
S

A
n
al

y
si

s

S
to

ra
g
e

T
ri

p
le

D
E

S
in

p
u
t

T
ri

p
le

D
E

S
o
u
tp

u
t

A
E

S
1
2
8

in
p
u
t

A
E

S
1
2
8

o
u
tp

u
t

A
E

S
2
5
6

in
p
u
t

A
E

S
2
5
6

o
u
tp

u
t

S10 X X X

S11 X X X

S12 X X X

S13 X X X

S14 X X X

S15 X X X

Table IV
EXTRACT OF CONTEXT MODEL.

Precise annotations on data flow. In this case, the

computation of the formal concept for each abstract service

must take into consideration the annotation, i.e. the intent

must contain the information provided by the annotations.

The intent for A1 is defined by the features of A1 and the

annotation as output:

A1: (S;MF ∪ Annotation output ∪ FF) ∪
successors(MF ∪ Annotation output ∪ FF)

The intent for A2 is defined by the features of A2 and the

annotation as input:

A2: (S;MF ∪ Annotation intput ∪ FF) ∪
successors(MF ∪ Annotation input ∪ FF)

For instance, the communication between the

Analysis and Storage activities is annotated by a

confidentiality property made with Triple DES algorithm

(Figure 1). The solution of the classification is:

({S10, S15}; {WS,Analysis, T riple DES output}) for

Analysis and ({S13}; {WS,Storage, Triple DES input})
for Storage.

This type of annotations has a minimal impact on the com-

putation of the appropriate concrete services. Complexity is

the same as the one of a formal concept.

Generic annotations on data flow. This case is a general-

ization of the previous case. The intent for A1 is defined by

the features of A1 and the annotation as output. The intent

for A2 is defined by the features of A2 and the annotation

as input. The difficulty is that the constraint is generic. The

3http://www.w3.org/TR/xmlenc-core/#sec-Algorithms

solution proposed must be coherent, i.e. the A1 output must

be compatible with the A2 input.

As previously explained, we propose to compute the

formal concept for the mandatory features of A1 and its

successors:

A1: (S;MF ∪ FF) ∪ successors(MF ∪ FF)

Then, A2 is computed according to the annotations found

in the intent of the successors of A1. First, we compute

the Possible Annotation Output denoted by PAO = {a ∈
Annotations | successors(a) ∩ successors(MF ∪
FF) \ ⊤ 6= ∅}. More precisely, by noting Annotations the

set of annotations, providing the annotation functionality,

appearing in the service registry and in the set of successors

of A2 (successors(MF ∪ FF)). Then, the computation

of A2 is:

A2:
⋃

a∈PAO(S;MF ∪ a ∪ FF) ∪
successors(MF ∪ a ∪ FF)

This use case is illustrated by Figure 8. For

example, if there is an annotation Confidentiality

between the activities Analysis and Storage, the

set Annotations = {TripleDES(input/output),
AES128(input/output), AES256(input/output)}
defines the encryption algorithms ensuring the

confidentiality property defined in the context model

(Table IV). The computation for A1 gives an extract of

lattice (left part of Figure 8). The result of the computation

for A2 according to the Possible Annotation Output

(PAO = {TripleDESoutput, AES256output}) is two

extracts of lattice (right part of Figure 8).

Figure 8. Example of confidentiality annotation.

The result is a graph composed of lattice extracts. If there

is a path between the concepts of A1 lattice extract and

A2 lattice extracts, there is one or more solutions realizing

the generic annotation. For example, there is a path be-

tween ({S10, S15}; {WS,Analysis, T ripleDESOutput})
and ({S13}; {WS,Storage, TripleDESinput}). For the

Analysis activity, the user can choose the services S10 and/or

S15 and this choice implies that the service S13 must be used

to ensure the Storage activity.

V. IMPLEMENTATION

Our approach have been implemented in Java language.

In this section, we do not detail the ROSE implementation

explained in [11]. The context model is an XML file and its

structure (Figure 9) is the following:

• first, the definition of all the attributes, i.e. the service

properties, defined by a string,

• second, the definition of all the objects, i.e. the filtered

available services, defined by an identifier and a list of

attributes provided and/or required by the services.

<!ELEMENT binaryRelation (attributes,objects)+ >

<!ELEMENT attributes attribute+ >

<!ELEMENT attribute (#PCDATA)>

<!ELEMENT objects object+ >

<!ELEMENT object attribute+ >

<!ATTLIST object id ID #REQUIRED >

Figure 9. DTD file.

The context model is stored using two Hashmap. Such

a data structure allows the efficient implementation of

common operations. Lattices are managed using JgraphT4.

JgraphT is a library usualy used in graph theory.

The visualization of the decision tree is made with the

JGraph library5. JGraph is a library based on Swing. Fig-

ure 10 is an example of a decision tree computed from a

context model containing 50 services and 28 properties.

VI. DISCUSSION

In this paper, we use the Formal Concept Analysis as a

classification tool to select appropriate services according to

user specification and a set of available services. It brings

the following properties.

Avoid the selection of no service. The selection of

a service corresponds to the computation of one formal

concept and, if necessary, its successors. The formal concept

is computed from a set of mandatory features. But, in

certain cases, the intent formal concept contains not only the

mandatory features, i.e. it contains a set of other features.

With traditional selection (e.g. standard queries in database

domain), the query returns an empty set. With FCA, we

have not a negative answer. The response is that there is

no service exactly providing all the mandatory features but

there are services with the mandatory features and with other

features. The user must decide if other features can be used

to choose among the services of the extent.

Equivalent services. For each abstract service, we com-

pute a formal concept or an ordered set of formal concepts.

4http://www.jgrapht.org/
5http://www.jgraph.com/

Each formal concept is composed of an extent and an intent.

The extent is the set of services that share the features of

the intent. If the extent contains more than one service,

we can say that these services are equivalent, i.e. they

have the same characteristics (functional, non-functional and

technical). This property is very important in pervasive

computing, because the environment is dynamic. When a

service departure occurs, the other services of the extent can

be used. Consequently, reaction time is reduced: the service

registry is queried just one time per activity specification.

This search is done in the size of the service registry

(O(n×m)), because we compute only one formal concept.

Classification of services. With FCA, services are clas-

sified according to a set of optional features defined by the

user at specification time. An extract of the concept lattice

is computed to classify the services. It can be viewed as a

search tree. This classification allows to have a more precise

selection of services. It is possible to extend our approach in

adding a weight to the branches of the search tree according

to the user preferences defined on the optional features.

Backtracking at runtime. The equivalent classes of

services allow to dynamically adapt the orchestration at

runtime for each abstract service. This mechanism is not

sufficient to dynamically select the appropriate services. The

computation of search tree allows also the adaptation to

dynamic environments. The search tree can be used for

backtracking at runtime. The search tree for abstract services

with optional annotation can be explored according to the

availability (departure) of services. This adaptation is also

possible for the activities with annotation on output/input

dataflow. The consequence of generic annotation on dataflow

is to compute a particular graph that can be also viewed as

search tree. The advantage of this approach is that the search

tree is computed with a complexity O(n2 × m) and the

selection can be made without a new search in the service

registry.

VII. CONCLUSION

Runtime adaptability of pervasive applications built in

service-oriented environments largely depends on service

selection. In previous works, we observed that, in many

industrial use cases, brute force like algorithms for services

selection are not effective. They are too costly and not

adapted to situations where constraints may be released.

In this paper, we have presented a way to structure

services available at runtime based on the Formal Concept

Analysis approach. Our purpose is to speed up the selection

process and to improve decision making through the building

of a concept lattice. The complexity of such computation

is in the order of brute force algorithms. But, it can be

reused to perform more complex searches, where constraints

are changed. In this situation, the equivalence classes and

successors avoid reiterate each time the selection algorithm

which significantly improves performance at runtime.

Figure 10. Screenshot of a decision tree.

We are currently integrated this approach more finely

with Rose, the extensible framework for the discovery and

publishing of resources in service-oriented architecture pre-

sented here before.

REFERENCES

[1] Z. Azmeh, M. Huchard, C. Tibermacine, C. Urtado, and
S. Vauttier, “WSPAB: A Tool for Automatic Classification &
Selection of Web Services Using Formal Concept Analysis,”
in European Conference on Web Services (ECOWS 2008).
Los Alamitos, CA, USA: IEEE Computer Society, 2008, pp.
31–40.

[2] D. Bianchini, V. De Antonellis, B. Pernici, and P. Plebani,
“Ontology-based methodology for e-service discovery,” Infor-
mation Systems - Special issue: The semantic web and web
services, vol. 31, pp. 361–380, June 2006.

[3] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient algorithms for Web
services selection with end-to-end QoS constraints,” ACM
Transactions on the Web, vol. 1, Month 2007.

[4] N. B. Mabrouk, S. Beauche, E. Kuznetsova, N. Georgantas,
and V. Issarny, “QoS-aware service composition in dynamic
service oriented environments,” in Proceedings of the 10th
ACM/IFIP/USENIX International Conference on Middleware.
New York, NY, USA: Springer-Verlag, 2009, pp. 1–20.

[5] G. Canfora, M. D. Penta, R. Esposito, F. Perfetto, and
M. L. Villani, “Service Composition (re)Binding Driven by
Application-Specific QoS,” in Proceedings of 4th Interna-
tional Conference on Service-Oriented Computing (ICSOC
2006), ser. Lecture Notes in Computer Science, vol. 4294.
Springer, 2006, pp. 141–152.

[6] B. Ganter and R. Wille, Formal Concept Analysis - Mathe-
matical Foundations. Berlin, Heidelberg: Springer, 1999.

[7] T. Tilley, R. Cole, P. Becker, and W. P. Eklund, “A Survey of
Formal Concept Analysis Support for Software Engineering
Activities,” in Formal Concept Analysis, ser. Lecture Notes
in Computer Science, B. Ganter, G. Stumme, and R. Wille,
Eds., vol. 3626. Springer, 2005, pp. 250–271.

[8] G. Stumme, “Efficient Data Mining Based on Formal
Concept Analysis,” in Proceedings of the 13th Interna-
tional Conference on Database and Expert Systems Appli-
cations (DEXA’02), ser. Lecture Notes in Computer Science,
A. Hameurlain, R. Cicchetti, and R. Traunmüller, Eds., vol.
2453. London, UK: Springer-Verlag, 2002, pp. 534–546.

[9] U. Priss, “Linguistic Applications of Formal Concept Anal-
ysis,” in Formal Concept Analysis, ser. Lecture Notes in
Computer Science, B. Ganter, G. Stumme, and R. Wille, Eds.,
vol. 3626. Springer, 2005, pp. 149–160.

[10] L. Nourine and O. Raynaud, “A fast incremental algorithm
for building lattices,” Journal of Experimental & Theoretical
Artificial Intelligence, vol. 14, no. 2-3, pp. 217–227, 2002.

[11] J. Bardin, P. Lalanda, and C. Escoffier, “Towards an Auto-
matic Integration of Heterogeneous Services and Devices,” in
Proceedings of 2010 IEEE Asia-Pacific Services Computing
Conference. Los Alamitos, CA, USA: IEEE Computer
Society, 2010.

[12] P. Lalanda, J. Bourcier, J. Bardin, and S. Chollet, “Devel-
opment of service-oriented pervasive home applications,” in
Smart Home Systems, I. Book, Ed. Mahmoud A. Al-Qutayri,
January 2010.

[13] S. Chollet and P. Lalanda, “An extensible Abstract Service
Orchestration Framework,” in Proceedings of IEEE Inter-
national Conference on Web Services (ICWS 2009). Los
Alamitos, CA, USA: IEEE Computer Society, July 2009, pp.
831–838.

